CASSELL'S
 CYCLOPAEDIA
 0 F MECHANICS

PAUL N.HASLUCK

Good and Useful Tools.

pmplete.

Charles NURSE \& Co., Tool Makers, 182, 184, 173, Walworth Road, London, S.E. Also at 144, BISHOPSGATE STREET WITHOUT, E.C., and 100, FLEET STREET, LUDGATE CIRCUS, E.C. Cyclopeedia of Mechanics.-Cover 2$]$

The date shows when this volume was t High-Crass Twgineel

T 49.C34 ${ }^{\text {Cornell University Library }}$
Cassell's cyclopaedia of mechanics :cont

\qquad

With Ratchet attachment to ensure the same amount of pressure being applied every time to the article measured.

उच̈̃, or to 25 mm . by $\frac{17}{10} \mathrm{~mm} ., 25 / 6$; in

Agents for BROWN \& SHARPE'S HIGH=CLASS SPECIALITIES.

Improved Bevel Protractor.
Graduated o to 90 , both right and left, and capable of the most accurate adjustment.
9 in .12 in .18 in .24 in . Rule. (9 in . Rule has 5 in . head; 10/= 11/- 13/- 15/- other sizes, 7 in . head.)

Starrett's Calliper Square.

 Jaws reversible and adjustable. Graduated $\frac{1}{6}$ one side $\frac{1}{100}$ the other. With adjusting screw, as shown.

3 in .4 in .6 in.
13/- 15/- 21/-

Without adjusting screw. 3 in .4 in .6 in. $\begin{array}{lll}11 / 6 & 12 / 6 & 18 / 6\end{array}$

Starrett's Universal

Surface Gauge.

No. 56. 5 in. high, weight 10 oz . With auxiliary guide, as shown, 11/-

ILLUSTRATED CATALOGUE

(312 pages, 2,000 lllustrations)
POST FREE, 6d.

G. NURSE \& CO., Tool Manufacturers \& Merchants, 182 \& 184, Walworth Road, London, S.E.;

And also at 144, Bishopsgate Street Without, London, E.C.; and at 100, Fleet Street, Ludgate Circus, London, E.C.; and at 173, Walworth Road, S.E.

WILLIAM HAYWARD,
 18 \& 19, Giltspur Street,
 Newgate Street, E.C.

Branches:

177, LEWISHAM HIGH ROAD, S.ت.;
2, HIGH STREET BUILDINGS,
HIGH STREET, SYDENHAM.
Factory and Wholesale Depot : 65, FARRINGDON ROAD, LONDON, E.C.

Practical Carver and Gilder. Importer of Gilt and Ornamental Wood Mouldings.
Over 700 Patterns to select from. Oíl Paintings relined $\&$ restored. Old Engravings Bleached and made to look like new. Regilding in all its branches. Gílding Materials supplied.

Picture Frame Maker.
Oil Paintings, Engravings, Oleographs, Photographs, a large selection always, on hand.
Tapestries and Needlework carefully Mounted in the best style.
Amateurs supplied with every requisite for making Picture Frames.
Tools, Glass, Backboards, Rings, \&c.

A neat Ebonised Show Case, size 36×18, containing patterns of Mouldings, supplied.

Catalogue Post Free on application.

CASSELL'S

CYCLOPEDIA OF MECHANICS

Cornell University Library

The original of this book is in the Cornell University Library.

There are no known copyright restrictions in the United States on the use of the text.

CASSELLS

CYCLOPEDIA OF MECHANICS

CONTAINING

RECEIPIS, PROCESSES AND MEMORANDA FOR WORKSHOP USE

BASED ON PERSONAL EXPERIENCE AND EXPERT KNOWLEDGE

WITH 1,200 ILLUSTRATIONS AND AN INDEX OF 8,500 ITEMS

EDITED BY
Paul N. Hasluck
EdITOR OF " WORK" and "bullding WORLD," aUthor of "handybooks for handrcrafts," etc. etc.

FIRST SERIES

Cassell and COMPANY, Limited london, paris, new York \& melbourne 1901
 all bigits resebved

First Edition September 1900. Repranted 1 got.

PREFACE.

C
ASSELL'S CYCLOPEDIA OF MECHANIGS contains in a form convenient for ready reference and everyday use receipts, processes, and memoranda selected from a rich store of choice information contributed by a staff of skilful and talented technicians, upon whose practical experience and expert knowledge the information is based. The matter contained in this volume has been carefully digested, freely illustrated, and made plain to those inexperienced.

All compilations of receipts and memoranda for the use of mechanics that have been published-and some have attained great popularity-differ from the present work in the important fact that every item in this volume is the paid contribution of 'an expert, written specially to satisfy the want of an inquirer, and each has challenged emendation from a wide, circle of practical men. Corrective and supplementary matter supplied by these critical readers has been incorporated to ensure the greater efficiency of this work.

A superficial glance through the pages of this volume might tend to a false impression that the varied contents are not readily available for easy and systematic reference. However, this is not so. Experience has shown that it is not possible to classify paragraphs that often include matters essentially different so that there shall be a definite place for every item, and the impossibility of such a cuurse is particularly emphasised in the present collection, which embraces subjects widely diversified. Even a little consideration of this Cyclopædia would show that no possible arrangement of the paragraphs would place them so that the several facts contained in each could be found with ease and certainty. The copious index provides a means by which every separate particular and detail of any kind dealt with in the volume may be traced and referred to with the least amount of trouble. This index also brings together every reference to the same subject, however widely they may be scattered, and all varied notes included under one heading are properly analysed and, thus disclosed, regrouped with kindred topics. No pains have been spared in the compilation of this index, which efficiently serves
a purpose impossible to be met by any arrangement of paragraphs comprising the volume.

Amongst the items embodied in this work probably every reader can find some that contain information already known to him. Possibly some readers may be able to supplement the particulars given in respect of matters with which they are familiar. Any authentic supplementary particulars that are likely to be of benefit and that would increase the usefulness of the information will be welcomed, and should be sent to the undersigned, with the view to including them in a second volume, now in preparation, that will be issued when ready.

Additional information or instruction on special details of the matters dealt with in Cassell's Cyclopedia of Mechanics may be obtained by addressing a question to Work or Building World, from the contents of which journals this Cyclopædia has been compiled, so that it may be submitted to the staff of contributors and answered in the columns of one of those journals in the usual course.

P. N. HASLUCK

La Belle Sauvage, London.

September, 1900.

INDEX TO ILLUSTRATIONS.

(The Contents Index is on pp. 355-383.)

Acetylene Gas Gencrator, 282 - -... for Magic Lautern

Aërated Water Machine, 329
Airer for Towels, 179
Air-gun Construction, 256
Air-pump for Blowlamp, 73
Alapin, Electric, for Shop Door, 181
Altar, Private, 106
American Organ Reed-hook, 299
Roll-top Desk, Roll-shutter for, 291
Angler's Three-legged Folding Stool, 21
Antlera, Method of Momnting, i7 Apple-zcoop, Bone, 47
Aquarium Top, Pattern for, 118
Arbour, 147
Are, Determining Centre of, 172

- Drawing, when Centre is inaccessible, 177
- Lamp, Hand Feed, 344
-, Method of Developing, 227
Arcli, Brick, 278
——, -, Centering for, 155
-, Circle-on-circle, Ceatre for, 171
-, Elliptic, 201, 211
-, Gauged, 235
-, Mouldings on, 146
-, Return Bead round, 158
_-, Semi-elliptic, 209
Architects' Perspective Drawings, 138
Armchair, Spring Seat of, 330
Assembly-romin Floor Joists, 217
Antomatic Sewage Filter, 203
Axle Boxes, Machine for withdrawing from Wheels, 126

Baby'o Cradle, Stand for, 41 - Swing' 205

Bag Changing Box for Camera,343
Baker's Steam-heated Oven, 37
Balanced Steps, 177
Ball, Cutting, Inside Ball, 325
Bamboo. Bedstead, 46

- Calinet, 132
-Camera Stand, 336
- Newspaper-rack, 128, 134
—— Rocking Clair, 237
Table Top, Method of fastening Legs to, 128
Band-aaw Brazing, 27
- Wheal, Method of Fixing Leather to, 262
Bancls, Straw, Twisting Hook for, 309
Banio Worm Screws, 115
Barher's Chair, 98
Barn, Dutch, 182
Barrow, Child's, 216
-, Wheel, 176
$\bar{\sim}, \cdots$ Frame of, 32
Basket Repairing, 309
Basketa for Siugle-sticks, 308
Bath for Ferrotype Photography, 307
Bathroom Mirror, 186
Bead round Arch, 158
Beading Spindle for Lathe, 288
Beadwork, Cabinet or Workbox for, 49
Beam, Flitched, Section of, 162
Beain-compasses, 321
Bed-rest for 1nvalid, 139
Bedroom Table, 36
Belstead, Bamboo, 40
--, Child's Wooden, 70
-, Curtain Rails, 104
--, Woorl Tester, Head
-—, Woorl Tester, Head for, 198
Bellows Wooden, 273
Bellows, Conical, for Camera, 276
Belts, Leather, Diagram of
Power Transmission by, 99
--, Tent Pole Rack for, 260
Bench, Circular Saw, 285

Bending Block for Sla ackles, 67 - Brass Tubes, 316

316
Bevel Set-square, Carpenter's, 160 Bevelled Stock Hoops, 252
Bevelling Frames, Apparatus for, 270
-Glass, Wheels for, 314
Bevels for Hips to Semi-octagonal Lantern Light, 193 - - Oval Cask Joints, 66 $\overline{\text { Bier Stand for }}$ Rafters, 57,165
Bier Stand for Mortuary, 73
Billiard Table Corner, 153
Bin for Poultry Food, 130
Bird Cage, 169

- Room, Warming, 202

Birds, Breeding Cage for, 223
Blind, Wire, Frame for, 61
Block for Supporting Person on Cyclo, 887
Blocks, Floor, Apparatus for Cutting, 330
Blowing Fan for Forge, 319
Blow-lamp, Paraffin, 151
\rightarrow-, Air-pump for, 73
low pipe, Paraffin, Reservoir for,
Boards, Figured, cut from Pitchpine Logs, 15
Boiler, Boot, 174
——, Egg-ended, 173

- for Greenhouse. 173
——Saddle-shaped, Pattern for,56
Bone Apple-scoop, 47
Book-raek, 229
Book-rests, 114, 172
Boot Finisher's Irons, 53
-, French Cork, 17
Rack, 313
- Shop, Double Seate for, 144

Boot Boiler, 174
Bow, Yiolin, Head and Motint.
ings of,. 214
Box for Oil Colours, 190
——— Stmmp Moulding, 54
-, Window, for Flowers, 311 with Oval Top, 266
Box-sextant, 93
Bracket, 278
Brat Monlding on Edge of, 78
Brake Blocks, Waggon, 303
Brass Cells for Optical Work, 48
——Collar for Dog, 22

- Gas-cocks, 51
- Money Box, 42
- Tubes, Bending, 316
- - Maehine for Bendiag, 286, 316
Brazing Band-sawa, 272
- Key Stems, 311

Breeding Cage for Small Birds, 223
Brick Areh, 278

- Kin, Centering for, 155

Brickmaker's Clay Waggon, 854
Brickwork, Model, Clock-stand jn, 149
Bristle on Waxed Thread, 104
Bromide Solution, Apparatus for
Applying to Paper, 166
Broughan Under-carriage Com.
passed Bed, 79
Brush Rack, 206
Builder's Level, 27

- Trestlc, 314

Building, Sham Timber, 142
Burner, lncandescent, for Oil, 151
Burnisher for Silver Mounts, 29
'Bus Under-carriage, 231
Butterfy Cases, 306
Cabinet, Bamboo, 132
—, Beadwork, 49
-, Scent, 199
Cabinet-maker's Steel Scraper,
Method of Sharpening, $13 t$

Cabinct-making, Panelled Doors in, 284
Cage, Bird, 228

- for Starling or Thrush, 169

Cumera, Bag Changiug Box for, 283

- Bellows, Conical, 276
- with Changing Bag, Sheath for, 343
- Double Repeating Back, 23
-, Enlarging, 275
Fixed Focus, Method of
Enlarging wjth, 121
, Folding Hand, 220
, Hand, 822
, —., Bamboo Stand for, 336 , View-finder for, 148
Leng, Lens, Hood or sky shade for, 345
, Mayazine Back for, 283
, Pinhole, 211
-Plate-changer, 175
-, t-plate, Shatter for, 169.
- Shutter for taking Photographic Doubles, 212

Everset, 93
Silent, 18
taneons, 187

- - Unicum, 79
- Stand, Bamboo, 336
—, Stereoscopic, 22
——, Studio, 267
- Swing Back, 338

Canoe Mast, Position of, 141
Cap, Circularmonlded Stone, 236
Carbonic Acid Generator, 329
Carpenter's Bevel Set-square, 160

- Tool Cupboard, 317
—— Try-square, Testing, 50
Carriage. Invalid, Heod for, 290
Wheels, Putting Felloes on, 31
Cart, Hand, 333
Panels, Ronter Planes for
Boxing out, 243
, Pony, 96
- Wheels, Measuring Wheel
for, 847
Cirved Putting Felloes on, 31
Carved Photograph Frame, 60
Carving Wood, Knife for, 325
Case for Croqnet Mallet, 20
Feins, 101
Insect, 306
-, Mand Gloves, 140
-, Marble Clock, 284
for Tea and Sugar, 240
-, Traveller's Sample, 63
-, Turaed Wood, for Drom
Case-lardening, Oven for, 107
Cask, Oval, Be vels for Joints of, 66
Cells for Optical Work, 48
Cement Frame, Oval-shaped, 221
Centre for Brick Arch, 155
171 Circle on-Circle Arch,
Centrifugal Pump, 28
Chair, Bamboo Roc̣king, 237
-, Barber's, 98
-, Child's, 116
-, Divan, 214
-, Invalld's Self-propelling, 345
--, Marlborough Easy, 122
-, Rush. or Cord-jottomed, 174
-, Spring Seat of, 330
Changing Bag Camera, 343
Chapel Pulpit, Small, 131
Chat'coal, Method of Making, 109
Chenical Tank for Magic Lantern, 61
Chest, Medicine, 139
-, Tool, for Coach Body
Maker, 65
gineer, 35
En-
Electrical En-

Cheat, Tool-, Tenon Saw faatoned to Lid of, 137
Chicken Rearer, Heating, 148
Child's Bedstead, 70

- Chair, 116

Chi Wheelbarrow, 216
Chimney Breast, Mcthod of Un. derpinning, 260

- Design, 194

Circle-on-Circle Aych, Centre for, 171
Circular Mouldings, 78 Saw, Ronter for Working, 78 Saw Attachment for Cutting Floor Blocks, 330

- - Bench, 285

Cistern Glushing 52
Clay, Side-tipping Waggon for,354
Clip for Seribing Block, 156
Clock Case, Marble, 284
-- Electric Turued Wood, 52
-, Electric Alarm for, 141
-, Grandfather, Striking Work of, 201
——, Lantern, Eiglit-day Movement for, 154

- Stand, Model Briokwork, 149
- Striking Movennent, 123

Clockwork Metronome, 9.5

- Motor for Gramophone or Phonograph, 58
Clothes Rack, 331, 337
Coach Maker's Tool-chest, 65
Coal-weighing Machine, Scoop for; 342
Cob, Trotting Sulky for, 318
Collar, Brass, for Dog, 22
Colour Box, 190
Column, Spiral Flute on, 323
Columns for Roof, 226
Compassed Bed of Brougham
Under-carriage, 79
Compasses, Beam, 32
Trammel, 321
Compo., Gauge Boxes for, 167
Concrete Sills and Heads, 111
Cone, Wronght-iron, 37
Conical Bellows for Camera, 276
- Rim, Pattem for, 45

Copper Foot-warmer, 62

- Pipes, Wiped Joints on, 62

Copper, Flash-flue Washing, 283
Cord-bottomed Chair, 174
Cork Boot, French, 17
Coroice Moulding, Mitre of, 122, 136
Cotes, Pigeons', 219, 296
Cotton Fibres, 106
Counter, Simple, 312
Coupling Shackles, 67
Crabs, Pot for, 184
Cradle, Baby's, Stand for, 41
Cramping Picture Franes, 302
Crank-shaft of Engine, 102
Crate for Carrying Pig, 97
Croquet-mallet Leather Case, 20
Crucible Steel Furnace, 39
Cupboard, Glass-fronted Hang. ing 222
Cur Carpenter's Tools, 317
Curtain for Door, 110
—— Rails, for Bedstead, 104

- Rod, 125, 145

Curved Wing Wall, 254 .
Curves, Involute, 226
-, Spiral, Projection of, 110
Cyele, Block for Supporting, 337 - Parte, Qven for Case-hard-
ening, 107
Cylinder-tank System Hot-water Supply, 158, 258
Damper for Poatage Stamps, 276
Dancing Steps, 177
Dark Rooin, Plootographer's, 213
————, --, Lamp for, 189, 239 tem for, 181 Ventilating Syo
——Shed 170
-浣
Soung Sye

Decker Oven, 37
Desk, Roll-top, Shutter for, 201
Developer, Pyro, Mixing, 263
Dining room Ingle Nook, 332
Dipper for Ferrotype Photorraphy, 307
Distilling Water, Apparatus for 10.8
-Whisky, Apparatus for, 204
Divan Chair, 214

- Settee, 335

Dog Collar of Brass, 22

- Krnnels, 55, 255, 352

Doll's Wonden Bedstead, 70
Dolly, Metalworkers' Mandrel,
Dome, Rool eutting into Side of, 25
D.me Curtain, 110
-D, Electric Alarm for, 181

- Frame, Elliptical Headed, 13
——Opeaings, Recording, 243
-, Panelled, in Cabioet-makiog, 235
-, Railway Carria, in Joinery, 285 Sashes in, 349 Watertight Slidiog, 77
Doorway Porch, 33
Dovetailing, 24
Drain of House conaected to Sewer, 23
Draughtsman's Pen, Setting, 47 Drawers, Secret, in Jewel Case, 36
Drawhooks, Locomotive, 297
-, Railway Waggou, 297
Drawing-pen, Setting, 47
Drawings, Architects' Perspective, 138
Drilling, Watch Staff, 42
Drilliog-machine, 178
Dunlop Tyre Valves, Trammel Heads made from, 218
Dutch Barn, Design for, 182
Easy Chair, Marlborough, 122
Esg supported in Net, 254
Eight-day Movement for Lantern. Clock, 154
Electric Alarm for Clock, 141
—— Are - Nhop Door, 181
- Are Lamp, Hand Feed, 344
- Pnsh, Double-contact, 99

Electrical Engineer's Tool-chest, 35
Ellipse, 66
Elliptic Arch, 201, 209, 211
-Gothic Arch, 195
Elliptical Headed Door Frane, 13
Embroidery f'rame, 133
Engine Crank-shaft, 102

- Indicator Diagrams, 92
— for Pile Driving, 165, 316
-Rods, 84
Eogineer, Electrical, Tool-chest for, 35
Enlargements, Photographic, 121, 127
Enlarging Camera, 275
- , Kodak as, 68
- Lantern, 31, 277

Entrance Gate Tenons, 124
Envelopes for Insects, 306
Everset Photographic Shutter, 93
Extension Ladder, 241
Fan, Blowing, for Forge, 319
Fclloes, Method of Putting, on Wheels, 31
Felt and Corrugated Iron Roof, 225
Fender Stool, 264
Fern Caste, 101
Ferrotype Photograpliy, Bath and Dipper for, 307
Fibres of Linen, Cotton, Wool, and Sily, 106
Filter, Audornatic Sewage, 203

- Beds, 215
- for Oill, 100

Filliation of Oils by Heat, Apparatus for, 125
Fir, Scotch, 315
Fir, Spurace, 315
Fireguard, 71
Firelighters, 268
Fishing, Folding Gaff for, I79

Fishing, Landing Net for, 157

- Line Knots, 234
- Rcel, 237

Fi Stool, Threc-legged, 21
Flags, Signal Code, 351
Flash-flue Washing Copper, 283
Flashings, Lead, for Roofs, 331
Flitched Beam, Section of, 162
Floor, Assembly-room, Joiets for, 217
——Blocks, Cutting, 330

- Beards, Tightening, 119
—— supported by Girder, 190
——, Wood-block, 245
Flower Pot Board, Window, 326
- Stand, 246

Flues Window Box, 311
Flues of Washing Copper, 283
Flushing Cistern, 277
Flute, 152
Flute, Spiral, on Column, 323
Folding Gaff for Salmon Fishing, 178
—Hand Camera, 220
—— Leaf of Kitchril Table, 179
——Stand for Baby's Cradle, 41

- Stool, Angler's, 21
- Table, 143

Food Bin for Poultry, 130
Footstool, Round, 281
Foot-warmer, Copper, 62
Forge, Blowing Fan for, 319
Fountain for Greeoliouse, 340
Fowls' House, 339
Frame, Apparatus for Bevelling, 270
-, Carved Photograph, 60

- covered with Plush, 108
—, Cramping, 302
—, Door, Elliptical Headed, 13
-, Embroidery, 133
——O Oval, in Cement, 221
-, Oxford, 247
\Rightarrow for Wire Blind, 64
Freneh Cork Boot, 17
Furnace, Crucitle Steel, 39
——for Waggoo Springs, 59
Gaff for Salmon Fishing, 179
Galvanometer, Watch-case, 60
Garden Pump, 331
- Tripod for Telescope, 94
- Vase, 228
- Wicket Gate, 320

Gas Generator, Acetylene, 67, 252 - C, Carhoaic, 329
—Stove Clothes Rack, 337
Irons for Heating Laundry Irons, 242
Gas-cocks, Brass, 51
Gate, Entrance, Tenons for, 124
-, Garden Wicket, 320
Gange Boxes for Compo., 167

- for Iulaying Purfling on Violin, 308
——— Stringing, 164
Studs in Upholstery, 210
-, Pencil Marking, 133
Ganged Arch, 235
Gedge's Draw-hook, 297
Girder for Roof, 226
- Sections, 161
- to support Floor, 190

Glass Louvre Ventilators, 34
Glass Louvre \quad Roof, Preventing Moisture
Roof, Preventing

- Silverer's Table, 72
-Wheels for Bevelling and Polishing, 314
Glass-faced Swinging Sign, 295 Glass-fronted Cupboard, 222
Glazing Window Frames, 109
Glazing Wiodow F
Glazing-knife, 343
Glove and Handkerehicf Case, 140 Goods Hoist, $31!$
- Lift, 320

Gothio Arel, Elliptic, 195
Gradient ol Watercourse, Setting out, $3: 4$
Granophone, Clockwork Motor for, 53
Grandfather Clock, Striking Work of, 201
Granike Dressing Tools, 205, 238; 282
Greenhouse Boiler, 173

Greenhouse Fountain, 340
-, Top Rail of, 118
Greeustriff Feod, Rack for, 334
Grocer's Hoist, 319
Grooving Sashes, Machine for, 259
Guavd for Circular Saw, 52
Guns, Air, 256
Gutters, Cast-iron, 202
Hair Mattress, 207
Halation in Negatives, Diagram showing, 313
Hall Racks, 331,346
Hammer, Scubbling, 61
Hand Camera (see Comera)

- Cart, 333
- Feed Are Lamp, 334
- Guards for Singlé-sticks, 303
\rightarrow Shears for Sheet Iron, 210
Handkerchief Case, 140
Hanging Cupboard, 222
Hat Ricks, 331, $34{ }^{1}$
Heaped Material, Method of De.
termining Contents of, 210
Hearth, Tile, 244
Heating Chicken Rearer, 143
- ty Hot-water, 235, 253
- Laundry Irons, Stove for; 242
——, Steam, System of, 228
Hinge of Screen Frane 94
Hip Rafter, Bevel of, 57
Hoist, Grocer's, 319'
Hood for Camera Lens, 345
Hook, Reed for American 290 gans, 299
- for Twisting Straw Bands, 30
Horse for Mortising Wheel Naves, 135
Horses, Stocks for Shoeing, 43
Hot Box for Negatives and Lanterru Slides, 20
Hot-air Oven, 132
Hot-water Apparatns, 127, 158, 175
- Pipes, Joint for, 347
- Systems of Heating, 235, 258
- Towse Airer, 179

House Drain Connection to Deep Sewer, 23
House, Fowls', 339
—, Pigeous', 219, 296
Hydraulic Gradient, 263

- Mean Depth, 68
- Ram, 163

Ineandescent Burner for Oil, 151
Indieator Diagrams of Engine, 92 Iogle Nook, 342
Inlaying Purfling on Violin, Gauge for, 308

- Stringing, Gauge for, 164

Insect Cases, 306
Iavalid's Bed-rest, 139

- Carriage, Hood for, 290
-Self-propelling Cliair, 345
Involute Curves, 226
Iron, Corrugated, Roof of, 225
- Roof, 180
——, Sheet, Hand Shears for, 21 C
Irons, Shoe Finishers', 53
Jack Plane with Side Slip, 117
- Rafters, 209

Jewel Box and Scent Cabinet combinerl, 199
-Case witli Secret Drawers, 86 , Glove, and Handkerchief Case, 140
Joinerv, Panelled Doors in, 285
Joint for Hot-water Pjpes, 347
, Cblique, Mortise-and-tenon, 196
——, Pavodilos, 98
-, Plumber's Underhand, 83
—, Wiped, on Copper Pile, 62
Joints of Oval Cask, 66
Joints for Floor of Assembly. room, 217
Kenuels, Dog, 55, 255, 352
Kerbing, Curved, 217
Key Stems, Brazing, 311
——, Stopeock, 271

Kiln for Briciss, 175
King-post Truss, Hipped End of, $3: 8$
Kitchen Table, 171

- ports, 179 Folding Leaf and Sup. por
Knife, Glazing, 343
-, Stopping, 343
-, Unorella-1uaker's, 164
Woor-carving, 325
Knots for Fishing Lines, 234
Kodak as Eolargivg Camera, 68
Ladder, Extension, 241
-, Step, Setting out Side of, 39
Lamp for Dark-room, 139, 233
- Hand Feed Arc, 344
, Street, Door Catch of, 92
-, Table, 212
Landan Head, 188
Landing Net, Fisherman's, 157
Lanteru Clock, Eight-day Movement for, 154
- for Enlarging, 31, 277
- Light, Semi-octagonal, Bevel for Hips to, 193
, Magic, 31
- Acetylene Gas Generator for, $6{ }^{-}$ Slid Chemical Tank for, 61 ${ }^{\text {Slidee }}$, Apparatus for Makiog, 95 Box for, 26
Lath, Detachable, for Table, 56
Lathe Beading Spindle, 288
Overhead - Arrangement. for, 192
Slide-rest, Tool-holder for 191
-, Wood Chnek for, 14
Latrine on Board Ship, 341
Laundry Stove for Heating Irone, 242
Lavatory Mirror, 186
Lead Bays for Ogee Roof, 2 's0
- Flashings "Burot-in" to Stone, 229
- Flathings for Roofs, 331

Leakage of Water, Instrument for Locating, 271
Leather oo Band-saw Wheel, 262 Belts, Diagram of Power Transmission by, 99

- Case for Croquet Mallet, 20
- Purses, 261

Legs of Bamboo Table, 123
Leas, Camera, Hood or Sky Shade for, 345
Lenses, Periscopic, 327
, Photographic, 324
Letter-box, Sheet-met
Letter-box, Sheet-metal, 291
Level, Builder's, 27
Lift, Goods, 329
Linen Fibres, 106
Lines, Fishing, 234
Lobster Pot, 184
Locomotive Draw Hook, 297

- Reversing Gear, Stephen. son's, 213
Log, Ship's, Working, 159
Louvre Ventilators, Glass, 34
Lonvsed Thermometer Screen, 71
Lumber, Apparatus for Artifleially Seasoning, 167

Magazine Back for Camera, 253
Magic Lanteru, 81
ator for 67 Alene Gas Gener. ator for, 67

- - Chemical Tank fer, 61 Making, 95
Maileart, 1S3
Mandrel Dolly, Metalworkers', 113
Mengle Shafts, Press for, 40
Map, Ordnance, 5 S
Marble Cleck Case, 284
Marking Gange, 133
Marlborough Easy Chair, 122
Mast in Canoe, Position of, 141
Mattress, Hair, 207
Mattress, Hair, 207
Measuring Wheel for Cart Wheels, 347
Medirine Chest, 139
Metal Plates, Levelling. 208
Metalworker's' Mandrel Dolly, 113

Metronome, Clockwork, 95 , Simple, 19
Microscope Cell Work, 48
Midden Stead, Covered, 269
Mill, Saw, 257
Mirror for Bath or Lavatory, 180
Mitre Box, 136
-Lines, Sctting ont, 239

- of Raking Cornice, 122

Mitring Cornice Moulding, 136
Model Brickwork Clock-stand, 149
Pumping Windmill, 310

- Yaclit Sail Plans, 168, 184

Money Box, Brass, 42
Mortise-and-tenon Joints, Oblique, 190
Mortising Wheel Naves, Horse for, 135
Mortuary Bier Stand, T
Moths, Cases for, 306
Motor, Clockwork, for Gramophone and Phonngraph, 58 Reciprocating Water, 2:8, 342

Water, 39

Moulded Stone Cap, 236
Moulding-cutters, Machine for Grinding, 216
Mouldings on Arches, 146 -, Cincular, Working, 78 , $\frac{\text { Int }}{}$, Router for Working, is , Intersection of, 197 Mitred Cornice, 122, 136 for Railyay Carriages, 19 , Mitre Lines for, 239
\rightarrow - Scratch Plane for, 168 for, 29
Mounting Stereoscopic Prints, 53
Mounts, Silver, Burnisher for, 29

- for Stag's Antlers, 77

Music Sb Tobacco Pipes, 29
Negatives, Diagrams Illustrating Halation in, 318
-, Hot Box for, 26
-, Tool for Retouching, 262
Net, Egg supported in, 254
-, Landing, 15%
Newopaper-rack of Bamboo, 123, 134
Nnok, Ingle, 832
Oak, Wainscot, 224
Ontagonal Fonntain for Greenhouse, 840
Ogee Roof, Lead Bays for, 280
Oil Burner, Incandescent, 151
\longrightarrow Filter, 100
——Filtration by Heat, 125
Oil-colours, Box for, 190
Omnibus Under-carriage, 231
Opal Printing Frame, 236
pera Glass Lens, Photography with, 336
Optical Square, 114

- Work, Brass Cells for, 48

Ordnance Datum, 58
Ovap, 58
Oval, 66

- Baskets, Repairing, 308
- Cask Joints, Bevels for, 60
- Frame in Cement, 221
—Top Wooden Box, 266
Oven, Baker's Steam-heated, 37
- Hor Case-hardening, 10'
-, Hot-air, 132
Oxford Picture Frame, 24
Panel Plane with Side Slip, 117
Panelling with Veneers, 128
Panels, Cart, Ronter Planes for Buxing out. 243
Paper, Apparatus for Applying Bromide Solution tn, 166° Photographic, Method of Preparing, 233
Parafin Blow-lamp; 151
- - Air Pump for, 73

Par Blowpipe Reservoir, 323
Parisian Phaeton, 197
Pasteboard Tube Umbrellastand, 252
Pattern for Compassed Bed of Broughan Under-carriage, 79

- Conîcal Rim, 45

Pattern for Fountain, :940
-—— Saddle Boijer, 56

- Wronglt-iron Cone, 37

Pavodilos'Joint in Flooriag, 98
Pedestal for Tahle, 120
Pen, Ruling, Setting, 47
Pencil Marking Gangn, 133
Periscopie Lenses, 327
Perpetual Calendar Watch, 44
Perspoctive Drawings, Architect's, 138
Phaeton, Parisian, 197
Phonograph, Clockwork Motor for, 58
Photograph Frame, Carved, 60
Photographer's Dark Koom, 213
K - - Lamp 189, 233
tem ror 181
tem tor', 181 Nos
Hand Feed Arc Lamp, 344
Plotogr iphic Camera (see Camera)

- Developer, Apparatus for Mixing, 263
Doubles, Camera Shutter for Taking, 212
Enlargernents, 121, 127
Enlarging Cannera, 275
- Lantern, 31, 277

Lenses, 324 Kodak 3s, 68 Lenses, 324
Negative, Halation in, 313
Negatives, Hot Box for, 26 -, Tool for Retouching,

262

- Paper, Preparing, 160, 233

Plate-changing Anrangement
in Hand Camera, 175
-- Print Washer, 126
-Printing Frame, 글-plate, 203

- - for Opals, 236

Prints, Apparatos for Testing, 275

- - Vignetting, 14

Shatters, 1S, 79, 93, 169, 187, 212
Stereoscopic Prints, Method
of Mounting, 53
Studio, 274

- - Camera, 267

- -, Temporary, 345
used in, 337 Cychists, Block
used in, 337
Photographs, Postage Stamp, 305
Photography, Stereoscopic,
Camera for, 22
- with Telescope, 336 Wet-plate, Wire Rests used in, 100
Piano Music Shelf, 338
Picture Frame, Cramping, 302
Pict-, Oxford, 247
Pictures, Triad, 75
Pig, Crate for carrying, 97
Pigenn Cote, 219, 296
Pile Driving, Eugine for, 165, 316 Piles, Driving, on Batter, 346
Piles, Thermo-electric, 90
Pillar, Turned, Cutting Slot in Top of, 65
Pinhole Cainera, 211
Pipe, Copper, Joint in, 62
-, Hot-water, Joint for, 347
--, Hydraulic, Mean Depth of Liquid in, 68
-, Lead, Joint in, 88
Pipe-mount, Silver, 29
Pip, --, Burnisher for, 29
Pipes, Tobacco, Rack for, 163
Pitch-pine Logs, Figureil Boards cut from, 15
Plane, Jack, with Side Slip, 117
Plane, Router, 243
--, Scrateh, for Monldings, 168 Plate Stand, 344
Plate-changing Arrangement in
Hand Cantera, 175
Plate-glass Silverer's Table, 72
Plates, Thin Metal, Methol of Levelling, 20S
Plough, Suow, 72
Plugs, Watch Cylinder, Punch for removing, 152
Plumber's Underhand Joint, 38
Plumbing Work on Board T'roopship, 341
Pluch-covered Frames, 108

Pointed Brickwork, 115
Polishing Glass, Wheels for, 314
Pony Cart, 90

- Trap, 16

Porch, 33
Portiére Rod, 125, 145
Portraiture, Camera Swing Back in, 338
Postage Stamp Dampler, 276
——Phetographs, 305
Pots, Flower, Window Board for, 326
Poultry Fond Bin, 130
Power Transmission by Leather
Belts, Diagrain of, 99
Prawn Trap, 186
Press for Mangle Shatta, 40
———Trorisers, 154
Prints and Printing Frames,
Photographic (seo Photo-
graphic)
Pulpit for Small Chapel, 131 Pulsometer, 74
Purap, Air, for Blow-lamp, 78 ——.-., Centrifiggal, 28
-, Garden, 331
Pumping Windmill Model, 310
Punch for renloving Cylinder
Plugs, 152
Purfling Gauge, 308
Purses, Leather, 261
Push, Double-contact Electric, 99
Putty Knives, 343
Pattying Window Pane, 109
Pyro Developer, Apparatus for
Malking, 263
Rack, Bamboo, for Newspapers, 123, 134
for Books, 229

- Boots, 313
- Brtushes, 206
-Clothes, 331
- Greenstuff Food, 334

Hall, 331, 346
for Hats, 331,346

- Poultry Food. 334 Riffes and Belts, 260 Sticks, 346
Tobacco Pipes, 163
- Tunibler, 111
- Umbrella, 346
-, Wall, for Clothes, 337
Rafters, Bevels for, 57, 165
——, Jack, 209
Railway Carriage Doors, Sliding Sashes in, 349
- Moulilings, 191
- Conpline Shackles, 67
- Waggon Brake Blockss, 303

Draw Hook, 297
Ram Hy Springa, Fnrnace for, 59
Ram, Hydraulic, 163
Reciprocating Water Motor, 298
Rectilinear Le'tiges 327
Reed-hook tor Americion Organs, 299
Reel for Fishing Rod, 237
Reflected Inage, Olitaining, 162
Reservoir for Paraffiu Blowpipe, 323
Retaining Wall, Diagram of Pressure of., 166
-- for Sunk Roowlway, 204
Retonching Negatives, Tool for', 262
Reversing Gear, Stephenson's, 213
Ringe Roll of Roof, 117
Rifle and Belt Racks for Tent Pole, 260
Riffler, 325
Rim, Conical, Pattern for, 45
River, Method of Taking Cross
Sections of, 265
Roadway, Sunk, Retaining Wall for, 204
Rorking Chair, Bamboo, 237
Roll-top Desk, Shatter for 291
Roof, Corrngated Iron and Fielt, 225
, Covering, with Zinc, 129
cntting into Side of Dome, 25
-, Girders and Columus for carrying, 220

Roof, Glass, Preventing Moisture
Dropping from, 299
Hip Rafter, Bevel of, 57
-, Iron, 180
-, Lead Flashings for, 331
-, Ogee, Lead Bays for, 280 , Ridge Roll of, 117
-Slate, Replacing, 281
Truss, Hipped Eind of, 328
Ropee, Straw, Twisting Hook for, 309
Router Planes, 243
Ruling Pen, Setting, 47
Rush-bottomed Chair, 174
Saddle-shaped Boiler, Pattern for, 56
Sail Plans, Model Yacht, 168, 1S4 Salinometer, 119
Salmon Fishing, Gaff for, 179
Sample Case, 'I'raveller's, 63
Sash Bars and Rails, 198
Sashes, Double, for Deadening Noise, 287
-, Machine for Grooving, 259 , Sliding, in Rail way Cantiage Doors, 349
Satucepan Covers, 112
Saucer Ornamentation, 38
Savings Bank or Money Box, 42
Saw, Band (see Band-saw)
, Circular, arranged for Cut-
ting Floor Blacks, 330
, - -, Bench for', 285
, -, Guard for, 52
——M Mill, 257
Tonon, fastened to Toolchest Lid, 137
-Vice, 60
Saw-sharpening Machine, 24
Scabling Pirks and Hammers, 61, 20.5, 282
Scent Cabinet and Jowel Box Combined, 199
Scoop for Apples, 47
for Coal-weighing Machine, 342
Scotch Fir, 315
Scraper, Cabinet-maker's, Mcthod of Sharpening, 134
Scratch Plane for Wor king Monldings, 168
Screen Frame Hinge; 94
,'Stephenson's Thermometer. 71
, Vestibule, 161
Scribing Block, 144
Seat, Spring, of Armehair, 330
Seats for Sliop, 144
Secret Drawers, Jewel Case witlı 86
Segmental Openings, Splayed
Lininga to, 350
Set-square, Bevel, 160
Settee, Divan, 335
Sewage Filter, Automatic, 203

- Irrisation, 263

Sewer, House Drain Connection to, 23
Scxtant, Box, 93
Slıackles, Railway Coupling, 67
Sham Timber Building, 142
Sharpening Saws, Machipe for, 247
Shears, Hand, for Sheet Iron, 210
Slieath, Hand Camera, 343
Shed for Storing Cycles, 1 To
Sheet-metal Fonntain for Greenhouse, 340

- Letter box, 291
-, Wargon, side-tipping, 354
Shelf Bracket, Working Mould
ing on Edge of, 78
- for Piano, 338

Shields for Mounting Antlers, 77
Slip's Latrine, 341

- Log, Working, 159
- Slop Shoot, 34:
- Ventilator Patterns, 157
- Washhouse, 341
-Walertight Sliding Door, 77
Shoe Finisher's Trons, 53
Slooting Gallery Target, 97 Sliop Counter, 312
-Door Electric Alarm, 181
-, Donble Seats for, 144
- Front. Section of, 34

Snutter, Camera, on Unicun Priuciןle, 79
-, Everset Plıotographic, 98
-. for $\frac{1}{4}$-plate Canera, 169

- for Roll-top Desk, 291
—, Silent, for Camera, 15
- for taking Photographio Doubles, 212
Side-tipping Waggon for Clay, 354
Sigu, Glass-faced Swinging, 295
Signal Code Flags, 351
signbnards, Triad, 75
Silk Fitres, 106
- Tissels, Apparatna for Making, 244
Sills, Concrete, of Window, 111
Silver Pipe-mount, 29
- Bumnisher for, 20

Silvering Glass, Table used in, 72
Singlestick Handguards, 308
Sky Shade for Cannera Lens, 845
Slate Roof, Replacing, 281
Sledge, 54
Slide-rest, Tool-holder for, 191
Slides, Lantern, 95
-, - Hct Box for, 26
Sliding Donr, Watertight, 7 7 Sashes in Railway Carriage Doors, 349
Slop Shoot on Board Ship, 341
Slat, Cutting, in Top of Turned Pillac, 65
Smoker's Companion, 163
Snow Plongh, 72
Soap Box and Tunbler Rack, 111
Solfit of Splayed Linings, 350
ounding Tube for Locating Water Leakage, 271
Span Roof Fowl-huluse, 339
Specimen Woods, Set of, 271
Spill Cutter, 156
Spiral Curves, Projection of, 110 - Flute on Column, 323

Spirit-level Trabes, 207
Splayed Linings to Segmental Openings, 350
Spokes of Wheels, Apparatus for Holding, 103
Spring Seat of Armchair, 33n
Springs. Waggon, Furnace for, 50 Spruce Fir, 315
Square Basketo, Ropairing, 309
Square, Carpenter's, Testing, 50 Optical, 114
Stag's Antlers, Mounting, 77 Mounts for, 77
Staircase Well Devclopment, 187
Stamp Photographs, 305
Stamps, Postage, Damper for, 276
Stand for Baby: Cradle, 41
, Bamboo, for Camera, 336 Bier, for Mortnary, 73
for Flowera, 246 in Model Brickwork for Clock, 149

- for Teleacope, 94
-, Toast, 344
-, Tripod, for Plate, 344
Starling's Cagc, 169
Steam Heating, System of, 228
Stean-heatell Baker's Orell, 37
Steel, Crncible Furnace for, 39
- Scraper, Cabinet-maker's,

Method of Sharpening, 134
Stencil Plate, 32
Step Ladder, Side of, 30
Stephenson'a Reversing Gear, 213
Stephenson's Louvred Ther.
mometer Screen, $\$ 1$
Steps, Balanced or Dancing, 177

- Stone, Repairing, 218

Stereascape, 51
Stereoscopic Camera, 22

- Prints, Mounting, 53

Stick Rack, 346
Still for Water, 108
Atock IIoopa for Wheela, 252
Stocks for Shoeing Kickin Harsen, 43
Stone Cap, Circular-monlded, 236 -, Lead Jlashings "Burnt-in" " to, 229

Stonc slels, Repairing, 218
Stool, Foot, 281
——, Three-legged, fou Anrler, 21 -, Upholstered Fencler, 264 Stopeock Key and Sounding Tabe Counbined, 271
Stopping Knife, 343
Stove for Lanndry Irons, 242

- Rack for Drying Clothes, 33^{4} Straw Band Twisting Hook, 309 Street Lamp Door Cateh, 92 Street Lan! Door Catch, 92
Stretchers ior Trouser's, 84
Striking Movement of Vienna Regulator, 123
Stringing, Gauge for Inlaying, 164 Sthcio Camera, 267
——, Photographic, 274
Temporary Photographic, 345
Stimp Moulding, Box for, 94
Sugar and Tea Case, 240
sulliy, Trotting, 315
Survey, Method of Plotting, 185
Surveyor's Box Sextant, 93
Swing, Baby's, 205
- Curtain Rails for Bedstead, 104
Swinging'Sign, 295
Table, Bamboo, Legs of, 123
-, Bedroom, 36
-.., Billinrd, Corner of, 153
——, Folding, 143
- Frandewark, 223
--, Glass Silverer's, 72
-, Kitchen, 171
————, Folding Leaf and
supports of, 179
-_ Lamp, Sheet Brass, 212
- Pedestal, 120
- Stand for Platcs, etc., 344
- Top, Dctachable Latlı for, 56
——Trestlcs, 289
——, Writing, 105
Tank, Chemical, for Magic Lanstern, 61
- Measuring Liquid from, 203 -, System of Boiling Water in, 200
Target for Shooting Gallery, 07
Tassels, Silk, Apparatus for Mak. ing, 2 i4
Tea and Sugar Case, 240
Tea-table Trestles, 259
Tclescope Cell Work, 48
-, Plotography with, 336
- Tripod Starde, 94
felescopic Beam Compass, 321
Tenon Saw fastened to Tool-chest Lid, 197
Tenons for Entrance Gates, 124 Tent Pole, Rifie and Belt Racks for, 260
Tester Head for Bedstead, 198
Testing Brougham Under-carriage, Method of, 70
The Carpenter's Try-square, 50
Thermo-electric Piles, 90
Thermameter Screen, Stephenson's, 71
Thread, Waxed, Bristle on, 104
Thrush, Cage for, 169
Tile Hearth, Removable, 244
Tinber Buildings, Sham, 142 , Diaurain showing Strength of, 203
Tinmen's Workshop, Plan of, 84
Toast Stand, 344
Tobacco-pipe Mount, 20
————, Burmsher for, 28
——Rack, 163
Tool Cupboard, Carpenter'a, 317 'H'ool-chest for Eiectaical Engineer, 35 Maker, 65 1:17
Tool-holder for Slide-rest, 19
Tools for Dreasing Granite, 205, 238, 282 262
Top, Flemen Whip, 286

Towel Airer, Hot-water, 179
Tracery Window, 287
Trammel Hends, 218
Traj for Prawis, 186
Trap for 13-hands Pony, 16
Traveller's Sampla Case, 63
Tray, Washing, 200
Trellis Work, 145
Trestle, Buijcler's, 314
'Trestles for Tea-tablea, 289
Triad Pictures, 75

- Sienboards, 75

Tripod Plate Stand, 344
Troopship, for Telescope, 94
Troopship's Latrine, 341

- Slop Shoot, 341
-Washhouse, 341
Trotting Sulky, 318
Trousers Press,. 154
- Stretchers, 84

Truss, King-post, Hipped End (1 , 328
Try-squarr, Method of Testing, 50 T'ubes, Brass, Bendiny, 316 286,316
, Pastebaard, Unibrellastand made froin, 252
——, Spirit-level, 207
Tuck Painting of Brickwork, 115
T'umbler Rack and Suap Box, 111
Turned Pillar, Cutting Slot in Top of, 65
Tuyère Bend Patterm, 28
Twisting Hook for Straw Bands, 309

Uinbrella Cover Pattern, 82
_-Rack, 346
Umbrella-maker's Stock Kinife, 164
Under-carriage of Brougham, Compassed Bed of, 79

- - 'Bus, 231

Underliand Joint, Plumber's, 88
Underpinning Chimuey Breast 260
'Unicum Type Camem Shntter', 79
Upholstcred Fender Stool, 264
Upholstery, Gauge for Marking Positions of Studs in, 210

Valley Rafters, 209
Vase for Garden, 22S
Vanter Panels, 128
Ventilating System for Dark Room, 151
Ventilator, Glass Lonvie, 34
—, Ship's, Patterns for, 157
_ in Shop Front, 34
Vestibule Sicreen, Remoring, 101
Vice for Saws, 60
Vienna Regulator Striking Movements, 123
Vicw-finder for Camera, 148
Vignetting Photograpua, 14
Vinesar Making Apparatus, 265
Violin Bow, Head and Maunt. ings of, 214
-_ Porfling Gange, 305
Waggon Brake Blocks, 308
Wasa, Sille-tipuing, 354
——Side-tiljing, 354 forings, Furnaee for, 59
Wheels, Methor of Setting
out, 17 (seenlso Wheels)
Waggonette Head, 270
Wainscot Uak, '234
Wulking-stick Rack, 346
Wall and Curbing, Cirved, 217
-, Curved Wing, 254

- Racks (soe Rack)

Retaining, Diagram of Prossure on, 166

204

Washer for Plotographic Prints, 126
Washhouse on Board Ship, 341
Washing Copper, Flash-ine, 253 Watcl Tay, 200
Watcli Cyliuder Plags, Pumelı for Removing, 152

Watch Depth, Testing, 200

- Lever Escapament, Method of Depthing, 173
, Perpetral Calendar, Mechanism of, 44
Staff, Metliod of Drilling, 42
Watch-cage Gilvanometer, 60
Water, Aëratcd, Machine for Making, 329
, Apparatus for Boiling, *uo Filter Beds, $21 \bar{j}$ Disting, lus
Leakage, lnstiument for Locatilly, 271
Motor, 99
- Motor, Seciprocating, 29s, 342 Supply System, Temporary, 230
Watercourse Gradient, Setting out, 324
Watertight Sliding Daor, 77
Waxed Thread, Bristle on, 104
Weighing Machine, Coal, Scoop for, 342
Wells Apparatus for Measuring Distinces, 294
Wheel, Measuring, for Cart Wheels, 347
- Naves, Harse for Mortising 135
-Spokes, Apparatus for hold ing, 103
Wheelbarrow, Child's, 216
- Frame, 32

Wheels, Bevelled Stock Hoops for, 252
_Tor Bevelling and Polishing Glaas, 314 , Cart, Measwring Wheel for, 347
-, Machine for withdrawing
Axle Boxes from, 124
——, Putting Fellaes on, 31
w, Waggon, Setting out, 175
Wheelwriglit's Horse for Mortis. ing Wheel Naves, 135
Whip-top, French, 286
Whiskey, Apparatus for Distilling 204
Wicket Gate, 320
Windmill, Model Pumping, 310
Windinw Board for Flower Pota, 326

- Box for Flowers, 311
—— Pane, Glazing, IC9
Sashes, Donlile, for, Deadening Noise, 287
- Silla and Heads, Concrete, 111
Windsar Claair fitted as Barber's Chair, 9S
Wing Wall, Curved, Projection of, 254
Wiped Joint on Copper Pipe, 62
Wire Blind, Frame for, 64
——Rests used in Wet-plate Photograply, 100
Woml Bedstead, Child's or Dolls. 70
- Block Floor, 245
- Blocks, Apparatus for Cutting, 330
—Chuck in Sections, 14
- Panelling with Veneers, 128

Wo Seasoning Apparatus, 167
Woadearving Kinite, 325
--, Specimens, Set of, 271
Woodworking Lathe, Beading Spindle for, 2 SS
Wool Fibres, 106
Workhox for Beadworle, 49
Workslop, Tinmen's, Plan of, 84
Worm Scruws on Banjo, 115
Wringing Machine, 27
Writing Table, 105
Yacht, Model, Sail Plan for', 168, 184

Zinc, Roof covered with, 129
Zinc Stencil Plate, S2

CYCLOPADIA OF MECHANICS.

Refiling Fitzroy Barometer.-It is not an easy matter for an inexperienced person to till a barometer properly. The tube and mercury must first be made war'm. The nercury may be heated to the boilling point of water in an iron vessel; a ressel having tin in its composition must on no account be used. The glass should be warmed sufficiently to ensure the evaporation of all moisture. Make a paper funnel having but a very small aperture and pour in the mercury, whose impurities will cling to the paper funnel, aud test for correct amount with a standard barometer. Be careful that air does not enter with the mercury. If an odd airabubble appears, seud up a little more to collect, and send up to the top what has already entered.
Making Lantern Slides.-Lantern slides are made from prints, photographs, etc., in the following way. Make a negative of the subject by copying in the camera in the usual way. Focus the picture sharply within a square $3 \frac{3}{4} \mathrm{in}$. by $3 \frac{1}{4} \mathrm{in}$., leaving $\frac{1}{4} \mathrm{in}$. each way for binding and masking. Copying is merely photographiug at close quarters. If the camera will not extend far enough to obtain a picture of the required size, the lens. and front can be removed from the camera proper, and the camera lengthened by attaching to it a box at one end of which the lens and frout can be fitted, the join between the box and the camera, being covered with it dark cloth. From the negative thus obtained a lantern slide may be made either by contact or through the camera. Making slides by contact is the simpler plan if the lantern plate is large enough to contain the whole of the picture. Place the lanteru plate in contact with the negative (film to $\mathrm{H} l \mathrm{~m}$) in the dark room and expose, to the light of a gas flame; a thin image is developed. Bromide plates are the least trouhlesome to use, and a simple developer is metol and soda. After development, the plats is fixed and washed as usual. When the negative is dry a mask is laid on the film side, and over the mask is placed a carefully cleaned cover glass; the two glasses are then bound together with strips of black gummed paper. The glasses should be gripped firmly in the centre with the thumb and torefinger of the lert hand, and'the moistened paper laid along the top edge in position and smoothed gently towairds the two ends. When dry, do the opposite side, then the remaining sides. luastly, clean off any gum and finger marks. For copying through, the camera, the negative should be fixed in the bottom of the box, glass side out (so that the sides of the box shade the film), and either placed on a slanting board pointing to the clear sky, or set up on a table in front of a lamp shaded with a sheet oi ground glass. The picture is then focussed to the desired size, and the exposuve is then focussed to the desired size, and the exposuve is as a lamp or a piece of magnesium ribbon burnt behind ground glass. Masks oan be bought; they are used to define the extent of the picture to be shown on the screen. The cover glass protects the film of the negative. The binding strips can also be bonght; their use is bvious. A White spot (a small circular piece of white paper) is placed in each of the top corners of the negapaper as a guide to the lantern operator. When photographs or book prints are to be copied on to slides the grain of the paper may be got rid of by wetting the print or photograph and squeegeeing it on to clean glass, carefully stroking out the air bubbles between the print and the glass. If it is not desirable to wet the photograph it may be put in a printing frame with glass before it and then exposed before the camera. A line drawing may be copied the same size by coating a piece of glass $3 \frac{1}{4} \mathrm{in}$. by 34 in . with a weak
solution of gelatine. The glass should be placed over the design and a tracing made on the gelatine film with pen aind ink (Stepheńs' ebony stain answers well). When veiry fine lines are required the film may be rubbed with medium and a retouching pencil used. This tracing can be used as a lantern plate. The masking, binding, and fixiug of the cover glass are described above.

Making Sacket Jolnt in Steam Plpe.-The proportions for at cement for the socket joint of a steam pipe are, hy weight, 1 part of powdered sal-ammoniac, 2 parts or flour sulphur, and 80 to 100 parts of borings; the borings should be pounded if large. These ingredients must be well mixed and moistened with water, and will be ready for use in from one to two hours. Carilk the socket twothirds full of yarn, and finish with one-third of borings. The less borings used the better for a slight expansive action occurs in the borings when setting, and this canses the splitting of sockets. If there are only one or two joints, get some white lead and add sufficient dry red lead to make a'stiff putty; thin a little of this with boiled oil, and paint inside the socket first. Then caulk in alternate layers of yarí and putty, commencing with the yarn and finishing with the putty. This cement is longer in setting than the former one.

Etching on Steel.-All processes of steel etching depend on the coating of the steel with a resist, whick is scraped away from those portions to be etched or bitten into by chemical action. The resist or etching ground is made by melting together over a slow fire black pitch, white wax, Burgundy pitch, asphaltum, and gum merstic. Other etching grounds are (1) asphaltum varnish; (2) yellow beeswax dissolved in turpentine and continuously decanted until no sediment remains-to 6 parts of this add 1 part of japan varrish; (B) asphaltum, Burgundy pitch, and beeswax melted together. The resist may either be melted and then brushed on, or the steel may be warmed so that on rubbing it with the resist the latter will melt and leave a thin film. The resist is allowed to become cold and hard, and is then drawn on with needles or, preferably, with a stick of steel of $\frac{1}{6}$-in. diameter round or square section tapering to a fine point at each end; the weight of this tool is sufficient to penetrate and remove the resist as it is draiwn along, thus leaving the hand moie at liberty to draw freely or form letters as the case may be. If the steel is in the form of a plate, it now has a wall of Nax built around its edges, and into the shallow dish thus formed the etching acid is poured. Knife blades and similar small articles having been properly coated with resist, may be dipped into the acid, or the latter may be applied to the portions to be etched by means of a camel-hair pencil or a stick, at the end of which is mountod a little ball of tissue-paper, Remember that all portions not covered with the resist will be etched. The etching acid may beany of the following mixtures. (1) Pyroligneous acid, nitric acid, and water; (2) diluted nitrous acid; (3) 2 oz . of copper sulphate, $\frac{1}{2}$ oz. of ailum, $\frac{2}{2}$ oz. of salt, $\frac{1}{4} \mathrm{pt}$. of vinegar, and 40 drops of nitric acid: (4) 4 parts of glacial ncetic acid and $1 \mathbf{p}$ irt of absolute aicohol, allow to remain for thirty minutes, and add gradually 1 part of nitric acid; (5) 1 part of fuming hydrochloric acid and 7 parts of water; add boiling solution of potassium chlorate and dilute with Water. When the acid has bitten sufficiently deep, pour it off or remove it, and wash thoroughly in clean water. If it is required to etch more deeply certain portions, cover up the rest with a stopping ground of lampblack and Venice turpentiue, or with auy of the above etching grounds, and apply the acid again. When the etching is complete, wash off all traces of acid.

Dyeing Pampas Grass.-To dye pampas grase, place it in faily strong solutions of auiline dyes, an weat until sufficiently coloured. The most sultable dyes are soluble blue, pierio acid, fast Jellow, eosine, magenta, methyl violet, malachite green, Bismarck brown, and acid brown. l', however, only small quantities are to be dyed, use Judson's or other dyes, which may be obtained in packets.

Mitreing Cornice Moulding.-In marking off the euds of two pieces of cornice moulding which are to he joined at rieht angles, the procedure is as follows. Let the section of the moulding be as shown in Fig. 1. Driw the plim of the mouldings and mitre as
perience, but the following will serve as a guide. Put lulb. of white lead, lat. of raw linseed oil, and about d lb. of patent drlersin a large pot and mix well together, adding sumcient black to produce the desired tint. Strain through a piece of canvas and add just sufficient turps to make the paint work smoothly. The quantity of driers will vary according to the state of the surface to be painted and the quality of the materfal. The tint used must be made to accord with the finishing colour. For instance, if a light colour is desired, the priming and following coats must be light, so as gradually to lead to the finishing tint. For the second coat, the same colour may be used as for the first. For the third coat, oxide red, linseed oil, and terebine as a drier mas he used.

at Fig. 2. Then set a bevel to the mitre line $C D$. This will be the bevel to apply to the top edge, as indicated hy the line $C D$ (Fig. 3). For the bevel for, the sloping back, through the angle at A^{\prime} (Fig. 1) draw $A^{\prime} B^{\prime}$. With A^{\prime} as centre and C^{\prime} as radius, draw the are $C^{\prime} B^{\prime}$. Now draw ${ }_{B}$ ' B parallel to the lines in the plan, as shown, and $C B$ parallel to $A^{\prime} B^{\prime}$; then join B to A . Set the bevel as indicated, and apply it to the sloping back of the moulding and mark it. This will give a line as indicated by AC (Fig. 3). As $A^{\prime} \mathrm{E}^{\prime}$ is a vertical surface, the line $A \mathrm{E}$ indi-

 there are several mitres to he made and all meet at the same angle, a simpler plan, and one that will save much time, is to construct a mitre box which will hold the moulding to the exact angle, as shown at Fig. 4. and the mitres can be cut in the manner illustrated and described on p .136 .

Painting Railway Wagong.-The first or priming coat on railway wagone is mads of tub white lead, raw linseed oil, patent driers, a little common hlack, nnd turpentine. The quantities may be best judged by ex-

For the fourth coat, half oxiae paint and half varnish may be used, For dead colours, the dry paint is ground in turpentiue; a little gold size and varnish are then added and the paint thinned down to a working consistency with turps. Boiled oil may be used if desired with the finishing coats. It is necessary to remember, however, that only very small quantities of boiled oil should be used if the hest results are to be gained in fuishing. Either terebine or gold size may be used as driers with delicate tints such as would be injured by using patent driers. Copal varnish may he mixed with the finishing coats, or it may be used by itself as a finishing. coat over the last coat of colour. The materials used will vary according to the finishing tint. For instance, a blue wagon would be finished as follows. The priming coat would he lead colour, rather dark, as described above; the second coat would he the same with a little blue mixed in ; third coat, ultramaxine or Prussian blue as a dead colour; fourth coat, the same, with half its bulk of varnish; The writing and picking out would then he put on with two coats of dead colour, the last coat being clear varnish. The usual practice is simply to paint with three coats of lead colour.

Blackening Aluminium.-The bronze known in the trade as "arsenic brouze," diluted with an equal quantity of water, is used for blackening aluninium. First the exposed parts of the surface should be curled, not straight-grained, with emery-paper; then the metal should he quickly dipped into the fluid and as sharply withdrawn, and drained. If on the first immersion the brouze has not taken well all over, the process should be repeated. If the preparation is toe gtrong, there is a danger that the acid will eat away the metal. A recipe for arsenic bronze is hydrochloric acid, 121 h .; sulphate of iron, 11 b .; pure white arsenic, 11 b . To this, for alnminium, must be added an equal quantity of water ; and, when the metal has blackened, it should be dried in a mixture of blacklead and sawdust. Only sufficient sawdust is required to soak up the moisture. The exposed parts then nay be lacquered.

Elliptical Headed Door Frame. - In commencing to set out and construct an elliptical headed door frame, width 5 ft . 6 in., rise 1 ft . 3in. inside measurement, to be made in two thicknesses of $2 \frac{1}{2}$-in. and χ-in. stuff screwed together, first set out the head full size on a board as shown in Fig. 1. A mould should be made for half the inside thickness, and one for the outer thickness; from these moulds the stuff should he miarked out. It will be

For pink, add to a solution of cohalt nitrate or cobalt chloride sufficient sesquicarbonate of ammonia to dissolve the precipitate first formed. Fer purple, (a) mix a solution the precipitate first formed. Fer purple, (a) mixa solution solution of 1 dr . of French gelatine in 2 oz . of boiling water, aud add 2 pt. of liquor of potassa; shake a lew tinues during ten hours, decant, and diluts with water (b) dissolve loz. of copper sulphate in lqt. of water, and add $1 \frac{z}{3} \mathrm{cz}$. of sesquicar'bonate of ammonia: (c) add sufficient carbonate of ammonia to an infusion of logwood; bufficient water; or (e) add sulphate of indigo. nearly neutralised with chalk, to an infusion of cochineal. For red, (a) dissolve 10 gr . of sulphocyanide of potassium to 1 gal. of water, and add 10 drops of a solution of perchloride of iron ; (b) dissolve carmine in ammonia and dilute with water; (c) dissolve cochineal in a weak solution of ammonia; (d) dissolve madder lake in sesquicarbouate of ammonia and dilute with water; or (e) dissolve cochineal in sal-ammonitc and dilute with water. For violet, mix together solutions of nitrate of cobalt and sesquicarhonate of ammonia, and add sufficient ammonio-sulphate of copper. For yellow, (a) disselve 1 lb . of sesquioxide of iron in 2 at. of hydrochloric acid, and dilute with water ; (b) add a little alum to a strong decoction of French berries; (c) dissolve either the

seen from the drawiug that the onter part of the head is made of three pieces-that is, from A to B, B to C, and Cto D; the inside is constructed of four pieces-from A to E, \mathbb{E} to F, F to G, and G to D. The direction of the grain for the outside pieces is indicated in the illustrations. The connection between ths head pieces and the posts is fully shown by Figs. 2 to 5 , as also the geueral construction of the head. It will be a stronger joh if the picces are glued as well as screwed together.
Chemists' Show Bottles. - For an amber-coloured liquid for use in chemists' show bottles, dissolve 1 part of coarsely powdered dragon's blood in 4 parts of oil of vitriol, and dilute with cold distilled water. Blue liquid mas be a diluted solntion of (a) 1 oz . of copper sulphate in 2 oz. of sulphuric acid, (b) soluble Prussian blue in oxalic acid, or (c) indigo in sulphuric acid. Crimson liquid is a diluted solution of 30 gy . each of iodide of potash and iodine in 1 dr . of water; or an infusion of 1 oz . of alkanet root in 20 oz . of tirpentine. For green, (a) dissolve 1 dr . of copper sulphate and 30 gr . of bichromate of potash in 2 oz . of siquid ammonia, and add 1 gal. of water; (b) dissolve liquid ammonia, and copper sulphate and 4 oz . of sedium chloride in 1 pt . of water; (c) dissolve distilled verdigris in acetic acid and dilute with water; or (d) dissolve blue vitricl in water and add nitric acid until of the right tint. For magenta, dissolve acetate of rosaniline in water. Orangecoloured liquid is (a) a solution of hichromate of potaish in water $\hat{0}$ which is then added a little sulphuric acid, or (b) a dunta solution of gamboge in liquor of potassa.
chromate or bichromate of potassinm in water ; or. (d) dissolve equal parts of nitre and potassium chromate in water. Multi-coloured or variegated show bottles are formed by employing a number of liquids having different specific gravities and different colours. Pour in the following solutions in the order mentioned, using a funnel and allowing the stream to fall upon a floatiug cork. (1) Chemically pure sulphuric acid tinted blue with, indigo sulphate, (2) chemically pure and untinted chloroform, (3) glycerine tinted brown with caramel (burnt sugar), (4) castor cil tinted red with alkanet root, (5) 40 per cent. alcohol tinted green with aniline colour, (6) cod liver cil containing 1 per cent. of oil of turpentine, and (7) 94 per cent. alcohol tinted with aniline violet.
Precautions in Making White French Polish.To protect the shellac from atmospheric influences it should, when at the merchant's, be stored in water; neglect of this precaution causes the shellac to lose its nature, and it will not then dissolve by simple immersion. The lac, when purchased, should he at ouce broken up smail, spread on clean paper, and set aside in a warm, not hot, place, and frequently turned over till it feels quite dry. It should then he placed with the spirit in a stone or earthen ware pickle jar, over the top of which a piece of rag should be tied. Then set the jar in a sancepau partly filled with water, glue-pot fashion, and place in an oven or on a gas or cil stove, and gradually bring up to hlood heat. If the lac does not then dissolve, it should be threwn away as worthless.

Pollshing Curling Stones.-As a rule, curllng stones are made of granite or trap, a mixture of felspar and horublende ; therefore to polish them without machinery is very laborious work. Rig up a vertical lathe similar to those used by lapidaries, and place the stone on it, and, while revolving, put coarse emery and water on it, pressiug a piece of smooth irom on the atone as it levolres. When all pits and unevennesses are removed, carefully wash tway the emery grains and go through the same process with fine emery, removing all seratches left hy the former treatment. This process must be gone through with care, as if scratchea are not removed it will be impossible to get a good polish. When an even grain, dull polish is obtained, carefully wash again, removing all traces of emery. Fasten a piece of felt to a piece of wood and on it put some putty powder slightly wetted, and apply to the stone untll a good polish is ohtained. A deal of the rough work might be done in hringing the stones into condition for further grinding if in the first instance they could be alung in front of a grindstone.

Vignetting Photographs.-If it is required to make a vignatte photograph without ghowing much dark around the head and neck proceed thus. Cut in cardboard (old plate boxes answer well) a vignette con: siderably smaller than the desired vignette G (Figs. 1 and 2), and fix about $\frac{3}{3}$ in from the negative by fastening with drawing pins. To do this, it may be necessary to nail aome strips of wood 13 around the onter edges of the printing irame. Fig. 1 shows a perspective view and
t ou a piece of hoxwood, file it to a gentle taper until the end just enters the hole in a screw-piate; the wire may then be screwed into the latter, plenty of oil heing nsed. When it goes hard, turn it hack half a turn. used. When it goes hard, turn it back half a turn, then forward three-quarters of a turn, back half a thread is cut for a sufficient distance. Then file three fiats upon it for the whole length of the thread, tapering the fiata to the end, where they should meet in a knife edge and show only hali a full thread. Harden the tap by heating to a red colour and plunging in cold water. Briphten ane flat and heat it over a flame until it is of a pate atraw colour: I'his render's it less brittle, and ia called "tempering." Then carefully smooth all three fiats on an oilstone so as to leave good cutting edges. Finally file some nicks in the soft end to indicate the number of the hole in the screw-plate to which it belongs.

Making a Weod Chuck in Sections,-A section chuck in wood, suitabie for spinning a silver jug in the lathe, may be made in this way. Fix a piece of hornheam of the requisite aize on the mandrel and turn it to the shape of Fig. 1; $A B$ is the height of the jug, $C D$ the diameter at its

Fig. 1

B FIG 2

Vignetting Photographs.

Fig. 2 a section of the vignetted frame. Cover with cotton-wool A any thin portions of the negative comaing near the margins-such as may acenr with a black coator the light will creep too far and the shape of the vignette he spoilt. The wool must be pulled out very looge and soft, or a hard line will be shown by the shadow it casts on the negative. In cases where the negative is very thin it is advisable to cover the vignette wirh tissue paper. Vignettes should always be printed in subdued light. A vignette card must not be cut too clasely around the figure, nor its outline repeated too decidedly, as the effect thus ohtained will he quite us inartistic as the stereotyped egg shaped pateh. To produce a success tul vignette, a light hackground must be used. With a dark hackground it ia all but impossible to get a soft vignette. The farther the hole is from the plate and the darker the background of the negative, the larger will the vignette be, and the softer will be its outline. During early attempts at vignetting the printshould be examined from tirne to time to see that the viguette is going on gatisfactorily

Straightening Brass Curtain Poles.-To atralghten a brass curtain pols that has been used for a bay window first anneal the tube where bent, then load it with lead and, after cooling, pass it through a hole in a firmly flxed bench until the shouider of the bend rests against the shoulder of the hole. Then pull the tuhe until it is quite atraight agalnst the wood shoulder. Finally, melt out the lead and repolish and lacquer the tube. When lacquering the tuoe, first gently heat it, then apply with a brush an even coat of lacquer, and mand it aside frce from dust until dry.

Making Taps for Watch Screw Threads.-Taps for Watch screw threaus may. be made from needles, but probobly they would not last long. A tap shotild be made from the best stecl ; therefore get a length of taol steel wire of the correct aize. From this cut off a suitable length, say lin. Solten it by heating to a dull red and allowing it to cool slowly. Hold it in a pin-vice and, resting
arrowest voint, and A C the profile of ite upper part. The diameter of the long cylindrical part $C B$ should be as large as possible without weakening the chuck. Next join a nixmber of wedge-thaped pieces of hornbeam, as ahown in Fig. 2; one of the wedges marked 1 ghould be so shaped that its broadest part turns away from the outaide, while the opposite is the case with the other wedges. The joints must be perfect, and are best finished on their joining surfiaces with a toothed plane, being so glued tagether that a piece of brown paper is inserted hetween each palr of wooden surfaces. Join $1,2,3,4$, and 5 together; next $6,7,8$, and 9 . It will now he geen that if the free surraces of 1 and 5 , and 6 and 9 , are lying in one plane, the last joinlng will he filirly easy to accomplish. The better plan is to make a drawing, plan down the shape of the wedges, and work accordingly. When all are joined and dry, chuck the roughly cylindrical piece; bore it out, and turn a ring on one end which will fit uicaly in the annular recess shown at D (Fig. 1), the cylindrical part C B fitting tightly in the hole bored without forcing the wedges from ane another. When this is accomplished, the chnck can be finished to tem. plate as Fig. 3. Now separate the wedges, frrt marking them with lead pencil so as to secure their proper posittons. Remove the looss part of the chuck, insert a thin knife blade in any of the glued joints, and tap gently with a mallet on the back of the knife. The wedges, awing to the brown paper inserted between them, cau easily he separated : theae nine wedges, when placed on the fixed part of the chuck in their proper iotation. will appear like cae single piece. When the metal has been spun home and is removed from the lathe, it is evident that all tine wedges are inside the bowl of the jug; but when this is released from the flxed part of the chuck, piace 1 (Fig. 2) cin be pushed towards the centre and drops out, the, other pleces following. 'Jake care that none of the wedges are of larger traneverse dimenstons than will permit of them passing easily through the narrowest part of the jug'a neck; \& drawling of the sections aliould be made before joiuing them together.

Determining Grate Area, etc., of Vertical Boiters. -To determine the grate arca, of a vertical boiler take the dinmetere of the firebox at the bottom of the firehole and obtain the firebox at the bottom of boiler 6 ft . 6 in . high by 3 ft . diameter, the frebox at the bottom is 2 ft . 5 in At the firebar level, however, this diameter is about 14 in . less, viz. 2 ft .4 in. The area of circle of this diameter $=615 \% 5$ sq. $^{\text {in }}=$ $4: 27$ sq. ft ., which is the area of the grate. To obtain the approximate heating surface, miltiply the grate area by 10 , the ratio of heating surtace to grate surface in these boilers being about 10 to 1 . Thus, the heating suriace in the boiler in question $=44^{\circ} 27 \times 10=$ $427 \mathrm{sq} . \mathrm{ft}$. An approximate rule for the horse-power is to allow 10 sq . ft . of heatling surface.per horse-power.
Cutting Figured Boards from Pitch-pine Logs,Some hints are given here on sawing up a pitch-pine log so as to get the best variety in the figuring of wood to be used for panele. It must be remembered that the amount of figure in a pitch-pine log depends on the amount of irregularity of growth in the tree. Curly figured pitch-pine cannot be got out of a plain pitch-pine log. But even the plainest log will afford a good amount of passable figure with judicious handling. in the accompanying illustrations, which treat only of plain logs, the outer board A (Fig. 1) will have a large and open figure, approximating to the type shown in Fig. 4, and so also would the outer boards on the three otker sides of the same log. From A to B the tigure narrows down considerably.
it is lost altogether, the board E being shown in Fig. 6. The reverses of figure shown at I, I, and K (Fig. 5) are due to slight bends that occurred in the growing treethe saw, in its straight course, revealing outcrops of lower leyers of wood. The figure on any given side of a log may aiso be varied within certain limits by first cutting a long wedge-shaped slab off the side and then making all subsequent boards parallel (in thickness) to the newly exposed surface. Closeness of ring will also the newly exposed surface. Closeness of ring will also do not interfere with the general principle just given.
Reoipes for Bottle capping Mixtures or Waxes. -The following recipes are for waxes and mixtures for use in sealing bottles. (I) Soak 71 b . of good gelatine iu 10 oz . of glycerine and 60 oz . of water and heat over a water bath until di6solved; the mixture can be coloured by the addition of pigmenta, and various tints can be obtained by the use of aniline colours. The resulting compound should be stored in jars. To apply, heat the mass to a liqnid and dip in it the cork and portions of the neck of the bottle ; it sets very quickly. (2) Mix 1 oz of gelatine, 1 oz.
 of gum arabic, and 20 gr . of boric acid with 14 fruid oz. of cold water. Stir occasionally until the gum is dissolved. Heat the mixture to boiling point, remove the scum, and to boiling point, remove the scum, and starch and 2 fluid oz, of water until a uniform product results. As in tbe former recipe, the composition may be tinted with any suitable dye. Before using it must be softened by the application of heat. (3)
Fig. 1

FIG. 2

Fig. 3

FIG. 4

FIG. 5

FIG. 6
Cutting Figured Boards from Pltch-pine Logs.
until when the position B is reached the amount and proportion of the figure will be approximately as shown in Fige 5 . The figure in all the boards will be symmetrical-that is to say, its climax, or turning point, will be at the centre of every board.' Ail will, therefore: be suitable for panels. The symmetry of figure is due to the position of each board, relatively to the annual rings of the log. Each board is tangentially situated, the point of contact being near the centre of its width. Thus, the board C (Fig. 1), while inclined at a different angle to the bourds A and B, will still have the same kind of figure on its face-for the reason that it is situated tangentially to the rings. Boards cut on the radii of the tree, as D and E (Fig. 2), will have no fower figure, and except for the presence of an occasional knot or two, perhaps, will have little of an ornamental character on their surfaces, excepting, of course, the straight or wavy lines that represent the edges of the yearly layers of wood ($6 e \mathrm{e}$ Fig. 6). Here again the board F (Fig 2) is disposed diagonally to D and E, but the figures will be the same, for all are situated on radii of the tree. To eecure the greatest amount of figure out of any given log, it is therefore necessary to cut as many boards as possible tangentially to the rings. In Fig. 3, for example, each board will be ornamentally figured, and the width of the figure will be proportionate to the width of the board throughout. It is unfortunate tinat in securing this result the boards will vary so greatly in width. The sketch is given here only as an extreme example of a means to an end. In Fig. 2 the boards G and ir are practically halves of the bosrd A (Fig. 1), and the figure in these will therefole be like the upper and lower half respectively of the board shown in Fig. 4. From G and H, in towards F, the figure at the inner edges of the intermediate boards becomes less and less prominent, until wheu Eis reached

Dissolve 3 oz . of chellac, $1 \frac{1}{\mathrm{~h}} \mathrm{oz}$. of Venice turpentine, and 72 gr . of boric acid in a mixture of $12 \frac{1}{2}$ fluid oz. of alcohol and 6 fiuid drachms of ether, colour with a spirit-soluble dye, and add 3 oz . of powdered talcum. During use the mixture must be agitated frequently. (4) For a black bottle wax, melt together equal parts of common resin, pitch, and ivory black. (5) Another, melt together 20 lb . of common reein, 5 lb . of tallow, and 4 lb . of lampblack. (6) For a red bottle wax, mix together by the aid of heat 15 lb . of common resin, 4 lb . of tallow, and 5 lb . of red lead. (7) Melt together 6 oz. of resin, 2oz. of ehellac, and 2 oz . of Venice turpentine, and add 9 oz. of lampblack or other colouring matter. (8) Red : Melt together 64 parts of resin, $\frac{1}{2}$ part of beeswax, and $1 \frac{1}{2}$ parts of Venetian red or red lead. (9) Red : Use 4 oz of shellac, 1 oz. Yenetian turpentine, and 3 oz . vermilion. Melt the lad in a copper pan suspended over a clear charcoal fire, and pour the Venice turpentine slowly into it, finally adding the vermilion, stirring briskly the while. (10) Melt' 2 lb . of shellac and 4 lb . of resin cautiously in a bright copper pan over a clear charcoal tire. When melted, add 2 L 1 b . of Venice turpentine and $1 \frac{1 \mathrm{l}}{\mathrm{lb}}$. of redlead. Pour into moulds, or form sticks on a warm marble plate. Gloss may be produced by polishing the sticks with a rag until they are cold. (11) The following recipe is recoumended by Sheirer: Heat 2 parts of Burgundy pitch until all the water is driven off, add 1 part of turpentine and 4 parts of colophony, and when the whole is liquid thoroughly mix it with 2 parts of chalk, part of carbonate of magnesia, and \because parts of Armenian bole.

Making Coloured Crayons.-Coloured crayons may be made by mixing pipeclay with water to form a stiff dough. The material may be made harder by adding a little soap to the water. For a blue colour, add common
ultramarine; for red, use venetian red; for brown, use umber or vandyke brown; and for black, use lamphiack. After standing two or three days it may be made into balls, rolled into rods batween two boards, then cut up into lengths and dried, first in the air and finaliy in a warm place.

Trap or Tub for 13-Hands Pony.-Fig. 1 is a side elevation and Fig. 2 a back elevation drawn to a scale of sin. to 1 ft . of a tub or trap suitable for a 13-hands pony. The length ou the seat is 3 ft .3 in . length of top rail, $3 \mathrm{ft} .9 \mathrm{in.;} \mathrm{depth} \mathrm{of} \mathrm{well} ,11 \mathrm{in.;}$ depth above seat, 9 in ; length of hottom, $2 \mathrm{ft}, 6 \mathrm{in}$.: width, $2 \mathrm{ft} .2{ }^{3} \mathrm{in}$, Greater sail is given to the sides so that the top of the vehicle is quite square. Waluut should he used for the well if to be finished in plain varnish. If the frame bottom he of ash, a pair of fence routers for rabbeting on sides and bottom will he required. Or the trap can be put together by rabbeting the ends and using l-in. deal boards for the bottom, which can be nailed to battens running along the bottom of the sides. The seat boards are of birch 12 in . wide, screwed on top of the well; or the seats may be all tramed together similar to the bottom. The four corner pillars and top rails are $1+\mathrm{in}$, by $1 \frac{1}{2}$ in. The sticks are of ash, $\frac{t}{2}$ in. square, finished black, the stained mahogany panels being screwed on inside. The wheels are 3 ft .6 in.; stocks, $6 t$ in. diameter by 7 in . long. Front hoop, 4 in. inside diameter by 2 in. wide; hind hoop, 5 in. diameter by 1 in. wide; spokes, $1 \frac{1}{2}$ in.; felloes (cut from $2-\mathrm{in}$. ash plank) to finish about $\mathrm{l}^{\frac{1}{4} \text { in. }}$ equare on thickest part; tyres, $1 \frac{1}{4}$ in wide. The wings are 3 ft .1 in . by $6 \frac{1}{2}$ in.
the charge is too strongly heated the vecsel might bs pierced; if there appears a likelihood of the Iatter happening, add a quantity of cold saltpetre or withdraw the fire. Continue otirring arter the leud has been added, and then, by means ol a large cast-iron lade, run the melted mase into cold water and assist the solution by constant etirring. The decomposition of the saitby constant etirring. fre decomposition of the saitbesides the nitrite, about 1 per cent. of canstic soda, which dissolyes some of the oxide of lead formed; to remove the latter, neutralise the solution with nitric acid. In this manner saltpetre is re-formed, the oxide of lead being precipitated as insolnble hydroxide. The neutralising may be effected either with nitrate of lead or with dilute sulphuric acid instead of nitric acid; of the two former, sulphuric acid is the cheaper, but by its use sulphate of soda is deposited in the concen. trating vessels in the form of anhydrous salt. There are now in aqueous solution (1) mitrite, (2) pudecomposed saltpetre, (3) canstic soda holding oxide of lead in solution, and (4) the soluble impurities of the saltpetre, such as chloride of sodium, etc. The insoluble residue which was precipitated consists of (1) oxide of lead, (2) a very small quantity of metallic lead which has escaped oxidation, and (3) peroxide of lead. The solution, diluted to from $6^{\circ} \mathrm{B}$. to $8^{\circ} \mathrm{B}$., is neutralised again with the same agent as was used before; the oxide of lead in the same agentas was used betore; the oxide of lead in added as long as a precipitate will form. It may here be mentioned that it is commonly supposed, and most authors state, that nitrite of sodimm has an alkaline

Trap for 13-Hands Pony.
by $\frac{1}{2} \mathrm{in}_{\mathrm{n}}$, and the raised backs $3 \mathrm{ft} . \mathrm{l} \mathrm{ln}$. by 4 in . by l in . The wing irons should he fastened on underneath raised backs, and have 7 in. clearance of the wheels. The elliptic springs are 3 ft . 1 in , between centres of eyes and have five plates lit in. wide. The shafts are fastened under the seats, and are 5 ft .5 in . long in front of splinter bar, and' 21 in. to 22 in. wide where the tog stops come about 15 in . from points. Breeching staples are 2 ft . from splinter har, which is $\frac{5}{4} \mathrm{in}$. wide by $\mathrm{l}^{\frac{3}{4} \mathrm{in} . ~ d e e p, ~}$ and let on tops of shafts ${ }^{8}$ in., clearing the front of the trap by an inch or so. The dash is 21 in . long and 12 in . high ; axle, $1 \frac{1}{4}$ in. at least with a 5 -in. crank, and 3 ft. 7 in. high; axle, lidu. at cast with a s-in, crank, and ift. Tin. step is $10 \frac{1}{i n}$. long, 6 in . wide, and 5 in . hroad. The door handle is of 3 -in. plain brass. The door is 17 in . wide at the top and 15 in , at the bottom.
The Manufactare of Nitrite of Soda.-The value of nitrite of soda in the imploved methods of dyeing fabrics is increasing. Below is given a brief but authentic account of the manufacture of that chemical. The raw material, from which nitrite of soda is manu. factured, is purified Ohile saltpetre; the sodic chloride present in the latter lowers the value of the nitrite, but the elimination of the sodic chloride is an expensive operation not generally practised. The saltpetre is melted in large cast-iron vessels, and this involves the evaporation of the water and the decomposition of a part of the iodides and iodates which are in the saltpetre. The lead necessary for the decomposition of the saltpetre must be pure, as the presence of small quantities of other metals, especially of antínony, might cause the decrepitation of the whole charge. When the saltpetre, which melts at $310^{\circ} \mathrm{C}$, has reached a temperature of $420^{\circ} \mathrm{C}$., 14 parts of sheet lead are gradually added for cevery 5 parts of saltpetre, the whols heing constantly stirred to obtain an intimate mixture, if
reaction, but this is not the case, the pure nitrite being absolutely neutral. The neutralised solution is separabsolutely neutral. The neutralised solution is separmathod, and is then concentrated in cast-iron pans until it has a density of from $42^{\circ} \mathrm{B}$. to $45^{\circ} \mathrm{B}$. when warm. The insoluble precipitated residue is thrown upon a large filter of coarse sacking, where it is washed with warm water and the wash waters are added to the prinoipal solution. The concentrated solutions are mixed together in cast-iron vats and left to crystallise ; if the crystals thus ohtained are not pure, they must he re-dissolved and re-crystallised. The pure crystals the separated in a centrifugal machine, washed, and dried. The desiccation takes place in an oven at a tempsrature of ahout $50^{\circ} \mathrm{C}$., and Ithe crystals are packed in parchment-paper cylinders of double thickness. The residuary oxide of lead may be melted and cast as it is, reduced to the metailic state, or transformed into minium, a heavy, brilliant red pigment which is used as a cement and paint, and in the manufaoture of flint glass. The lead oxide can also be used iu the preparation of white lead, of lead nitrate, lead acetate, and other plumbic com. pounde.
How to Produce Red Letters on Glass. - Red lotters are produced on glass by a sand-blast process. The glass used for this purposs is known as ruhy Hlashed glass. The latters that are to be produced are first cut out in paper. These paper letters are coated with a resist or protective covering composed of 1 part of ordinary hot glue and 1 part of glycerine, mixed together. Ths letters are then pasted on the glass, the resist side ontwards, and the glass is then ready for blasting. The sand cuts away the unprotected suriace of the glase, the resist protecte the paper letters, and, when these are washed off the glass, red transparent lettere will be shown on a white opaque ground.

Preparing Tannic Acid. - An inıpure tannic acid may be obtained from myrobalans (a dried astringent fruit resembling a prune) by grinding them and extracting in a boiler containing hot water; the liquid may be strained and evaporated to dryness yielding a dry extract which is suitable for dyaing or tanning purposes. A concentrated fluid extract is often made by partial evaporation. To obtain a pure tannic acid, it would be necessary to treat the myrobalans in the same way as nutgalls, i.e. extract by percolating a mixtare of alcohol and ether through the powder. The percolate will separate into two layere; the lower one is a watery layer containing the tannin the upper layer contains the alcohol and ether, with colouring matter, etc. The alcohol and ether can be recovered largely by distillation; the watery layer is evaporated to dryness, and yields the pure acid.

Romoving Stains from Linen.-Tea and fruit stains are removed from linen by steeping the latter in a chloride of lime solution (about $\frac{t}{2} 1 \mathrm{lb}$. to the lat. of water), or preferably in hypochlorite of soda, which may be made hy treating $\frac{2}{2} l \mathrm{lb}$. of chloride of lime with $\frac{1}{2}$ gal. of water, dissolving $\frac{3}{2} 1 \mathrm{~b}$. of washing soda in $\frac{1}{2}$ gal. of water, and mixing the two solutions. The solution should be allowed to remain till clear, the liquid, which is poured off from the deposit, being used for bleaching.

Maling Fremch Cork Boot.-In fitting the second insole of a French cork boot where a box and rand are sewn in, last the boot in the ordinary way, taking care that the feather is nice and even, and that there is a good innersole to work upon. For the box, a piece of first cutis cut the required length, aay from 12 in. to 14 in., and about $\frac{5}{8}$ in. wide. Mark a line, as A B (Fig. 1), on the grain side of the leather, $\frac{1}{8}$ in. from the edge, and cut it through a little way, then serve the reverse side in a similarmanner, as at, then The leather should be damped, and the cuts made larger with a channel opener, a welt plough or knife being used to cut a thin strip of grain from
another filling. Make this with 2 parts of linseed oil and 1 part of turpentine, and add a tablespoonful of sugar of lead or of sulphate of copper driers to every pint of fllling; the lead does not affect the colour of the filling so much as the sulphate of copper. Wipe with lag as before, and allow to stand for a day or two. If the weather makes the oil sweat ont on the surface, wipe it thoroughly dry and then well brush on a light coat of pale copal varnish, following in a day or two with a fnishing coat or hard-drying copal varnish. The surface of the first coat of varnish may be rubbed over with a bunch of olean horsehair to remove nibs and to prain it slightly; this dulness favours ahsorption of the next coat of varnish, which is a full flowing coat lighty laid ou. Among the points it is necessary to remember are these. Do not let the varnish flow into recesses; let there be at all parts only the amount of varnish laid on with the bruph; and always hold a small dry tool in the left hand with which to wipe off superfuous varuish. The ironwork, which to wite bright, may he varnished with carriage copal varuish in which a little white lead, thinned with turpentine, has been mixed (a tahlespoonful to l pt. of varnish). The ironwork must be free from grease or oil before it is varnished, or it will dry unevenly. Black japan is used for common work such as Ralli cars, but it dees not harmonise with other colours. Leather, if used for dash-iron or vings, should be redtan enamelled, or japan surface leather should be used; tan enamelled, or japan surface leather should be used; black leather for the purpose.
Gypsum, or Plaster-of-Parls. - Plaster-of-Paris, or gypsum, is a sulphate of lime found at places in Oheshire, Cumberland, Derbyshire, and Oxfordshire, in England, and at many places in the neighbourhood of Paris, France, hence one of the names given

Fig. 1

Making French Cork Boot.
the narrow side as at D. Or the box can be worked with one bevel edge (see E, Fig. 2). Instead of sewing in a. welt, the box can be sewn in, and in doing this the awl will go in at A (Fig. 1) and come out at C. The piece taken out at D will admit of the box lying close to the upper, while the channel at C allows the stitch to sink in. If a box like Fig. 2 is used, the awl should go in at the dotted line on the bevel edge E and come out at F. This is also shown by the dotted lines G and H in Fig. 3 , which is a transverse section of nearly the whole of the middle portion of the boot. Thus the awl goes in the innersole portion of the boot. Thus the awi goes in the innersole round, it can be gently hammered down, trimmed, and ironed up, as shown by the dotted line K. The welt; as shown at L (Fig. 3), is sewn in as follows :-Starting at the heel, sew up the waist to where it meets the box. Between these stitches put the awl under each loop, letting it grip the innersole and come out on the top of the box, thus sewing in the welt, and on to this the sole will be stitched as at M, N. A very thin layer of felt is put in, and the remainder filled up with sheet cork, excepting another thin layer of felt to keep the boot from ereaking when the outer sole is put on.

Varnishing an Carriage in the Wood.-It is assumed that the vehicle to bevarnished is made of four differently coloured woods-ash, creamy white; mahogany, reddish brown ; hickory, flesh-coloured drab; and lancewood, straw colour. The straw colour of lancewood contrasts best with mahogany, so the two other light-coloured woods have to be tinted to match straw colour. For this purpose coat with a solution of gamboge and turpentine, a few drops of linseed oil being added to every pint of the stain ; test on any odd bits of ash and hlckory to make sure the stain is of the right tint. Prepared yellow stains might be diluted to unswer the purpose. The staining does might be diluted to inswer the purpoee. The staining does woods. The next process is to fill the wood grain. The dense lance wood will not need so much filling as the other woods. 'I he filling is a nearyy colourleas liquid made by mixing together 2parts of turpentiue and l part of palest linseed oil; apply it with a stumpy-haired brush, and wipe off any superfivity with a clean white rag, rubbing the latter well into the wood to smooth the grain which the liquid tilling has raised. After a day or so, brush in
to it. It is also found in Germany, Switzerland, Italy, Spain, and North America. According to Burnell, it occurs " either in contemporary strata or great thickness (as near Paris) in the tertiary formations; or in the iridescent maris of La Meuse, or the Aveyron; or in masses, of a subsequent date in difterent secondary rocks." The latter kind, being generally in contact with igneous rocks, is associated frequently with the dolomites, rocksalt, bitumen, and sulphur. The better qualities of gypsum have almost the hardness of calcareous stones, but after the evaporation of the water of crystallisation by burning they are easily powdered. On being moistened with water gypsum reassumes the hydrate form it possessed before it was bulnt, and it crystallises on and around the substances between which it is placed, recovering its original density and strength It is for this reason that gypsum is so extensively used in building. Gypsum is quarried underground and in the open either by cutting with picks and wedges or by blast ing with explosives. The gypsurn stone is broken up fairly fineand conveyed to the kilns, which are primitive structures, consisting of three bricis walls supporting a tiled roof in which arg openings to allow the escape of steam; one side of the kiln, which really is but a shed, is open. The gypsum is piled up in the form of arches, the larger stones being at the bottom, near the fireplace formed hy the vaults of the arches. In the latter a wood fire is lighted, the fiames rising through the crevices left between the stones. A greater heat than $200^{\circ} \mathrm{C}$. over-calcines the gypsum, which then loses its power of combining with the water and reassuming its hydrous sulphate form, A better kiln than the shed form is that with its chimney passing round and round the gypsum, which thus does not come in contact with the smoke or fuel; the latter in the ruder form of kiln discolours the calcined article. Perhaps a still better method is the one in which advantage is taken of the fact that steam at very high temperatures is a gas possessing great affinity for water. The finely broken gypsum is subjected to the action of steam of the temperature of $200^{\circ} \mathrm{C}$., and a pure anhydrous sulphate of lime is produced. The calcined gypsum is powdered in a mill, and is then ready for use. It is necessary to pack it very carefully, as in contact with a damp atmosphere it will rapidly spoil.

Recipes for Pottery Glaze.--Different clays have different shrinkage, require dilferent firing, or stand a greater or less degree of temperature, hence the glaze is a matter of triail. Glazes are coloured by admixture of small quantitiee of metallic oxides. Common clay resselsare painted over with red-lead, but this glaze is dangerous, as it is aflected by acids. Borax will make a glaze, and is used as a fiux. A white earthenware glaze may he made from Cornish stone $3 \overline{5}$ parts, borax 20 , crystilis of soda 10, red-lead 20, and blue calx it part. Calcine and pulverise and grind wlth 20 lb . of white-lead. 101b. of Cornish gtone, and 5 lb . of flint.

How to Make a Silent Camera Shutter.-A noleeless ehutter that works inside the camera and that will sive auy length of exposure is made as described below. Being perfectly noiseless, they are particu larly suitable when photographing childrem and animals. Exposures as brief as a quarter of a second may be given, which is generally sufficiently quick for such work. Construet a box A (Fig. 1) of the dimensions shown, dividing it lin. flom the end with a 日trip of the same, width B, having a slot C. Through this slot and also the holes D and E previously made in the framework a roller Γ, ahout $\frac{3}{8} \mathrm{in}$. in diameter, is paesed (a wooden knitting-needle answers well). In thie roller burn two holes 3 iu. apart, and into them fix the wire frame bhown in Fig. 2 so that it hange flat. Now cover rod and frame with thin velvet, gluing to the rod and sewing over the Irame. Make a frame $\frac{i}{2}$ in. wide and in in. deep to fit the left-hand compartment, as shown by dotted lines. This frame is alterwards covered on ite inner edge with velvet, making a lightetight join. Around the roller F glue one end of a strip of tape, 2 in . long, and wind the remainder around free, joining the loose end to a strip of wood G, about 3in. long. G is hinged to the bottom with a small piece of tape aleo. Next wind some

How to Make a Silent Camera Shutter.
fine wire around a small rod to form the spring H, and fasten to this roller and the side of the framework as shown. lf now the strip G is forced down, the roller is pulled round and the Hap opens, but is pulled back by the spring directly G is released, For this purpose an indiarubber bellows I on a tube is fitted at J. It only re mains to fit a strip across the right-hand compartment with, perhaps, a wedge-shaped hlock (as in Fig. 3) to give with, perhaps, a wedge-shaped hlock (as in Fig. 3) to give one at each side, are for attaching to the camera front. The tube J projects for the pneumatic release at X. This should be fitted with a tap to keep the shutter open while focussing. The catch Land the pin M ure used for the same purpose, or when long exposures are necessary and a cap must be used.

Varnishing Violin. - In preparing a violin for var. nishiug, commence by sandpapering it all over with No. 1 paper and freeing it from scratches. Go over the entire suriace lightily with a clean, slightly damp sponge, and when the wood is dry it will be quite rough agaiu; rub with No. o paper till smooth, and repeat the damping and papering until a dead smooth surface is obtained, quite free fren ecratches. It is not usual to stain pioline, as a mucn finer effect is got by incorporating the colour with the varnieh. got by incorporating the colour with the varnieh. Dilute 4 parte of good copal varnish with 1 part (by measure) of turpentine, and heat it quite hot, being careful not to let it catch fire. Go over the entire violin with this with a stiff brush, and ruh in as much as it will take at one cont; this will not he much if the wood was well tinlshed. When it is quite filled, make a pad of cotton-wool, doue up in a tine cotton or linen rag, cotton-wool, doue the in a fine cotton or linen rag, of the violin as rapidly as possible; then put on a coat of spirit varnish, made thus: Colour pt. of methylated
spirit with turmeric and red sanders wood. In another pt. of methylated spirit diesolve 2 oz . of gum eandarach (juniper gum). Mix the two together, add two tablegpoonfule of Venice turpentine and 2 oz. of white shenlac, and when diseolved, filter through cotton-wool or tho muslin. This elastic spirit varnish gives the violin the warm amber colour somnch eoughtfor. Lay on the varnish carefully with a large, round, camel-hair brueh, aroiding streaks, and not going twice over the same place. It will dry very quickly, and three or four coate may be put on daily till the desired colour is reached; rub down with linely sifted pumice-nowder and water and a woollen rag after every third caat. When a good body of varnish is on, the surface must be rubbed down with the pumice-powder till it is dull and smooth all over: the pumice is then thoroughly washed of . The final polish is obtained with tripoli and water, or crocus and linseed oil, on a rag, as hefore. After this is cleaned ofr, a brisk rub with the heel of the hand will give a surface like glass. The above instructione are applicable also to re-varnishing an old violin; hut then it is necessary, in the preliminary sandpapering process, entirely to remove all traces of the old varnieh. When that has been done, the work is identical with the above.
Coloured Printing Inks.- Printing Ink is not usually made satistactorily in the abeence of hus plant, hut below are given some simple instructions easily followed. Into a 5 -gal. iron pot pour 6 qt . ot old linseed oil, and heat gradually over a tire to boiling point. As soou as the vapours that arise from the surface will catch fire when a light is applied, remove the pot from the fire and allow the oil to burn for a time, smother the flame by placing the lid over the a time; smother the firme by placing the lid over the
pot. If the oil has thickened sufficiently, it will draw pot. If the oil has thickened sumficientiy, it will draw surface. If the oil is not thick enough, relight it, and allow it to burn down. If the oil is all light, stir till the frothing ceases, and put in gradually 6 lb. of crumbled amber resin, and keep stirring till all is melted. Then stir in $1 \frac{3}{4} \mathrm{lb}$. of sliced curd-soap, arid when the frothing has ceased, place it on the fire, and bring to hoiling point, stirilug well all the time. 'This ie printers' varnish. Varnish is best made out of doore; it smells unpleasant in boiling, and there is less risk of fire out of doors. To make brown ink, add varnish to a powdered mixture of 2 oz. of burnt umber and loz. of rose piuk, and grind till smooth wlth a muller. lndian red and Venetian red, toned with a very little lanipblack, also give browns. A fine black ink may be made with 9 oz. of balsam of copaiba, 3 oz . of lamphlack, lit oz. of indigo or Prusslan hlue, or a oz of each, $\frac{3}{4}$ oz. of Indian red, and 8 oz. of dry turpentine soap. These are to be ground with the varnish till quite smooth with pestle and mortar or a muller and slab. For black varnish ink, 5 oz. of Prussian blue or indigo, or $2 \frac{1}{2} \mathrm{Oz}$. of each, 4 lh . of mineral lamp. black, and $3 \frac{1}{2}$ lb. of good lampblack, are mixed with waru varnish, and the whole is well ground on a slab with a muller.
Primary and Primcipal Colours.-There are three primary colourg-red, yellow, and blue; the ten principal colours are Chinese white or baryta white, Jellow ochre, Naples yellow, vermilion, Indian red, madder carmine, emerald green, ultramarine, Pruesian blue, and ivory black or 1 ndian ink.
Electro-brassing Solution. - For a solutiou for electro-brassing small iron goods, diseolpe 1 lb. or good Fellow sheet bress in suffient warm dilute nitrit acid to dissolve the brass without leaving any free acid; then add the whole to 8 gal. of rainwater. Now add liquor ammonia until the brass solution assumes a deep blue tint, then add a polution of cyanide of potassium until all the blue tint disapperrs. Filter through calico and add an equal bulk of rainpater to form the brassing bath. This muet be worked with an auode of good yellow sheet brase, which ghould dissolve treely to maintain the solution in good workiug order. To obtain a uniform bright yellow deposit of brase on bmall iron goods held in baskets, some skill will be required, as the character of the deposit is iutluenced by the temperature of the solution, the deusity of the current, the proportions of metals, the size of the anodes, and the movement of the articles being plated. Very thick deposits of brass might be dipped in acid to improve their colour; it ls not gaie to dip thin ones.
Glazing Terra-cotta Tiles.-A glaze for terra-cotta tiles requiring only a moderate heat can be made from a solution of sugar of lead in hot water. Cover the tiles with the rolution and expose to a clear red heat, A coke file would probahly he suitable, provided it does not touch the tiles in any way. A bagger, or receptacle, to hold the tiles may he made from a drain pipe. Limewash the inside of the pipe and set the tilee with the glazed surfaces facing each other. Try immersing them in salt or horax, and then bake or paint over with red-lead; this will givea deep red glaze.

Repairing Marble Clock Case.-To repair a broker corner of a marble clock case to lmitate grain, which corner of a marble clock case to lmitate grain, Which is light green, white, and black, a bard-setting cement with white of egg. This can be used for je-forming the broken coruers, and afterwards painted black and gently rubbed with furniture polish.

Gum Bichromate Process of Photography. - The gum bichromate process of photography is an old process, and io only suitable for large worlx, and for subjects that do not need much definition. The process itself is as follows. Cut some sheets of good cartridge paper into pieces rather larger than the negative to be printed from. Prepare a 10 per cent. solution of potaesium bichromate and in it immerse the cut paper for from two to three minutes, taking care that the paper is evenly wetted. The immersion may be done in ordinary daylight, as the paper doee not become sensitive until it is dry. In a. room free from dust pin up the paper by the corners to dry. As soon as the paper is dry it must be kept in the dark, or as carefully guarded from actinic light as silver paper would be. Make up a 40 per cent. solution of gum arabic and fllter and mix with it the pigment that is to be used, which would be either ordinary powder colours as obtained from the oilshop, or the water colours sold by artists' colourmen. The latter colours are preferable, as they are usually in a finer ctate of divioion. A thin coating of the mixture is then evenly applied to the paper, smoothing out with a large badged' brush ; dry thoroughly. The exposure may be timed by an actinometer, but is practically a trifle longer than would be required to make a print in albumeu from a negative of similar density. Lay the print face downwards in cold water for half an hour and note the result. If correctly exposed there will probably be by this time a dim outline of the principal objects. Raise the tempera ture of the water and bathe very gently until the image is well out. Soak for a few minuter in alum and rinse well to remove the bichromate; this is all the fixing required. The paper should not be kept long after sensitising. Some examples of the gum process have been obtained by working up the sottened gum with a brush. Carioon timbue allows of similar modifications.
Dotermining Contents of Rectangular Tank.-To determine how many gallons of water would be held by a tank of specified dimensions, first find the contents in cubic feet, and then multiply by 6.23 . The contents of a rectangular tank 6 ft . by 9 ft . by 4 ft . $6 \mathrm{in.}$, equals $6 \times 9 \times 4,243 \mathrm{cub}$. ft., so that the water contained should measure $213 \times 6.23=1,614 \mathrm{gal}$. (approximately).

Making a Theatrical Bald Wig. - In making a bald wig such as is worn on the theatrical stage, a piece of stout calico should be tightly stretched over a suitable dummy, which is generally a wooden block, and the calico should be tied or tacked round the neck of the dummy, Give the calico a coat of hot jelly size, which should be followed by two coats of flake white. The medium for applying the colour should consist of copal varnish, linseed oil, turps, and a few drops of gold size. Each coat must be dry and hard before the next is applied. The flesh tints may be obtained by mixing small quantities of rose madder and Indian yellow with slake quantities of rose madder and Indian yello

Simple Metronomes, - A metronome, a device fos measuring and beating time in music, may be made with a piece of tape and a weight, or it may be an elaborate clockwork arrangement. For the tape and weight metronome, the distances from the centre of the weight to the point of suspension should be as follow:-

No, of Beats per Minute.
Distance in Inches

eats p		,			Dist	nce in
60	-	39.14
70	28.75
83-'	...	\ldots	2201
84	19.87
86	\cdots	\cdots	..	\ldots	*-	$19 \cdot 01$
90	...	\cdots	17:39
100	...	\cdots	14:09
105	\ldots	\cdots	\ldots	12.88
110	...	\cdots	11.64
120	...	\cdots	$9 \cdot 78$
126	$8 \cdot 87$
130						$8 \cdot 34$

Slightly more adranced than the weighted tape in suspension is the metronome illustrated by Figs. 1 and 2. It is, however, of simple construction though it will answer quite as well as a more elaborate arrangement. Of the compound pendulum, A is the rod, B the bob, and © a nmall supplementary weight which slides up and down the upper part of the rod. With cat the top end the pendulum, on being bet in motion, will swing for twenty minutes or more at the rate of about forty-eight beats to the minute; when C is at the bottom end, near the pivots, the pendulum will swing for a shorter time at the rate of about 144 , to the minute. These matters having
been determined by experiment, the intermediate speeds are measured off on the rod: the divisions are closer are measured of on the 1 dod: the divisions are closer The pendulum should be catt in brass, and only the top part of the rod, on which the weight is to slide, need he filed to sin. in breadth and $\frac{1}{1}$ in. in thickness. The pivots are shown at D (Figs. 1 and 2); they are two pins of tempered steel filed to a sharp point and driven tightly into holes drilled through the projections on the sides of the rod as shown in Fig. 2. The noints work on a of the rod as shown in Fig, 2. The noints work on a outoon its top aide in both directions for the purpose of enabling the pendulum to swing itself perpendicular when set up on an uneven surface. A small steel spring is screwed on one side of the weight 0 to keep the latter at any desired height, though it allows the weight to be slid easily up and down the rod when required. The bob

A Simple Metronome.

B is placed slightly off the centre (to the left) to com. pansate for the weight of the bend on the right. The mond hat a mahogany base G (Fig. 2) 3 in. by 2 in . by $\frac{1}{2} \mathrm{in}$., whth two uprights $F 6 \frac{1}{2} i n$. by $\frac{3}{4}$ in. by $\frac{1}{2}$ in., and a cross-bar, to oupport the brass plate E .

Cutting Tiles.-A white glazed tile may be cutinto two pieces by laying it flat on a soft wood board and cutting very carefully with a chisel. To reduce the size of a tile, or to take an irregnlar-shaped piece out of it, break or pinch off pieces with a pair of pincers of about 7 -in. size. The edges can be rubbed down on a stone if required to be very neat.

Cleaning Furs.-These are methods of cleaning furs. (a) Rub with hot roasted bran, allowing the bran to enter the fur well. Then shake the fur and well brush. (b) Moisten bran with hot water and well rub it into the fur with a piece of clean flannel. Now take some dry bran and a clean dry fiannel and rub this well in until the wet bran and the fur have become dry. To remove the bran, give the fur a good shake, a sharp but light beating with a cane, and brush with a solt brush. (c) Mix and heat in an oven equal parts of flour and fine ealt, and thoroughly rub the bot mixture into the roots of the fur. Now well shake the fur, then throw it over the back of a chair, fur side upwards, and brush out auy of the mixture left, using the end of a soft brush, and giving sharp"dabs" so as to get to the bottom of the channel formed by the parting of the fur, blowing well all the time.

The Manufaeture of Water Colours.-Cake and moist water colours are made by grinding the dry pigments in a mill with gum water and a little glycerine or honey to prevent them becoming too brittle; the pasty materlal is rolled out and cut into squares, partly dried, and then pressed in moulds or placed in tins. For the moist coloure more gum water is used than for the cakes. The gum water is made by dissolving pureat gum arabio in twales its weight of water and straining through muslin, then adding a little glycerine and a few dropa of oil of cloves. Very little glycerine must be used or the colours will tend to absorb moisture from the alr and fade or become bad.

Making Leather Case for Croquet Mallet.-The leather for a croquet mallet caae nead not be very stont, bnt it must not be flimsy, unless it is backed with something, or it will wring in the sewing, and the handle portion will be unsightly. The leather used for the straps of bags, etc., will be euitable. Before cutting the leather, cut from stout cartridge paper a pattern to the shape of the mallet. Fig. 1 is the cover for the handle, whichis 3 ft . long and 5 in. Wide ; Fig. 2 shows the cover for the mallet, which is $12 \frac{1}{\mathrm{~h}} \mathrm{in}$. long by 13 in . wide; while Fig. 3 is a

Making Leather Case for Croquet Mallet.
pattern for the two ends, which is $3 \frac{1}{4}$ in. Wide by $4 \frac{1}{2}$ in. deep. Two small arce are cut out of Fig. 1, as A, B, eo as to fit a hole $1 \frac{5}{b}$ in. diameter cutin Fig. 2 after it is curved to the outline of Fig. 3. In Fig. 2, l $\frac{1}{3} \mathrm{in}$. is marked off at one aide and the two coruers are cut off, as o and D. The circular hole is then cut out, the centre being about $4 t$ in. from the left-hand side, so as to be in the centre of the case when finished. In lig. 3 , 1 in. is allowed on top for a lap. The pieces E and F (Figs. 2 and 3) will form themgelves into flaps if a piece is grooved outalong the dotted line. To get the piece, Fig. 3, a good ahape, cut an oblong piece to the measurements given above and fold it down the centre, and then cut off the corners G and H. f'ig. 1 is now gewn into cylindrical form eo as to take the handle, the circular piece, ly in. dlameter, as cutout of fig. 2, being sewn to one end, the other end, with curves A and B (Fig. 1), being fitted into the aocket hole at J (Fig. 4), and the straps and buckles sewn on at K and L. To give a good appearance to the case when finished, a little plush may be fixed in with glue paste; if desired, a cheaper lining can be used.

Notes on Repainting a House. - In commencing to re-paint a house, begin in the upper rooms, first washling off the cellings, then stripping off the paper from the walls by applying water just where it is wanted, allowing sufficient time for it to soak, and removing a piece at a time. If a little soda or lime has been put in the water so as to more easily remove the paper, wash the work with dilute caustic aoda. Contagions matter and certain insects are frequently
retained in the paper, and the caustic soda acts as a disinfectant. Repair the bad places with plaster and whiting ; and it is sometimes desirable to cuat with size to stop suction, and to put on lining-paper to make a sound job and hold the plaster together. The next job is to clearcole the ceiling. Put aome whiting in a pail, cover with water till the iime in the whiting is slaked, cover with water till the water, and thoroughly mix in some hot aize pourd ofld colour at the same time, in the ceiling is to be coloured, or a little black if the ceiling is to be quite white. The black removes the yellow tone or raw appearance of the rhite. Strain the colour through canvas before using. The first coat for the ceiling is used thin and hot; the second is used with the chilled colour, so that it will go on thick. Do not lay the colour off, as in oil-painting, but putit on with short atrokea, in varying directions, so that put light from the windows will not catch the lines likely the he made by strokes of the brush. The distemper has to be put on full, as contrasted with oil-colour, which has to be spread. When the ceilinf and walls have been repaired, and the ceiling coloured, the paintwork is washed and rubbed with pumice-stone and soda-water, bad places being afterwards filled up with potty. Sometimea panels have to be filled up with distemper, and rubbed down with a flat cork covered with glasspaper, This latter is hard work if there was too much size in the dictemper. When the filling-up has been brought to a surface, it should have a coat of paint, which should be nearly all oil. Door Prames, window frames and aashes, and all wood mouldings, should have their corners scraped and brushed out. The mantelpieces ahould be well washed with strong soda and lime-water, which should be kept on for a time so that it may ponetrate. The mantelpieces can then be washed off with clean water and allowed to dry. Having got the woodwor'k to a fairly level face, coat it with colour. Colour the door frames first, and than the edges and panels of the door. After laying off the latter, commence the rest of the door at the middle upright stilea, afterwards doing the cross stiles. Finish by squaring off the two outside stiles, always remember. ing that the ohject ia so to put on colour that an even smooth surface is obtained quickly. Be careful of the glasspaper, and bear in mind that its purpose is to make smooth, not to take off paint. Also remember that a brush mark in the first coat will show in the last one. Commence priming and painting at the right-hand corner of the house, doors, rooms, and windows, working to the laft all through tha house. If convenient, leave the staircase to the last previous to preparing the skirting, for which sienna is the bsst pigment, as it does not show the damage aa much as other colours. The stailrcase stringing may be painted plain, coloured, or it may be grained and varnished. If the outside door'a are much cracked or blistered, the old paint muat be remored. This may be done ly brushing on a solution of 21 b . of washing soda in 3 gal. of water, thickened with lime dissolved in hot water. When softened, the paint is scraped off, or, instead, the paint may be burnt ofif with a flame. I'he tlane is the better method, as the soda-water may lenve moisture, which is the cause of blisters. In painting street doors, precautions should be taken against subsequent blistering. On thia account, it ia wiser not to use water or any stripping material whatever on tha door, but to burn off the paint with flame. Keep the brushes in oil overnight-not in water, oi course oil, as far as possible, should be kept out of the colour, as that, as well as water, will cause blistering under the action of the sun. In preparing the front of a house for repainting, begin at the right-hand aide, and clean out the spouting, windowa, etc.; continue in the same way to the bottom, rubbing downwards. Commence painting at the spouting, window sashea, and panea. Then work down the front with a coat of priming, taking doors and shutters in due course. For a black and dirty compo. front it is best to stain the lead with black to a light grey, as the next coat will give it a solid appearance. In mixing colour for outdoor work, use principally or wholly boiled oil, unless it be lor decorative parts of the house, when the ordinary method may be employed. The compo. front may be repaired in places if necesaary with Parian cemeut, as this can be smoothed off and painted immediately.
Preparation of Selenium.-Selenium is a nov-metallic element with properties aomewhat llke sulphur Selenium in combination with oxygen forms several acids, bnt cannot be said to form salts like those op metala; it does, howerer, unite with chlorine in several proportions. The best known ohlorides are gelenium monochloride and selenlum tetrachloride. These products are obtained by the action of chlorine gas upon selenium.

Removing Wool from Sheepskin,-Soak sheepakins in lime water until the wool can be removed by scraping with a two-hundled blunt knife or leave the skin in a dark, walm, and moist place until sulficient decomposi. tiou hia takeu place to enable the wool to be susily scraped off.

Mounting Photographic Prints.-This is the pian adopted by professional photographers for mounting prints. Immerse the trimmed prints in water for a few minutee and then place face downwards one on the other on a sheet of glass. Squeezs ont the excess of water with a roller squeegee and blot off the surface. Brush over the back of the print with cold starch paste, free from lumps, taking care that the edges of the print are well covered. Raise the print by the corners, lay it in position on the mount, place over it a sheet of fiuffless blotting paper, and roll into contact. Continued or heavy rollng is unnecessary. If too much starch is used it will be squeezed out around the edges of the print; if too little is used the print may not stick at all. Should any starch spread on to the mount it is sometimes advisable to remove it by sponging over the whole mount. In mounting, first estimate the position of two opposite corners, then lay the print down 60 that it tonches the mount diagonally. Starch paste more than one day old should not be used, and all lumps, gven very small ones, should be carefully removed, Platinotypes require more starehing, and do not stick if the undried mounted prints are laid together.
Malsing Three-legged Folding Fishing Stool, Below are instructionson making an angler's three-legged folding stool. Commence by marking out the section full size as shown by Fig. 1. Make a three-legged bolt out of ${ }^{5}$-in. iron, as shown at A (Fig. 1). Thread the ends, and fit them with circular brass nuts $B \frac{3}{1}$ in. thick, and square washers C and D. Each washer must be drilled in the centre and the four corners. A hole must be drilled to taks a No. 4 screw. Three pieces of hickory,
under the footings of the wall and make it form part of the same mass as the engine foundation, so that the weight of the building helpe to steady the foundation. A stone bedplate should be provided between the concrete and the eagine bsd, For securing the engine to the foundation, holding-down bolts with anchor plates at the bottom ends may be buried in the concrete, being first placed in their exact positions with the aid of a template marked off the bed of the engine. The upper ends of these bolts are serewed to receive the nuts which hold down the engine. Another method is to cast holes in the concrete through which the bolts may be passed downwards, in which case the heads of the bolts may be at the top and the nuts are tightened up through hand-holes constructed at the bottom ends, but this necessitates leaving a trench for access to the hand-holes. Cotters at the bottom ends of the bolts are easier to adjust than nute.
Inserting Now Wrest plank in Piano.-Wrestplanks of pianos should be built up of three sections-a beech centre, a maple or sycamore facing $\frac{1}{4}$ in. or $\frac{1}{1}$ in. thick, and a pine backing. If the facing aione is split, it is only mecessary to replace that portion; but if the plank is so split that a new one must be inserted, proceed as follows. First remove all the wires. If the covered ones can bs used again, thread them on a plece of wire in the order in which they were taken off. Remove the wrest-pins, and with a stout piece of brown paper and heelbail make a clean imprint of the holes, bridge, etc. Carefully remove the bridge serews or bolts;

Fig. 2

Making Three-legged Folding Flshing Stool.
ash, or lancewood about 18 in . long, and properly shaped, can be used for the legs. Bore the centre of each leg with a $\frac{5}{26}-\mathrm{in}$. bit, and fit the washers on. Put the legs on the centre bolt and serew up, leaving sufficient clearance for the stool to open properly. The ends of the bolts should then be cut off, but enough should be left beyont the nuts for riveting. Open the stool to the required width and cut off the ends top and bottom to the correct bevel, then take to pieces and finish with sandpaper and French polish. Three pieces of strong webbing are sewn together at the corners (as shown at Fig. 2) to form a triangle the size of the stool when open. Put the stool together, rivet over the ends of the bolts, open as at Fig. 3 , and tack the webbing on the corners at the top.

How to Make Dry Soap.-A good dry soap can be made without the aid of expensive plant. To 40 gal . of water contained in a steam-jecketed pan add from 2 to $2 \frac{1}{2}$ cwt. of soap cut up as fine as possiblo. A white curd soap with iree lathering properties is best; on no account must a yellow soap be employed. This mixture is stirred until the soap has entirely discolved and the mixture is pasty. Now add, in small quantities at a tims, 4 cwt. of soda ash, stirring well all the time, then run the soap into shallow galvanised iron trays to cool. When cold, the mass will begin to break up into small. pieces. It should be ground to powder in a mill-preferably an edge runner mill or disintegrator.

Foundations for Gas Engine.-A solid mass of Portland cement concrete makes a good foundation for a gas engine, and is easily constructed. Solid brickwork is also used, but the excavation required is more than with concrete on account of working room being required for the bricksetters. The best shape for the foundation is as nearly cubical as possible; if made long and narrow, and deeper than it is wide, there is a tendency to, rock. To prevent vibration being conveyed to the walls of the building such foundations are sometimes isolated by forming an open trench all round; but if the site of the onging is near a wall it is better to lay a concrete floor
the old plank may then be chopped out with a mallet and stout chisel. The prepared plank should be cut to exact length and secured in position with good hot glue, and screved up tightly for several days with iron cramps having deep jaws. When these are removed, clean up the face for the bridge and holes for wrest-pins, their exact positions being determined by means of the brown paper, which is laid in position, and secured while a sharp tap is given with a position, and secured while a sharp tap is given with a bored. The bridge should be fastened with hot thin glue and brass pins and the necesstary bolts, screws, or dowels, and a piece of mahogany or birch capping laid on. But if the instrument is titted with a half lid it should have a final cleariing up, and several coats of white hard spirit varnish should be applied before the wrest-pins are inserted.
Making Golf Balls, Golf balls are made from pure guttapercha, procurable in rods and ready for cutting into pieces suitable for the mould, which should be of size $27 \frac{1}{3}$. To prevent waste, the cutting is done with a knife operated on the guillotine system; the pieces should be slightly larger than will exactly fill the mould, the superfluous guttapercha being afterwards pared of with a very sharp knife. Before moulding, the guttapercha requires to be thoroughly softened in water kept hot over a fire. The guttapercha is then placed in the engraved mould, and sulajectod to great preseure. After the balls are made they should be put away in a dry, warm place for about three months to allow then to become thoroughly seasoned. They are then given thres coverings of special paint, a smail quantity being put on the palm of ong hand, and the ball rolled between the palms of both hands. Two days should elapse between each covering, and in a week after the last covering the balls are ready for use.

Preparing Tartaric Acid. - Tartaric acid is largely made from wine lees, i.e. the deposit formed wheu wiue is kept in casks. Tamarinds may be extracted with boiling water, the liquid being mixed with a little pipeclay and fltered through animal charcoal to depipeclay and filered through animal charcoal to deliquid until it ceases to effervesce; the precipltate should be collected on a filter cloth, and a colution of calcium chloride added to the flltrate until it ceases to give a precipitate; the precipitate is tartrate of lime, and should be collected along with the first precipitate. The precipitate should be mixed with a little water and dilute sulphuric acid added in very alight excess. The liquid should then be filtered, evaporated gently to a syrup, and left to crystallise. The crystals may be washed two or three thmes with cold water, which may be added to the next lot of acid required, and the crystals of tartaric acid should be dissolved in the least possible quantity of hot water, and the solution evaporated and allowed to crystallise again to get rid of the sulphuric acid.

Stereoscoptc Photography.-Stereoscopic effect or the appearance of relief depends upon the combining in one in the stereoscope of two representations of the same scene taken from slightly different points of view, Stereoscopic photographs, therefore, are hest obtained with a camera having a pair of lenses titted side by side. These lenses should be accurately matched as regards focus, ratio, aperture, colonr, etc., and should be 2 In. apart, which is about the distance between the eyes. With this camera two pictures will betaken at the same time. Paired lenses are sold for the purpose. A method of taking atereoscopic photographs with one lens only (a half-plate camera being used) is to employ a couple of mirrore set at such an angle as to have two points of sight. These mirrors are placed in front of the lens and reflect the
ordinary device of ueing wire gauze, on account if the low igniting point of mixtures of acctylene and air ; while if high pressnres are used so that the rate of flow shall be greater than the propagation downwarde, more air is gucked in by the upruch of the gas and the velocity of the explosion is again increased. The best results in acetylene Bunsens have been obtained by taking a Bunsen burncr in which a constriction in the air-tube creates a high velocity at the particular point where the explosive wave starts to propagate downwards.
Cleaning White Kid Gloves and Shoes. - For cleaning white kid gloves, make a paste by boiling 1 part of white curd soap with 4 parte of water, and adding a small quantity of ammonia; place the glove on a wooden hand and rub well with the paste, laid on with a sponge, until the glove is thoroughly cleaned. Any worn partis may be improved by rubbing in a little magnesia or white French chalk. Rub the glove dry with a clean cloth, and, after removal from the hand, work the glove about to render it gupple again, then press with a heavy weight. Kid boots can be cleaned with the same paste, followed by the French chalk.
Removing Grease Stains from Wall-paper. To remove grease stains from wall-paper, make a thin paste by mixing powdered starch or flour with benzoline (petroleum spirit). In this mixture dip a sponge, and with it make a ring around the stain. While the ring is still wet, thoroughly soak the stained parts with the mixture. Allow the paste to dry, then parts with the mixture. Alow the paste to dry, then remove the powder with a ciean soift brugh. The object being carried away trom the spots and forming a ring in the paper, as it does by the usual method of treatment.
Maktng Brass Dog Collar.-These are instructions on making a brass collar for a dog. Cut a strip of
 is known as a steresscopic transmitter. Still objects, and ordinary landscapes in which there are no moving flgures, can be taken with only one lens if the camera is fitted with a sliding front. Such a camera must have square bellows. The above sketch explaine the construction of a shiding front. The fret exposure is made, and A is then pushed along until the mark B points to the marik 0 . The opening in the front board of the camera is shown by dotted lines. The distance between the two points may be varied according to the distance of the principal object. The farther the principal object is from the camera the greater must be the separation between the two points. Sometimes it is possible to obtain stereoscopic photographe by moving the object, as, for example, a vase of flowers. In this case the camera aud lens are stationary and an ordinary quarter-plate camera can be used. Such a camera may also be used if it is fitted with a board as wide as the base from back to front and about double the length of the original base. Two parallel slots are made in this extra baseboard, and thumbscrews pass through these into the original baseboard. The camera may thus be slid easily from one position to the other and clamped. A great deal depends upon correct nounting of the prints; this is a process that is described on another page, but euffice it to say that the picture that was on the left hand of the camera becomes the right-hand print when mounted.

Bunsen Burner for Acetylene Gas. - To make a Bunsen burner for acetylene the tube must be ex tremely narrow, and it is even then found to be very liable to flash back, while it requires a high pressmre to bring about satisfactory combustion of the gas with an absolutely non-luminous flame. One of the chief difficulties to be overcome is due to the range over which mixtures of air and acetylene are explogive, and which lies between the limits of 3 per cent. and 82 per cont of acetylene. The propagation of the explosive wave down the burner tube cannot be satisfactorily stopped by the
brass $1 \frac{1}{2}$ in. wide, and equal in length to the circumference of the dog's neck, with an additional allowance for lap at the end, as shown at AB (Fig. 1). Yunch two small holes at the opposite end, intot which the ends of the wire staple (Fig. य) will fit, and also punch out the slots at the end AB. Now fold over the long edges along the dotted line shown, until the section formed is as shown by Fig. 3. Then wire, along each side in a crease iron; this would make the section as shown by Fig. 4. Lurn the collar round and solder the staple firmly in position and flush on the inside. Any one of the slots on the end opposite the staple end would then hook over the staple, and the collar could be lastened with a small padlock.
Use of Watch Depth Tool.-A depth tool is used more in making than in repairing watches. It is required for scoring off the exact posltion of the pivot holes upon the watch plates, previous to drllling them. It consiste of two parallel frames, binged together aud capable of being adjusted by a thumbscrew to any required distance apart. Each frame 16 provided with runners like a small pair of turus. In one frame a wheel is placed, in the other a pinion. The frames are then adjusted to such a distance apart that the wheel ruus uicely with the pinion. The outside points of the runners cen then be used as a pair of compasses to transfer the exact distance to the watch plate.
Removing Varalsh from Boots.-It is difficult to remove the varuish by means of a Bolvent from patent leather boots; it is better to tree these up tight and rub down whth No. 1/ $\frac{1}{2}$ sandpaper, then with No. 1. and Hnally with flour sandpaper, and when the eurface is smooth, to revarnish. The above process will also be fuitable if the boots are of call. But if it is desired afterwarde to clean the boots with blacking, flrst eoften the old varnleh with a little spirits of wine on a piece of good oloth, and then apply a coat of dubbin.

Browning Bottoms of Boots.-To brown the bottoms of boots, put some thin brown paste on the bottome and well sleek them just before they are quite dry; 1 epeat till an even colour is obtained, and finish with white heslball and cloth. Or whiten theleather, and burnish with a warm burvisher; this will give a darker brown. Finish us above. Another method is to rub a little of the colour on a damp sponge, apply to the boot bottoms, and flnish as above. Any brown colour will give the desired effact. To gain an easier finish, instead of using white heel-ball, make some white or brown falke, and, after burnishing, place a little on the boots with the finger, and when nearly dry, rub off with a cloth.

Bleaching Straw.-Brown straw may be bleached by boiling in a solution of washing boda, and, whilst still moist, submiltting it to the action of sulphurous acid. To do this, the straw must be hung in a nearly closed chamber; a box or barrel will do it only a emall quantity of straw is to be bleached. A piece of roll sulphur is placed on a sancer and set fure to by a hot iron rod; the saucer is then placed in the chamber (below the straw, but not too near it) and left burning for some time. After bleaching, the etraw should be washed with warm water to remove excess of sulphurous acid.

Photographing Several Objects at Different Times on One Plate.-It is possible to take twelve different pictures of various subjects on one 5 -in. by 4 -in. plate, ons lens only being used. A repeating back to the camera
the burner, otherwise the Bunsen flame will he one-sided and canse the mantle to shrink more on one side than the other; the result being that the mantle will be out of shape after burning a few hours. See that all burners are fitted perfectly upright and that the right-sized rod is used with every burner. The rods should be fitted into the burner pretty tightly; if they fit loosely they may be packed with alittle asbestos. Also note that the Bunsen flame of the Kern burner is quite different from the ordinary "C" burner. The ring just above the wheel should be of a whitish-blue colour, not green. The mantle ought to be fully incandescent from top to bottom, and no flame should be visible outside or above the mantle. Should the Bunsen flame of the new buruer the mantie. Should the Bunsen flame of the new bur'uer" that the nipple on the burner is too large, or that the flame when lighted on the nipple (without the Bunsen tube) is not vertical. This should be remedied, as it means a lobs of forty per cent. of light.

Skeletonising Animals' Skulis.-The usual method of cleaning animals' skulls is to soak the bones in water frequently changed until the flesh becomes decomposed and abla to be removed with the fingers and small pieces of wood. This takes soms time and is disgusting work. ds an experiment, try some wood ashes in the water. Begin by ubing, say, a handful of wood ashes to a gallon of water, and increase gradually.
Connecting Fouse Drain to Deep Sewer,-In laying a 4 -in. diameter house drain, which is 50 ft . long, to join

A A, between which runs a sliding board B with opening C of the desired size, baylin. square. Across from A to A run the elide raile D, with a catch in the top and three cuts in the slide to engage with the catch. For the first exposure the slide is put in as shown in the sketch, and is moved forward for each successive one. After threa exposures have been made, the sliding board is then lowered to the next point and the slide pulled back to the first position again. By lowering the board and pulling back the slide twice more in this way, twelve exposures, each aboat 1 in . square, may be made on a Exposures, each about in. by 4 -in. plate, as has been stated.
Particulars of Welsbach Burner. - Mention is made below of the principal points to be attended to in order to get good results with the Welsbach burner. The burners ordinarily aupplied are intended for use with gas of from fliteen to twenty candle-power, and It is an advantage to know whether the gas comes within this range, since it is generally necessary to within blightly larger nipples for a poorer gas and smaller nise Blightiy larger nipples for a poorer gas and sman the average pressure during lighting hours, and to select the nipple most suitable for that particular pressure ; if, for instance, the prescure varies from 1 in . to $2 t i n$. during lighting hours, select a nipple most suitable for lith. pressure. Having decided on the most suitable nipple, take care that it is screwed into the socket gas-tight, as take care that it is screwed into the socket gas-tight, as nipple itself should be examined to see that its interior is quite free from dust, grit, or other foreign substance, and on lighting the gas on the nipple (without the Bumen tube) the flame ought to be perfectly vertical. Nee that the wheel on the top of the Burisen is exactly centred, and lies evenly, perfectly flush with the top of

a sewer which is 20 ft . below the level of the house, the pipes should be laid at a reasonable depth, say, $2 \mathrm{ft}, 6 \mathrm{in}$. or 3 ft ., with a proper fall to the intercepting chamber: The drain should then either be taken down by a quick fall (as in Fig. 1), or by a vertical drop (as in Fig. 2). In the figures, sindicates the sewer, and c the intercepting chamber. Such a case as this is neither contemplated nor provided for in the Model Bye-laws.

Watch Going too Fast.-A watch will sometimes gain even when the regulator is pushed as far as possible towards "slow." The regulator of every watch is provided with two curb pins, between which the outier coil of the hairspring passes, and in the case mentioned it may be found that the hairspring docs not vibrate fireely between the curb pins, but binds against one of them If it already vibrates, opening the curb pins to giva more play will cause the watch to go slower.

Varnishing Violin.-Both oil and spirit varnishes ars used on violins; the former give quicker results. Oil varnishes should be allowed an interval of at least two days between each coat; each kind of varnish should be dulled with pumice before applying another coat. Coating with boiled oil before varnishing is not advised. A yellow tinge may be imparted by the ald of gamboge and turpentine. A quantity of essential oil of turpentine being put in a cup, it should be placed in a water bath on a gas or oil stove and brought to a geutle heat and as much gamboge added as the oil will take up. Carelully strain, and apply with a camel-hair brush: a second coat may be given in three hours' time. The first coat of good spirit varnish may be applied the next day.

Making Polishing Buffe-Buffs for poliehing metal are made by fastening thick buff leather with best strong glue to the edges of wooden wheels, the ends of the leather being secured by nails until firm. The edges are then covered with glue and rolled in the emely powder (whioh should be placed in a flat tray), making sure that a good coating is on the leather. This process mnst be repeated as found necessary.
Curing Sheepskias,-Below is given information on curing aud dyeing sheepskins. The skins should first be "fleshed," that is, freed by a charp knife from any fat or flesh. They are then cured or tawed by placing in some preservative; a suitable one consists of 1 lb . of alum, lb. of salt, about a peck of bran, and I gal. of boiling water. This should be well mixed and covered for some time to allow the bran to swell. The skins are left in the preservative for a day or two, or until the tawing is completed, which may be known by a white line being left when a prit of the skin is folded and pinched. The skins are now taken out, stretched on a frame or door, and curried. This is done by scraping in every direction to romove the inner part of the skin. Or they may be curried and stretched after. They are now dried and the scraping continued, being supplemented by shaking and scraping continued, being supplemen
Settlng Out Dovetailing.-In setting out dovetailing first set out the shoulder lines on each piece; if the ends are shot true this may be done by a gauge. Mark off the centre of each socket, and then half the breadth of
to a fine paste with water, aud coat the suriace to be bronzed thinly and equally. Build up a clear coke fire on the forge, over which move the article about nntil the paste is quite dry. Place some coal on the fire to render it smoky, and expose the article to the fumes till the surface is quite hlack. Blow up the fire until it again burns clear and is free from smoke, then move the article about over the fire and as close as possible to the red-hot coke until all the soot is burned fff. Allow the article to cool, and brush off all particles of crocus, soot, etc. Tie on the head of the smoothing tool a covering of parchment, or one or two thickneeses of lasting, and with the bright hammer go over the bronze surface until it is smooth. An acid process for fnished work is as follows:-Dissolve in viaegar two parts of verdigris and one part of sal-ammoniac. Boll this solution and skim the surface clear. Add water to the solution until no white precipitate remains at the the solution until no white precipitate remains at the bottom of the ressel. Now thoroughly clean inge artion until the desired shade is acquired; then rinse in water and dry with sawdust. If the solution is too strong, the bronze will not adhere very firmly, and a little friction will remove it; if the article is not well dried a green coating occurs on exposure to air. Both the above methods require practice before the desired colour and permanency can be obtained.
Permanence of Photographic Prints.-If the directions given by the makers of the paper are followed, pure chemicals used, and separate toning and fixing

the sockets on each side as at (Fig. 1). Make a template as shown at Fig. 2, the edge AB being square to AC ; AD and CE should be about 80° to the edge AC. Then mark out the sockets with a template and a sharp pencil (or awl) 2 indicated at Fig. 2. Saw carefully in the waste parts; then place the socket piece on the pin piece, and mark the shape of the latter by using the end of a saw placed in the sockets (see Fig. 3). A, Fig. 1, F, Fig. 2, and A, Fig. 3, refer to the eame side.

Cleaning Coral.-Coral that hss become very dusty may be cleaned in this manner. In a large pan full of Goapsuds hang the coral in a net so that it is submerged, but does not touch either the sides or bottom of the pan, and place the pan on the fire and boil. Then take it off, throw away the water, wash the coral in cleau water, replace it in the net, and put it back in the pan as before; fill up with clean water and again bring to the boil Hemove coral, ringe in clean water, and allow to drain.

Dressing Tarpaulins,-Railway companies generally use a prepared sheet dressing for yellow tarpaulins. For a yellow dressing, use botled linseed oil coloured wlth yellow ocbre; if it does not dry quick enough, add a little patent driers. First give the canvas a good dressing with plain hoiled oil; when that is dry, coat both sides with the coloured dressing. The dressing should take several days to dry; if it drles quickly it will be liable to erack.

Bronzing Metal Urns and Other Vessels,-Metal tea-urns, spirlt measures, etc., are usually bronzed after all seams have been brazed and the metal has been worked to shape. One method of bronzing is as follows. First pickle the article in spirit of salts, then scour it quite clean and free from grease with band. Procure some crocus of the desined shade, mix
baths, there is little danger of P.O.P. prints fading. It is perhaps in the fixing and washing of the prints that errors are likely to be made. The fixing bath, which must not be in an acid condition, should be at the normal temperature and sufficiently strong; if either. of these pointsis neglected fading of prints may result. The bath should be made with warm water as there is considerable loss of heat in dissolving hypo, and when the temperature is low the bath does its work too slowly. When the prints are put in the hypo the unaltered silver is changed into silver thiosulphate, which is insoluble, and then into a double thiosulphate of silver and sodium, which is soluble. Unless the bath is strong enough to form the double thiosulphate, stains and fading may result. The proper strength for P.O.P. Is hypo $30 z .$, Water 20 oz. For albumen prints use a 10 -percent. solution of hypo. The priate must be kept moving while they are in the fixing bath. It is important that after fixing is completed every tracs of hypo should be removed from the print. For this purpose a mechanical washer may be used; this keeps the printe moving round the washer whilst the bypo sinks to the bottom and is syphoned off. Or the prints may be transferred by hand backwards and foiwards between two dishes alternately filled with cleau water. After about forty minutes' thorough washiug the prints should be free from hypo. A test, however, should be applied. Put a small quantity of starch into a test-tuhe and add a few drops of a solution of iodine, thus forming blue iodide of starch. Pour half of this blue lodide into another test-tube, and, lifting oue of the prints from the washing water, hold it by ous corner and allow the last few drops of the drainings from it to fall into oue of the test-tubes. If any hypo is present in the drainings it will turn the blue solution white. Compare the colonr of the colutions in the tubes by holding them side by side against a sheet of white paper.

Making Bar Soap-As a preliminary trial in soap making, try the cold process. Cocoanut oil should be used to the extent of from 25 to 50 per cent. if pessible, as it not only rapidly saponifies but appears also to hasten the saponification of other oils mixed with it, and forms an easy lathering soap. For trial, dissolve in $1 \frac{1}{2 t}$. of water $\frac{1}{2} \mathrm{~h}$. of caustic soda (that in hermetically sealed tins for preference) ; place the lye in a jug. Now raise the temperature of the oils to 110° F., pour into a large bewl, and add the lye very slowly, stirring well with a stick, When the lye has been thoroughly mixed with the oils the mixture may be poured into a mould. An efficient temporary mould may be made by lining the inside of an old box with a piece of old cotton cloth, wetted, and folded in several thicknesses. Pour the mixture into the cloth, cover the box over, and place it in a warm place for from twelve to twenty-four hours. If the mixing has been properly perfermed, a block of hard soap will be produced, which may be cut into bars with a wire.
Roof Cutting into Side of Dome.-It is required to ohtain the proper swesp for the plate that runs up the slope of a root which cuts into the side of a dome. If the dome is a semi-sphers, then the section of the dome formed by the plane of the roof passing through
a minute, and when this speed is obtained let go the shutter. Now make a time exposure on the same image, buton another plate with the wheel at rest. The first plats on development will show a blurred arc where the image of the bright tinfoil moved across the plate. The proportion the movement bears to the complete arc is the speed of the shutter expressed-in fractions of a second. To find the degree of movement, measure on the negative showing the wheel at rest the width from side to side of the tinfoil, and subtract this from the extension of the are. Now ascertain with the compass how many times the remainder is contained in the circumference of the wheel image and the answer is the fraction of a second exposure that the shutter gives.

Mixing Oil-colour Paint.-For painting any surface that has to stand the stress of weather the paint should be of as good quality as possihle. For a good oll paint take, for each pound of colour required, 3 lh. gennine whitelead, 1 oz. of patent (paste) driers, or a small quantity of terebine, and mix lt to the required consistency with a mixture of raw linseed oil 2 parts, turpentins 1 part. $1 f$ it is required to dry with a good gloss, replace hail the raw

It would be a part of a circle. Prodnce A B, the plane of the roof (Fig. 1), until it joins the plan at A^{\prime}; bisect $A^{1} B$ to give the centre 0^{1}, and then draw a line at'right angles to the ground line from A to cut the plan at C. The distance AC would be half the width of the section's base. To draw the section, set off a line at right angles to, and on hoth sides of, AB (Fig. 3). Make AC on both sides of AB equal to AC (Fig. 2), also make AB (Fig. 3) equal to A B (Fig. 1). Then mark off from A, A O^{1} on the section, equal to AO \dot{o}^{1} (Fig. 1). Tise 0^{1} as centre, and with radius to equal to the arc shown, Fig. 3 , and this wovild he the part to he cut from the plate, so that it would fit the dome.

Making Stannate of Soda.-To make stannate of soda, proceed thus. Melt together 2 parts of caustic soda and 1 part of finely powdered tinstone (native oxide of tin). Add to the melted mass a small quantity of hot water, allow to settle, and pour ofi the clear liquid; this can he evaporated to form the liquid stannate. On iurther evaporation the liquid will commence to crystallise, and after cooling the crystals may be strained off, washed once or twice with a little water, and dried. The liquid poured off from the crystals should be svaporated to dryness and added to the next melt; the part insoluble in water may also be added so that there may be no waste. Tin crystals (stannous chloride) are formed by hoiling tin with hydrochloric acid until no more will dissolve, and then evaporating and cooling the solution; the tin crystals will then separate out.
Testing the Speed of a Camera Shutter, - A method of estimating the speed of a camera shutter is as follows. Attach to the side rim of a bicycle wheel a piece of tinfoil. Invert the hicycle, place it in the sumshine, and focus this wheel sharply. Put a plate in the camern ready for exposure, and set the shutter at its lowest speed, using as large a stop as possible. Revolve the wheel so that it makes one revolution per second, or fifteen revolutions in a quar'ter of
oil with boiled oil. If a tint is wanted, work in ths requisite qcantity of pigment ground in oil; ochre for cream, Venetian red for salmon, middle Brunswiuk green for pale green, ultramarine for grey, burnt sienna for a reddish huff. For dark coloured paints, replice the white-lead with a similar quantity of pigment ground in oil, ind use more hoiled oil, or else add a little good oak varnish.
Determining Superficial Surface of Steam Pipos. -The rule most usually adopted for determining the number of square feet of heating surface of different sized steam pipes is to calculate that a foot lexgth of 4 -in. pipe has a superficial, i.e. square, foot of surface. Then the areas of other sizes can be readily estimated. A l-in pipe, for instance, has one-fourth of a square foot of surface per foot run, or a square foct to 4 ft . run. This would also apply to bends, fittings, and other hot parts of the installation. These calculations are based on the interior diameters of pipes. Often the exterior is taken, by which a $1 \frac{1}{2}$-in. pipe, 1 ft . long, wotuld be said to have half a square foot of surface, because it is of 2 in. exterior diameter (nearly). This, however, is not a correct way, for it gives a certain size of pips a variable super surface according to ths thickness of the material of which it is made, whereas the thicker material would decrease heating efficacy rather than increase it.

Manufacture of Condensed Mill.-In making condensed milk, milk is mixed with sugar and then eтaporated by steam in a vacuum pan, in which a reduced pressure may he kept in order that the milk may lose lts water at a much lower temperature than the boiling point under ordinayy pressure. The temperature employed is about 100 deg. F., and the vacuum is kept as good as possihle. The plant required corsists of one or more vacuum pans, a hoiler for supplying steam and for numping. suction pumps, etc., and canning outfit.

Making Sugar Figures.-Sugar flgures are made by placing abont 2 lb. of sugar in a pan and adding barely sufficient water to cover it and a little cream of tartar ; melt down by a gentle heat, and boil to the degree known as "hall," i.e. about $250^{\circ} \mathrm{F}$. Rub the pan briskly with π stick until the sugar thickens, then fill the moulds as quickly as possible through a funnel. Objects that are fat on one side may be moulded in starch powder, shaped objects in plaster-of-Paris moulds, while laigs objects are usually made hollow, the moulds being filled with the sugar, and the unsolidified portion being poured out fifter a few minutes.

Hot Bor for Photo Negatives and Lantern Slides. -An aid in varnishing lantern slides made from negntives or In varnishing photographic negatives themselves is illustrated by Figs. i to 5 , the letter references in these figures being similar. It is usually ad vised to heat the slide before a fire or lamp before flowing the varnish on and off; in too many cases this means unequal heating and burnt fingers. With this hot box it is only necessary to lay the slides on the top, fill the box with water (boiling or cold), and light the spirit lamp, and in ashort time the slides will be heated equally all over. After varnishing,
out one on the other side, and both together are use. less without holes through the cross wails to allow of a through draught, lif the joints of the floorboards are open, a little ventilation may bs afforded by currents of air finding their wa, through. If the upper face of the boards is exposed, the fungus cannot thrive on it ; its ravages will be confined to the lower side of the flool', and it will make its way through the boards slowly. aud it will that part of the floor which is covered with loose-textured carpet has the better chance or helding loose-textured carpet has the hetter chances out, but that which is covered with oiloth out, but that which is covered with oilcloth, and thus
cut off above and beneath from all gupplies of fresh air, has everything against it. As regards the moisture, the fungus is greedy for this, although it has to take its supply in very minute quantitiss from the air or from objects with which it is in contact. So much moisture, indeed, does it succsed in taking in that it has to discharge an excess, which haugs on its surface in clear sparkling drops, hence its name, Meruleus lachrymans (lachry mans being the Latin for weeping). The remedy is to remove the whole of the floorbonrds, joists, and other timhers. Every vestige of fungus in any form should be scraped or brushed off the brick or plaster work. Examine the ekirting, and remove

Hot Box for Photo Negatives and Lantern Slideb.
they are left on the top until thoroughly hard and dry. The box consists of eight pieces of wood screwed together gupporting a zinc box with an iron top. The front and back pieces A and B are each 17 in. by $6 i n$. by $\frac{\pi}{3} \mathrm{in}$. The two side pieces Cand Dare each 14 in . by 6 in . by $\mathrm{s}_{\mathrm{in}} \mathrm{in}$. These four pieces are mitred at the angles, chamfered on the top edge, and screwed to the angle pieces E, F, G, and H, each 4 in. by 1 in. by 1 in., on which reste the zinc box. The front piece has an opening cut in it to admit the lamp $L_{\text {, }}$ and the back piece has two pieces cut out to lamp L, and the back piece has two pieces cut out to admit the water inlet and the steam vent K . The hot and the wood) and 2 in . deep. It is made of stout zinc with an iron top ${ }^{2}$ in, thick soldered on, forming a level bed for the slides. The water inlet discharges on the fioor of the box, and the steam vent is taken from under the top plate as shown. Steam lssuing from the water Inlet indicates that more water is needed. This box will take one dozen lantern plates and, as has been will take one dozen lantern plates and, as has been ordinary photographic negatives.
Dry Rot in Floor Boards.-The conditions most favourable to the germination of the spores of the dry rot fungus and to its subsequent growth are (1) a still stmosphere-no draught, (2) a littie moisture-not too much. (3) t little warmth, (t) a little nmmonia. An alr brick on olse side of the house is of no use with-
auy that has any suspicion of the growth on it, even the white mould. Clear the ground and take off an inch or two of its surface to ensure getting rid of every trace of the disease and its spores. In some cases an applicatiou of fresh limewash to the gurface of the walls has prevented further development. Vitriol his also been applied with good effect. If not too expensive, cover the ground with hot lime coocrete. Break holes through the cross wall, preferably ut the ends, as the air is apt to become stagnant in the corners. Put at least one air brick at the hack of the house, and above all thinge ses that the new timber used is not inferted with incipient dry rot before it is used.
Action of Steam in Locomotive, - A locomotive usually, though not always, has a pair of simple engines. These act as ordinary horizontal steam engines, steam being admitted and cut off according to the notching-up. lt then expauds to fill the cylinder, pushing the piston before it. Just before the end of the stroke the exhanst port opens and steam is exhnuated from one side of the piston up the chimpey, its pressure, which now is a back preasure ol resistance, falling and the piston being pushed by freeh steam in the opposite direction. The motion of the piston is transmitted through the piston and cunnecting rods to the crank, and thence to the wheels.

A Simple Level.-With the simple ievel illustrated the proper grade and levels for drains, ditches, roadways, concrete foors, foundations for houses, and for bridges, etc., can be laid out. In fact, all sorts of levelling can be easily and readily done with this instrument. Fig. 1 shows an elevation of the complete instrument; A is a builder's ordinary level fitted with 'a pair of Stanley's improved level sights BB. The level is placed on a table c that can be set level by means of ton thumbserews D and sighted in any direction. In the figures, E is a triangular block of hardwood to which are fastened the parallel plates C , and also the three legs by three screws G; H is a small brass eye screwed into the centre of the underside of the triangular block to suspend a plumb-bob if it should be required to place the instrument over a point. Fig. 2 is a section showing dimensions of the parallel plates. The top plate should be of two pieces glued and screwed together, cross-grained to prevent twisting. In the centre is fastened, by means of a brass screw, the ball J tor the ball-and-socket joint. In the centre of the top piece of the bottom-plate a hole is made to fit the ball to

Fig. 2

A Simple Level.

form the socket of the joint. Before glueing the two parts of the bottom-plate together, the triangular block of hardwood ($3 \frac{1}{2}$ in. long with 2 -in. sides) must be screwed to the bottom-piece on the under-side. The thumbscrews on the lower plate are equally spaced in. from the outer edge. On the under-side of the top-plate over the polnt of the thmmbscrews, and for them to bear against, small brass plates K K, Fig. 2, shonld be fixed. The levelling staff can be inade by painting the divisions on a strip of ${ }^{\text {星-in. board, or, if preferred, papers printed with }}$ the divisions can be obtained and pasted on the board. The instrument is set up and used in the same way as an ordinary dumpy level.

Cod Liver Oil IE mulsion.-To prepare an emalsion of cod liver oil, triturate together in a mortar 2 oz . of gum arabic and 3 oz . of water, then add 8 oz . of cod liver oil; elowly beat the whole together until a smooth cream is formed. Now dissolve 128 gr . of hypophosphite of lime and 96 gr . of hypophosphite of soda in 3 oz . of water, and beat this up with the other ingredients. To disguise the flavour of the oil, add 1 oz. of sugar syrup (1 part sugar to 1 part water) or glycerine, and a few drops of essence of almonds; mix these with the other ingredients as before.

Worling and Polishing Ebony.-Ebony mast be selected for colour, grain and texture first, as these vary very much; the cuts near the bark or outside surface often contain sand and other foreign substances which
dull the edges of the tools employed. Ebony may be turned in the lathe, using, for small work, two gouges, one for roughing out and the second for flnishing. The tool is held above the centre, a high speed is employed, and light euts are continually taken, the finisbing cut leaving a dead polish which only needs a handtul of turnings held against the work while revolving to brighten it. A piece of blanketing with a tew drops of linseed oil finishes the work. More elaborate forms of ebouy work are cut with a revolving drill in the lathe; and there is also an antomatic lathe for turning out handles in quantities. Ebony in the fiat is flret sawn with a flne circular saw into slabs or veneers. Further shaping may be done with a hand or power fret-saw. The finishing is done by fine rasping and filing, and the polishing is begun by scraping with a sharp knife or a proper scraping tool, always scraping in one direction; the polishing is completed by dollying off on a felt dolly driven by power, the dolly being kept moistened with linseed oil.

Making a Wringing Machine.-A simple wringing machine can be made in this manner. Obtain two indiarubber rollers mounted on spindles; remove the cogs, as these are not used. Also obtain two slotted plates as A (see sketch), made from Ih-1n. by $\frac{3}{\mathrm{~T}}$-in. iron; the slots in the plates must be of a size to fit easily on the spindles of the rollers, the distance apart being regulated by the dianeter of the rubber. Also make two

Making a Wringing Machine.
eprings from 1 -in. by ${ }^{3}$.in. steel, shaped something like 8. Two clips, as C, will also be wanted; the top part must be drilled to take a bolt D , a corresponding hole being made in the two springs. One leg of each of the clips must also be drilled and tapped, and a thumbserew fltted, as E . To fit the parts together, first place the two roller spindles in the slots in plates, then spriug on the impression springs, one on each end. Now measure the distance from centre to centre of the two springs, and drill a piece of flat iron so that it will fit between the springs and the clips, as shown at F ; this will keep the springs rigid sideways. The clips with thumbscrews are for fixing the machine to the washtub, and, being fixed by oue bolt only, will swivel round so as to be used at either angle. One of the roller spindles should be squared ol threaded for a, winch handle. All the iron. work must be well paiuted or given two grood conts of work must ol.
Bending and Canvassing Landau Panels. If nsiled flat across the boot-side, with the top edge rounded down, or overhung to form a bead in the neck, the panel should be bent and canvassed before fixing. This must be done very carefully, or the panel will split. To canvass a panel after it is bent, place it on a wide board, round side up, and drive in a draw-bore pin at each outside corver this will prevent the pauel saggiug in' the centre, which would split it. li the panels are boxed in fiush, canvass them after they are pinned in. Quarters and back panels should be canvassed a day or two before they are wanted; there is then less danger of breaking them when fitting them in the srooves. This only applies to panels with a slight single sweep; where there is a return or chair-back sweep they must be canvassed after they are in.

Noise in Hot-water Tank. It is sometimes the case that a hot-water apparatus worlss well until the water reaches the boiling point, when a rurnbliug sound at the tank is heard. This noise is merely the sound of the water boiling. The remedy is to regulate the boiler damper so that the water shall not hoil. When the noise occurs, it can be ailenced by drawing off some water at one of the hot-water taps. This canses cold water to flow into the tank and reduce the temperature. The fact that water

the first as small as possible at the tapered end of the mesh, the last two belng worked loosely at the broad end; the first atitch of the second row wlll then be nearly regular in size, and in the third row all will be even. But in this row, if the net was commenced on six meehes only, etitches must be added; to do this, work two meshes on each loop of the former row, or two on every other look, according to the shape of net required. 1n this way add meshes in any row where it is desired to increase the diameter. It is not often wished to decrease the diameter of a round net, but if required to do so, pick up two meshes on the needle at once and hitch together in one; bach time this is done one mesh leas will, of course, follow in the succeeding row.
Manufacture of Calcium Carbide. - Calcium carbide may be made by heating an intimate mixture of fnely divided coke or carbon and lime in an electric furnace, using a current of from 4,000 to 5,000 amperes. The furnace ised by Willson in America consists of an outer coating of fluebrick lined with carbon or graphite, a tap hole being placed near the bottom; the furnace is covered with carbon plates, through which passes a thick carbon rod reaching nearly to, but not touching, the bottom of the furnace; the carhon rod and the inner carbon layer are connected to the dynamo. $1,200 \mathrm{lb}$. of fine coaldust and $2,000 \mathrm{lb}$. of quicklime yield $2,000 \mathrm{lb}$. of carbide in twelve hours.
Centrifugal Pump. - Herewith are dimensioned drawings of a centrifugal pump designed to lift 150 gal . per minute at 20 ft . head. To enable the voluts to be correctly formed the cass is in two halves. To avoid end thrust and to ensure an even balance of the disc, the infiow takes place on each side, each inlet having a diameter of 3 in . Fig. 1 is a side elevation and Fig. 2 one half of the case showing the depth of the volute and digc with angle of vanes. The volute, to cotain a good flow, must increase evenly to its discharge. The discharge pipe ehould inerease in area to reduce the velocity considerably. The flange of the casing is lin. wide, drilled to take s-in.

has a tenclency to boil indicates either the use of a more powerrul boiler than the apparatus requires, or want of attention to the dimper. The latter is the more probable fault, causing the boiler to become overheated and fuel to be wasted.
Making a Found Net.-In netting a round net, the loop upon which the first meshes are made can be afterwards tied up tightly to form a bottom. Or the first meshes can be cut away, the short cut ends pulled out through the innsr bights of the second row (that is, the now inner row of whole meshes), and a gromnet worked if a circular hole is wanted; or the ends can be drawn together and tled with a separate piece of string. To preveut crowding of meshes at the bottom of a round bar it is usual to comnence with about six meshes for the first low, making
bolts. The diameter of the dlsc is 9 in., and is arranged for six vanes, having an angle of 80° at the circumference. The shaft is $\frac{7}{8}$ in. diameter, and the approxlmate speed of disc is 650 revolutions per minute. Fig. 3 is a section showing side inlets, disc, and brackets, and Fig. 4 is a section of half of the dlse showing dlmensions ot the vanes.
Glazing Clay Tobacco Pipes,-À simple lead glaze is generally used for clay tobacco pipes. The following may be taken as examples. (a) Lead oxide (litharge), 45 parte: sand, 35 parts ; common salt, 6 parts. (b) White lead, 53 parts ; Cornish stone or felspar, 16 parts ; whlte flint glass, 5 pertis. Tho glaze may be melted in a crucible, and the stems of the pipes (Which should have been previously burat) dipped in. For green colour, use 5 per cent. of oxide of copper; for red, 5 per cent. of red oxide of lion.

Polishing Turned Wood.-Soft woods may he turned so smooth in the lathe as to require no other polishing than that produced by a few fine turnings or shavings of the same wood applied while revolving in the lathe Mahogany, walnut, and some other woode may bs polished by the use of a composition made by dissolving by heat so much beeswax in spirit of turpentine that the mixture, when cold, shall be of about the thickness of honey. Or instead, dissolve 1 oz. of sandarach in pint of methylated spirit, and mix the solution gradually with loz. of beeswax in sufficient turps to make it into a paste. Apply with a woollen cloth whilst the work is still in motion, and polish with a soft linen rag or chamois leather. The work thus treated should have a highly varnished appearance. Hard woods may be readily turned very apmooth, and fine glasspaper will suffice to give them a very good surface; a little linseed oil may theu be rubbed on, and a portion of the turnings of the wood to be polished may then be held against the article while it revolves rapidly. By this means a fine gloss will be imparted.

Scentlng Powder.-To perfume a, powder with otto of roses, place it in a mixing machine, i.e. a revolving cylinder or harrel provided with ribs internally. Spray the scent into the powder and set the machine in motion until the scent has been disseminated through the whole. To disseminate the scent better, dissolve 1 part of the otto in 6 parts of spirit of wine, and $116 e$ the mixed essence in place of the pure oil.
Making Silver Mounts for Tobacco Pipes.-In making an ordinary pipe mount, a plate of silver has to be prepared to fit tightly round the two pieces

Fig. 1
be trued on the trihlet previously mentioned with 8 smooth-faced mallet. The work could be more easily done in a lathe, which would also be useful in the suhse. quent polishing. If the metal is so thin that the trible and mallet or hammer ale of little service, use a ribbed burnisher (Fig. 2), with which it is quite possible to rub the thinnest of collars true and smooth. The burnisher may be from 7 in . to 10 in . long, 1 in . wide, and $\frac{i_{1}}{10}$ in, thick, and can be mads from an old flat file. The ribs or ridges ehould he quite smooth, and should be ot the size shown in Fig. 2. When the mount is in shape, and fits the pipe, it will have to be smoothed and polished. Re move hammer marks, etc., by fling, and not by the use of glasspaper or emery-cloth; by the latter means the corners are rounded instead of heing left sharp. The next thing is to polish the mount. The principle underlying most polishing processes is a simple one. It is the application by friction of abrasive materials in stages of gradually increasing fineness. If that is understood, it will be an easy matter to make shift with materials that may be handy, though those mentioned here may be obtained in small quantities at oilshops and of dealsers obtained in small quantities at oilshops and of dealsers may be thin, and therefore likely to get out of shape, a piece of wood should be fitted to it, and this will both support it and allow it to be handled with comfort. First is used a stick of water-of-Ayr stone with water, a damp sponge being employed to remove the mud-like stonings as they are produced. This is followed by pumice powder and oil, and this by crocus and oil (or pumice powder and oil, and this by crocus and oil (or applied hy means of butts made by glueing strips of buff leather to pieces of wood. Next soitly brush the mount with damp whiting, and then wash it in hot soda and water to remove all the contained grease in the polishing materials. The final polish is given with rouge, applied by a buff at first, and then by the palm of the hand or the hall of the thumb. Wash off all rouge, and the

Fio. 2

MIaking Silver Mounts for Tobacco Pipes.
of the pipe to be joined by its means. The easiest way to obtain a pattern of this plate is by wrapping a piece of smooth paper round the place on which the monnt is to go, and very carefully cutting all the surplus away with a pair of scissors until one thickness of the paper is all round the pipe. If this is done carefully and due attention is paid to the straightness of the solder ing seam and of the ends, the silver can be cut to fit exactly. The plate must be fiattened, and then turned up into a tube quite free from bruises or kinks. For this is required a "triblet," which is a tapering piece of smooth round iron or steel; a bending block is also required: A mallet also may be necessary if the silver is thick; thin metal will come up hy the pressure of the hand almost, and may be worked with a pair of half round pliers in place of the block and mallet. With a knife or a scraper made from a three-square file, make the edges to be soldered together quite level and true with each other; see that no burr from the file is left on the metal when tying with wire. Should the mount be long, it is desirable to fils small nicks in the edges that form the seam a a (Fig. I), so that the solder may hold better; the seam will not be so likely then to open luring the subsequent operations. When fitted, the tube is tied with iron binding wire so that theedges remain in the proper position whilst soldering. Thin wire should be used, as thick wire on cooling and shrinking may bruise the work. The tying of the wire is not a difficult job, but with a very tapering mount means have to be taken to prevent the binding wire slipping down (see tig. 1). In soldering, which is the next process, brush the Fig. 1). In soldering, which is the next process, brush the have been scraped clean. The fiux is borax rubhed up in water, Lay some pallions (small pieces) of silver oolder along the seam, snd with a gentle heat from the blowpipe flame evaporate all moisture. Then, if the soluer has not been shifted, apply the full heat. When cold, pickle in a uixture of 1 part of sulphuric acid and 40 parts of water, and file off any pieces of unfiushed solder. The mount now is sure to be more or less out of shape, so it has to
mount is then ready for fixing on. It is important in using the rouge that the hands, rouge, and everything by which the mount is touched be quite free from grit. Jewellers' rouge is not that sold as face powder, but is peroxide of iron specially prepared. The best quality has a red colour having a decided purple tinge. Rouge varies in colour from the one mentioned to a deep red.
Ball Clay for White Enamel Body.-Ball clay used in the preparation of white enamel body may have a composition of Cornish stone, 40 parts; Cornish clay, 10 ; and blue clay, 20 . Or Cornish stone, 80 parts; Cornish clay, 20; blus clay, 40; and fiint, 20. Or Cornish stone, 100 parts; Cornish clay, 20 ; blue clay, 18; and flint, 40 . Or Uornish stone, 30 parts; Cornish clay, 10 ; blue clay, 17; and fint, 8 . The colour can be rendered bluish-white by the addition of a littla cohait blue. The non-fusible materials added to the glaze are barytes, bone ash, and oxide of tin; the latter is put into nearly all enamel glazes. The clays are mixed with excess of water, passed through a fine sieve, and then boiled down to a paste. Here are recipes for white glazes. White glass, 100 parts ; white sand, 50 ; salt, 40 ; litharge, 120 ; and oxide of tin, 60 . Or lead and tin ashes 44 parts; sand, 44; soda, 2; common salt, 8 ; and red lead, 8.

Pressure of Water,-A pressure is often stated as being equal to so many inches of water. If the height of water were $1 \frac{1}{2}$ in., the expression would mean a ples sure equal to that cansed by a column of water $l_{\text {s in }}$. high, or, in other words, the weight of such a column. On the square foot this will menn a pressure of 7.794 lh. ; on the square inch, iti of this, or " $05+1 \mathrm{l}$. The higher pressures are usually measured by a Bourdon or other pressure-gauge; the light pressures are ascertained by inserting a tuhe and measuring how many inches of water in the tube are required to balance the pressure -thus the term, a pressure equal to so many inches of water.

Cement for Jointing Hot-water Pipes.-Cement for making joints in hot-water pipes contaius 80 to 100 parte, by weight, of iron borings (which must be pounded if coarse), 2 parts of flour sulphur, and 1 part of powdered sal-ammoniac. The ingredlents must be well mixed and moistened with water, this being done from half an hour to two hours before use, accordiug to the weather. The joint is first camlked a little more than half'full of yarn, then finished with the prepared borings. The boringe must be caulked in carefully, or the socket will be split as the joint mets, for the borings expand a little in setting.

Paint Blistering on Front Door,-The blistering of paint is caussd by the presence of water either in the paint or in the substance to which the paint is applied, greatly aggravated by the action of the cuu upon the door. The old paint should be burned off with a spirit lamp, and the surface of the door well rubbed down with glasspaper. Then give a priming coat made of 21 b . of white lead, 3 oz. of red lead, and 3 oz. of yellow ochre (note that the red lead is a drier). Thin with one-third caw oil and two-thirds turpentiue. Finish in any desired colour, using as little oil as possible, or turpentine instead of oil. Varnish on a dry day with a good varnish. It is better not to buy the varnish from an oilshop. Clean all water out of the brush betore painting; a dirty brush-i.e. one with water in it-is often the cause of prush-i.e. one

Gilding and Silvering Leather. - Gum mastic in fine powder is frrst dusted over the surface to be gilded. An iron or brass tool bearing the design upon its face is then heated to the proper temperature and gently pressed on a piece of leaf gold, which adheres to the tool. On pressing the tool lightly to the surface to be gilded the mastic softens and to the surface to be guded the mastic sortens and retains the gold. The loose gold and pownersd leather are then brushed off. Gold feaf will adhere to leather tinfoil or silver leaf, place on the part of the leather to be covered some size or white of an egg, and atter pressing down the metal and drying, wash over with goldcolour lacquer. The following tools, etc., will be required. A long; thin knife, straight, and not too sharp; at wide thin brush, with camel hair about 3 in. broad; a pad for cutting the gold leaf, and a dabber, a small soft padl of cotton-wool enclosed in a square of musliu with oall of cotton-wool enclosed in a equare of musliu with wheels and stamps of the shapes required.
Cleaning Brónze Chandelier. - To clean a bronze chandelier that is corroded by damp, take the chandelier to pieces and carefully remove all pins, screws, and other iron parts. Then place about $\frac{t}{2} 1 \mathrm{lb}$. of potash in 1 gal. of water, and in this boil off all the old lacuuer. Allow the various parts to remain in the solution for about twenty-five minutes; then take them out and well wash in clean cold water. They should then be dipped in aquafortis, and allowed to remain sufficiently long to become bright. Each part should be held in the acid bath by meane of a copper wirs twisted round, or by holding with a small pair of brass tongs. Then well rinse in several changes of clean cold water, either by having several vessels or by well rinsing in either by having several vessels or by well rinsing in relacquer.
Making Warner Wheels.-Procure a pair of Warner stocks and set of spokes to match; these are supplied with the iron band mortised the exact size of the bottom part of the spoke just above the shoulder, which is sunk or housed in full $\frac{1}{3}$ in. from the face of the iron band, the shoulder of the spoke resting on the wood centre of the stock. To fit the spokes on the wood centre of the stock. To fit the spokes eased out to ensure a good fit to the tenon of the epoke. Before driving the spokes into the stock, clean off the front end of the stock quite level, and fix with a coach-screw, dead in the centre, a strip of wood called a set-stick; this must bs perfectly straight and paraliel, 2 in. wide by lin. thick, and a little longer than the spoke. Measure the distance from the front of a mortise to the set-stick. In the set-stick, at the height or the shoulder of the spoke, bore a hole, and insert a plece of cane or whalebone, keeping it as much shorter than tbe distance from the mortise at the bottom as the dish recuired in the wheel. In wheels ort this description a in. is anfficient when made, as they go more in tyreing. Drive all the spokes in, so that they touch the peg in the set-stick. To get the tongues all alike, plane a small piece of panel board to such a width that when held against the inside of the set-stick the opposite edge of the hoard comes on the spoke full zin. Mark all round by this. Now set off the size of the tongue with com. passes, and cut down, sawing the shoulders on the front and back only, pulling out the sides with the draw-knite. Tin large firms, the tongues are made with hollow augere,
which cut a square shoulder right round the spoke; but thts method is not so strong as that described above. In cutting in the felloes or rims, see that the joints are square and true, and bore the dowel holes paraliel with the face of the fellos; also bore all the holes for the tongues exact, as when they are bored through at difterent angles it is impossible to get a true face on a wheel; undue strain is also put on the tongues of the spokes, so that they soon break off short at the shoulder:

Darkening Coment for Pointing--For darkeulug cument to be used for pointing brickwork bricklayers use smithy ashes, which can be procured from any blacksmit h. The ashes should be ground or crushed to the size of sand (not crushed to powder) and used instead of sand, or sometimes a small quantity of sand is mixed with the cement and cinders. The wearing qualities of the cement are not improved by the use of cinders. Lampblack is occasionally used as a colouring agent, and when it is occasionaliy used as a colouring agent, and when it is lessened.
Setting Out the Sides for a Step Ladder.-In setting out the sides for a step ladder, first set up the vertical height $C B$ (Fig. 1) to a convenient scale, and divide for the number of steps required (the usual distances, as shown at F, Fig. 3, being from 7 in. to 9 in .).

Setting Out the Sides of a Step Ladder.
Next set off the eplay AB (Fig. 1). Joln A to C; thls will be the pitch of the sides. Draw a horizontal line aud set a bevel to this and the pitch line as shown at K (ing. 1). Now draw a horizontal line DE, then AE will be the distance apart of the treads measured along the edge of the strings (sides). Set a pair of compasses to this distance, and step them along as near as possible to the outer edge of the string und mark off with bevel as shown at Fig. 2. Hig. 3 shors the nsual section of steps which are often wedged into the housing of the string as Indicated at w. This would have to be allowed for as shown at 4, 5 (Fig. 2).
Brichs for Cupola of Furnace,-For lining cupolas for blast furnace or other cupreous slags, nothing is better than Dinas briciss unless it be ganlster bricks as made at Lowood ncar Shetheld. The ouly difference between the two is the quantity of sllica contained in each. A good Lowood brick has assayed out at the Iollowing proportions: Silica, 96.4 ; alumlna, 1 ; lime, $1 * 25$; sundry oxides, $1 * 35$; while a best Dinas brick from Wales assnyed out as follows: Silica, 9575 ; alumina, -4; lime. 3; sundry oxides, 85 . Ganister bricks do not, on cooling, crack so quickly as Dinas bricks, beoause Dlnas bricks, having a higher percentage of silloa, are practically infusible and unaffected by the great heat, The bricks, either Dinas or ganlster, should be set In tbe very thinnest of ganister cement, the usual plan being to dip the brick in very thin cement, and wheu the work is finished to slurry over the surface with thin cement.

Determining Discharge of Water through Pipe.The water velocity in feet per second corresponding to a given pressure cau be caloulated by multiplying the square root of the pressure in pounds per square inch by 12.19. The velocity being thus obtained from the effective pressure, multiply it by the area of the pipe in square feet and by 6.23 to determine the quantity discharged in gallons per second.
Lines on Picture Mounts.-There are several methods of placing gold lines on mounts for pictures. First make small pencil dots where the lines ars to end. If gold powder is used, make the lines with a strong solution of gum, and when this is "set" breathe gently on the lines, and dnst on the powder. White lines are made by means of white ink, a heary mixture of Chinese white. A common pen kept well charged will answer admirably as a means of applying the ink.
Putting Felloes on Wheels.-Herewith is an illustration of a device for pulling towards each other the spokes of cart and carriage wheels. This dispenses with the lever and other toola used in some methods of doing this work. Having fitted the spokes and holed the felloes to suit, tie the ends of about a yard of tough cord about in. in diameter to form a ring, which is slipped over two spokes, and then twist this with the handle of a hammer until the spokes come to position. Then by a piece of

Putting Felloes on Wheels.

lath, as shown in the figure, keep them up as long as required; by removing the hammer and undoing the running knot the appliance is ready for another pair.

Remoring Paint from Floor Boards. - Freshly slaked limewash, to each bucketful of which is added at least 2 lb . of common washing soda, makes a good puint remover. la should be applied by meane of commion fibre brushes-not bristles; several applications may be necessary to remove the paint. The latter should be removed by scraping when soft, then swilled off with plenty of clean water, and finally brushed over with common malt vinegar. It is doubttul whether, atter this treatment, the boards will be sutticiently clean to be lef't as white without bleachiug. For the latter, frequent applications of oxalic acid-2 oz. to 1 pt . of water-will generally suffice. Partially to remove the black so as to gain an old ork effect, try equal parts of turpentine ind methylated spirit. If this can be made hot with safety it has greater penetrating power. Liquid ammonia is also effective, but is best handled if diluted with an equal bulk of vater.

Willis's Odontograph.-The Odontograph, invented In 18:38 by Profescor Willic, has been used to dotermine the radii of arcs of circles that shall approximate to the epicyoloidal and hypocycloidal curves which should be used if perfect forms are wanted for the teeth of Fheels. The instrument consists of a scale and a table. The tirst may be set out as follows on a piece of cardboard about 14 in. high by 7h in. brosd. At the right-hand edge, and about 21 in. from the base, take a point. hrom this point divide the edge into lengins of in. and number the divisions $10,20,30$, etc, both above and below the point first marked, which should be numbered 0 . Then subdivide each tin. division into ten equal parts, and from the point first marked. (0) set off a line towards the base at an
angle of 75° with the vertical. The tables on the anstrument show the place ol the centres of the arcs of Hanks and faces ppon the scales for wheels with teeth numbering 12 to 15 , and for racks, the pitches varying numbering 12 to 153 and for racks, the pitches varying
fromlin. to 3 in . Other pitches nay be fonnd proportion. ately; thus, for a - in. pitch, talie out hall the tahle value for a pitch of liz in. To use the instrument, one half the pitch is marked along the pitch oircle of the wheel to be set out at each side of a radial line. From the two points thus found radial lines are set off. Then the sloping line of the instrument is placed so as to coincide with ons radial ling, with the edge of the ecale over the with ons radial ins, with the eage of the ectale Then consult the table of point on the pitch cilcle. Then consult the table or which varies with the pitch and the number of teeth, shows the point on the scale line above 0 at which the centre of the curve for the flank of the tooth is situated. Similarly for the centre of the tiace of the tooth set the sloping line on the other radial line with 0 on the pitch circle. Then the table shows the position of the centre on the scale measured downward from 0 .

How to Make an Enlarging Lantern.-Below are particulars on the construction of an enlarging lantern. Make a baseboard A, and to this attach the frame B of thres sides, with a circular opening in tront for a condenser at B^{i}. Above and below this opening fasten grooved rails F and G to taks the sliding negative frame. Joln up four mitred pieces to form a frame K, and make the lens-board P. Connect the two. With bellows. Bore a hole through K and P to take a brass rod M. Fasten K to F and G, and tix a turn-pin of stout wire at N to clamp the rod M. Fit up the negative frame

The Preparation of Kaolln,-Kaoliu or China clay is the basis of porcelain and many pottery clays, and is produced by the decomposition of felspar. Kaolin occurring in the positiou of the original felspar is called residual kaolin, and frequently it happens that this is carried away by the streams and deposited as sediment in a distaut locality, when it is known as transported ol sedimentary kaolin. The residual kaolin is likely to contain fragments of crystalline quartz, mica, and undecomposed spar, with smaller quantities of other minerals; while the transported kaolin is likely to con tain iron oxide, lime carbonate, and other impurities intimately diffused with it. The residual kaolin furnishes the purer giade, as its impurities may be washed out; whilst the impurities in the sedimentary kaolin are not of such a nature as to be washed out. The common method of mining kaolin in the United States is by means of vertical shafts 25 ft , or 30 ft . in diameter, liued with pieces of wood, each 3 in . by 10 in . or 12 in . by $24 \mathrm{in} .\mathrm{The} \mathrm{ends} \mathrm{are} \mathrm{bevelled}$, pieces are laid end to end around the sides of the vertical shaft they form a strong wall capable of resisting the great pressure from the clay. As the shaft is sunk, the walls are added to by building from below. Sometimes the clay is mined from open pits, and in a few intimes the clay is mined from open pits, and in a feen obtaiued from underground galleries stances it has been obtaiued from underground galleries
by using heavy timbers, but in most cases the shafts by using heavy timbers, but in most cases the shafts lined with wood are found to be the safest and most ecouomical method. The different methods of washing the same principle that of flotation. The material is thrown into water, and the particles of the clay, being finer and lighter than those of the impurities, remain longer in suspension; hence it is only necessary to increase the length of the troughs through which itis carried or to decrease the rate of flow, or both may be done, to get the required degree of fineness in the kaolin, and remove practically all the foreign ingredients. One method

Setting Out Frame for Wheelbarrow.
commonly employed is to feed the crude material with a current of water into an ordinary log washer; this consists of a horizontal beam from $10 \mathrm{ft}^{\prime}$. to 25 ft . or more in length, revolving in a horizontal, rectangular, or semicylindrical trough of about twice the diameter of the beam. Monnted on the heam are numerous short arms or knives which cut and stil up the lumps, and at the same time carry it slowly to the other end of the trough. The current of water carrying the clay passes from the log washer into a trough or a zigzag series of troughs. The washer into traversed by the current in the washing troughs and the rate of flow may be varied to suit the character of the material used and the grade of kaolin required. "Lhe greater portions of the coarse sand and the larger particles are dropped either in a log washer or close to it, and sand wheels are used to remove this and prevent the troughs from being clogged. The finer sand and the mica fiakes are deposited in the zigzag troughe, which are usnally about 700 ft . long; they are opened and the deposit is scraped out at intervals. the kaolin carried, in suspension by the water fiowing through this long zigzag channel is run into larger vats or settling tanks. From these, after a time, the clear water is drawn off and tbe mud is pumped into a filter press and equeezed by hydraulic pressure. The presses consist of a series of flat iron or wood irames, strung on a central iron pipe. Bags of heavy cloth are placed in the spaces between the frames and connected with the central pipe, which is connected with the pump. The cential pipe, which is connected with the pump. cither round or square, and so that they may dry, these are exposed in racks to the air for several weeks, or put on a Hoor or in a tunnel and heated by steam or hot air. The cheaper grades of clays ars not put through a filter press, being either dried in the settling tanks or transferred to a drying floor directly from the tanks. Another method of wasbing is to put the clay with water into vessels, where it is thoroughly disintegrated by means of plungers. It is stirred up into a slip which is run off through troughs to settling tanks, made preferably of cypress wood. The kaolin slip is carried thence into the other tanks, whence it is pumped into the filter presses. The clay is removed from the press to the drying floor, heated by exhaust steam. To ohtaln high grade kaolin, such as that used in making paper, it is usually easy to get rid of grit by
elutriation and settling in the washing troughs, vate, eto., iron being avoided by the proper selection of material.' The chief trouble is often the presence of almost microscopic plates of mica, which the washing process oiten fails to eliminate, and which have to be removed hy passing the wet muterial through a very fine silk mesh.

Cleaning a Varnished Map.-To remove dirt from a varnished map, rub the map with a damp cloth or sponge. Most of the dirt can probably he removed by placing the map on a table and rubbing etale bread-crumbs over it with the paims of the hands.

Painting Staircase hung with Wallpaper.-The course to be adopted ils painting a staircase hung with wallpaper is as follows. The first thing is to remove the paper with water containing a little soda, and to rub down the walls afterwards with pumice-stone and water. Then fill up with distemper paint, and, when dry, rub down with glasspaper. Give two good coats of size, one hot and thin, the other chilled, to stop suction, make good any defective parts, and again glasspaper down, Coat with colour, nearly all oil and very thin, and follow with. successive coats of paint until a satisfactory appearance is gained. Over distemper filling the first ooat should be oily; over woodwork it should be flat-that is to say, it shquid contain a comparatively large quantity of turps.
Setting Ont Frame for Wheelbarrow.-This is an easy method of setting out the frame for a wheelbarrow. Make a drawing of the plan of the framing, as ghown

at Figs. 2 and 3, to a large scale, or full size. Next set a hevel to the angle of the mortises and shoulders as shown at Fig. 3. Then the exact length of cross-bearers or rails can be taken direct from the drawing, and the shoulders can be set out with the bevel as shown at Fig. 1.

Painting Concrete Surfaces.-For painting concrete, four or five coats of paint should be applied, the first and second coate of white lead well thinned with oil, and the later coats mixed with equal quantities of tarpentine and oil. Every coat must he allowed to dry before the next is laid on; on no account should the concrete be painted before it is quite dry.

Measuring Land.-In ascertaining the contents of land, it is usual in measuring ou a sloping surface to make allowance for the difference between the sloping length and the true horizontal distance, the latter being the length for buying or selling and for plotting on paper, There are yarious instrumeuts and tables for giving this allowance, or it may be calculated thus: A fall of $5 \mathrm{ft}^{2}$. vertical in a length of 80 ft . on the slope would give a horizontal distance of $\sqrt{80^{2}-5^{2}}=79.84 \mathrm{ft}^{2}$. A fall of 10 ft . in 180 ft . would give a horizontal distance of $\sqrt{180^{2}-10^{2}}$ $=17972 \mathrm{ft}$. Usually, the measurements are taken with a chain of 66 ft . and an allowance per chain, according to the slope in degrees, is made by pulling the chain forward + liuk, or whatever the requisite allowance may be, beyond the arrow, and then shiftling the arrow forward.

Method of using Fnamel.-Patent enamels should be used with the same precautions that are adopted in the case of any other enamel. Enamelling ehould be done in a warm room, Get a clean flat ground on the work, give one coat of enamel, and do not retouch it. If the Hrgt coat is not satlsfactory, rub off the gloss, or flat it, because ouamel should never be put on a glossy ground; then give another coat. Enamelling should not be done when the weather is damp or foggy.

Polish for Mangle Rollers. - To make a polish for the rollers of mangles and wringers use 1 pt . of methylated spirit, 2 oz , of gum sandarach, 2 oz . of seed lac, 2 oz . of gum benzoin, and 2 oz . of best beerwax. Dissolve the wax by gentle heat in sufficient turpentine to make a thin paste, and add it to the above after the gums are dissolved and carefully strained. Mix well together, and apply with soft flanuel ol a wadding pad as used by polishers. If the mixture is too thin, or seems a long time in giving a good result, or is to he applied by means of a camel-hair brush instead of pads, add more seed lac.
Design for a Small Porch.-The addition of a porch roof over the door of a workshop or tool house may he made both useful and ornamental. Figs. 1 end 2 illustrate a design in which the porch roof is covered with imitation tiles cut out of oilcloth. This porch roof is suitable for fixing over a door 3 ft . wide. The framework is made of yellow or red pine, itin. square,
passing nails or screws throngh the vertical posts, the roof must be placed in situ so as to nave an equal overlap a.t each end, the loose tiles being temporarily removed for this purpose. The top edge of the roof can be neatly finished off by nailing on a strip of wood lin. wide, $\frac{t}{2}$ in. thick, bevelled on the front edge, and painted to match the tiles. If the upper edge of the roof is in comtact with a brick wall, it is advisable to flash the joiut with sheet lead or zinc; but if the eaves of another roof pass over the door this flashing is unnecessary.
Details of Mariner's Compass. - The compass bowl is suspended in gimbals in order to allow it to retain its horizontal position independently of tbe ship's motion. From the centre of the bottom of the bowl is a vertical steel-pointed pillar; the compass needle is fltted with a brass cap, in which is fixed an agate bearing that rests on the steel point. The compass card is divided on its edges into degrees, the degree circle occupying about f in. of the card edge; the

next circle contains the numerals of degrees marked from 0 at the north and south points to 90° at east and west. Thus the reading in degrees at sea is taken from the south point for the southern semicircle-e.g. what a surveyor Teads as 120° the helmsman reads S. $60^{\circ} \mathrm{E}$. The points, thirty-two in number, are as follows. North, N. by E., N.N.E., N.E. by N., N.E., N.E, by E., E.N.E., E. by N. ; Eant, E. by S., E.S.E., S.E. by E., S.E., S.E. by S., S.S.E., S. by E.; South, S. by W.; S.S.W., S.W. by S., S.'W.' S. W. by W.,'W.S.W.' W. by S. West, W. by N.' W.N.W., N.W. by'W., N.W., N.W. by N., N.N.W., N. by W. These letters are printed radially towards their respective positions at lif apart, which equals 1 pointthat is, $363^{\circ} \div 32$. The central portion of the card is decorated with a star to help in distinguishing the points at a glance. The card is cemented to the needle and adjusted to hang horizontally by dropping sealing-wax on the under side where required; the glass lid screws on to the bowl, which is of copper.

Reducing Paper to Pulp.-Boil the paper with a solution of caustic soda, using some sort of stirring or beating arrangement to break up the felted fibres. It should then be turned into a tank and washed with water until free from alkali. If a flexible material is desired, add some soap to the pulp and boil, then add alum solution until the goapy feel has been destroyed; this will produce an alumina goap which will bind the fibres.

Chrome Tanning. - A chrome tanning bath is made, according to an American patented process, in this manner, Twelve pounde of chromic acid are dissolved in 6 gal. of hydrochloric acid of a specific gravity of $1 \cdot 146 ; 50 \mathrm{lb}$. of chrome alum are diesolved iu about 20 gal. of water; thirdly, 75 lb . of washing soda are disbolved iu about 10 gal. of water. The soda solution is now slowly poured in to the chrome alnm solution until the result appears cloudy and a sparkling silver mist is seen on the surface, when water is added to make up the liquid to 44 gal. The solution is now rum into the chromic acid solution and the whole allowed to settle. A loper cent. solution of this liquid is used for the chrome bath (i.e. lt gal. of the liquid to $98 \frac{1}{g}$ gal. of water) for tanning, and the hides are hung in this. As the tanning proceeds, the strength of the bath is made up by more liquor to 4 or 5 per cent., and the temperature of the bath is kept at $80^{\circ} \mathrm{F}$. When the thickest parts of the ekius show a bluish-green colour, the tanning has proceeded far enough; the hides are then washed in water containing 1 oz . of borax in 20 gal . The time of tanning is for oheepskins abont one hour: goat-gkins about one and a half hours; calf-aking two to four hours; and heavier materials ten hours.

Arrangement of Tinmen's Workshop.-A Workshop of convenient size for four tinmen is shown hy the accompanying diagram, The benches B, made of beech-wood, should be firmly built, and secured to the floor by iron brackete. Racks for small tools could be placed on the wall at the back of each bench, and the pipes from the stoves scarried to the chimney over the forge F.

Plan of Tinmen's Workshop.
Hooks for carrying bundler of whre might be placed on the wall behind the rollers. The larger sheets of metal could be stood on their long ends in the racks L, M, and P_{b}, and the emaller plates in boxes on the top of the racks. The letter leferences notalrcady mentioned are as follow: A B, angle bender; AP, ash pan; CP, coke pan; H B, hollowing block; R, rollers; and T R, tool lack.
Paint for Mirror Back.-The silvered back of a mirror may be protected by applying two coats of a mixture of 1 lb , of red lead ground fine, 2 oz . of paper varnish, and $40 z$. of turpentine. Allow twenty-four honre to elapse before applying the second coat.
Dyeing Feathers.-Feathers are now dyed almost entirely whth coal tay or aniline coloure, these being very brilliant. Although most of them fade, some stand exposiure to light extremely well. Previous to dyeing, all feathers should be soaked in a hot bath containing a moderate quantlty of Castile soap,
 bonate of ammonia; these remove all grease and boften the feathers so that the dyes penetrate better. It is difhicult to adviee with regard to colours; experiment with the recipes that are given below. Cardinal : Boilllb. of ground cochincal in 1 gnl. of water, filter, and, while hot, steep the feathers for ono hour; remove, add to the bath $2 \frac{1}{\text { fl. oz. of tin solution, replace }}$ the feathers, and keep the bath hot for several hours. To prepare the tin eolntion, dissolve 80 z . of tin in $60 z$, of hydrochloric acid and 3 oz, of nitric ucid, For indigo, boil for hait an hour in a bath containing 40 oz alum, $20 z$. mrgol, and lifoz. extract of indigo ; run off half the bath,
add infusion of 60%, to 9 oz . logwood chips previously made, and redye at a lower temperature (122° F.). Madder might be tried alone; it ie, however, used principally in cotton dyeing, and the operation is a very complicated one. For salíron, use a tin mordant followed by an infusion of safilion. The latter sub. starice is much too expensive to use for commercial dyeing. Turmeric in powder must be dissolved in methylated spirit, and the solution filtered; the feathere are then dipped in, removed, and dried.
Preventing Steam Condenaing on Shop Windows.The chief cause of steam condensing on shop windows is insufficient ventilation. In constructing shop fronts provision should always be made for an iron ventilating provision ghould always be mad as at A (Fig. 1); also foi grating at the top of the eash as at An (2). The grating may be fitted with a hinged flap on the inside go that it can be closed when not required; the fanlight is hinged to the transom to fill inside on quadrante, or is titted with gearing. The sill of the aash is prepared for the

Preventing Steam Condensing on Shop Windows.
escape of condensed moisture (see D, Fig. 1); the bead which fixes the glass will intersect with the bead on the sill in the hollow, and from the outside a hole is bored and a zinc tube about $\frac{y}{y_{i}} \mathrm{in}$. diameter is inserted (see dotted lines) ; this will carry qway any water that may collect and prevent it running on to the show. board. Figs. 3 and 4 shom, open and closed respectively, a glass louvie ventilator for fixing on to the plate-glass in the sash; these ventilators may be effectually used when there is no ventilator at the top of the saeh.

Staining Tonquin Canes.-The hard, crusty surface of canes renders them practically impervious to water staine. A brown tome may be gained by scorching the caucs in a gas fiame-a gas-stove fiame for preference. Bamboo workers generally colour up the articles after they are made. This is done by mixing suitable pigmente, as vandyke brown, brown umber, or black, with French polish or spirit varnish thinned out with methylated spirit, a coat of clear varnish being applied alterwarde for finish. If the caner have been stored in a damp place to render them soft, try a stain made by mixing vandyke brown with American potash and hot water.

Rendering Wood Fireprosf.-There have been a great number of componnds or mixtures proposed for tireprooting wood, fabrics, and other inflammable materials. Among the best of thess may be mentioned ammonium chloride, ammonium phosphate, ammonium sulphate, alum, borax, horic acid, calcium ohloride, magnesium chloride, sodium silicate, sodium tungstate, stannous chloride, and aluminium hydroxide. Any of these may be applied in solutions of 5 to 10 per cent. strength, except the last; eluminium hydroxide is formed as an insoluble substance in the fibre by soaking first in aluminium sulphate solution and afterwards in ammonia. Alum is very often used, and by some sodium tungstate is considered the best proventive of fire. A good mixture is ammonium chloride 15 parts, buric acid 6 parts, borax 3 parts, and water 100 parts, beated to boiling, and the wogd or flbre plunged into it.
Flectrical Enginesr's Tool Chest.-The accompanylng drawings show the construction of a suitable tool chest for an electrical engineer. The sides, lid, and bottom should be made of weod about $\frac{9}{4}$ in. thick when

The lime should always be freshly burnt, as stale lime loses the power of setting firmly. for the very hest lime mortar, hydraulic lime should be used, stone or grey lime being used in cheaper mortars. Hydraulic limes should be finely ground, othervise they are liable to slake when they have beeu built in the work, and the swelling which ensues will crack and spoil the wall in which they have heen used. Also hydraulic lime mortars must he used immediately they are mads, as they set rapidly as compared with the stone or grey lime mortars. Chalk lime should never be used for building purposes, except in small sheds where cost prohibits ths eraploymeut of a better lime. Chalk limes must not be used in making mortar for dwelling-houses. All limes befors being mixed with sand should be thoroughly slaked. This is generadly done hy measuring out the required quantities of lime and sand, and forming with the sand a ring in which the lime is placed, water being added in sufficient quantities to slake the lime, and care being taken not to add more than is necessary. The slaking commences by the lime absorbing the water, and the swelling of its bulk, accompanied

finished; the trays can be of thinner wood, about tin. or $\frac{8}{8}$ in. finished size. In the isometric view, part of the top tray is shown cut away, and also the front of the box, so as to show mors clearly the construction of the interior.

Clock Striking too Quickly.-To prevent the striking train of a clock ruuning too fast, it is controlled by a "fly," which is a small fan fixed to the last pinion of the train. The fly should be sufficiently tight to turn when the pinion turns. If it is loose, the pinion is liable to run round quickly while the fly stands still and allow the clock to strike too rapidly. Therefore, seo that the fly is tight upon its pinion. If it is, and the clock still strikes too fast, try extending the and the clock still strikes too fast, try extending the to its edges.
Mixing and Preparing Mortars.-Often a wall has its strength estimated by the amonnt of power necessary to crush the bricks, instead of by the forces or influences that will render the mortar unfit for its purpose. The mortar should bs mads from the very best matorials that can bs obtained, as practically the strength of the mortar determines the strength of a brick structure.
hy hissing and giving off of steam: the purer the lime the more violent is the slaking process; hydraulic limes sometimes take hours to commence, while chalk limes start immediately. The sand is shovelled over the slaking lime, and the whole mass is left for a sufficient time, after which the lime and sand are thoroughly incorporated, making the required mortar. The sand used mast be free from all earthy material, pit sand being considered the best; if the sand does contain organic or clayey matter, it should be washed before use. The proportion of sand and lime used in forming mortar are stated on p. 89.
Recipe for Branding Ink.-To make a branding ink, saturate water with loz. of either gum tragacanth or gum arabic. Work up bone black into a stiff pasts with the gum solution, and incorporate with a small quantity of soluble Prussian blue or indigo; add a few drops of creosote, and press into boxes. Glycerins may be nsed in place of the gum solution, and makes a very nice ink. but it does not dry very quickly. Another method is thoroughly to work up equal parts of soluble Prussian blue and lampblsck or bone hlack with a little glycerine. Then make it into a paste of suitable stiff ness with solution of gum arabis.

Making Upholeterers' Pom-poma,-One way of makIng the pom-poms used by upholsterersis to lap a wood or cardboard washer with three or four thicknessen of fibres, which may be of silk, worsted, or cotton. Cut all the fibres at the outer edge of the ring with s pair of pointed scissors; this will releass the ring. Bind the tuft in the centre with flise silk twist, and trim the pom-poms to shape. Another method is to knock two smooth spikes into a board, say 1 ft . apart, wrap the materials round the spikes to the required thickness, and tie up every $1 \frac{1}{2} \mathrm{in}$. Cut off in the centre of each tie, which will make eight pom-poms. Flatten with a blow from a mallet or by pressure. For fine work a rough creel could be fitted, and ten to twenty of the strands wrapped at once. A vandyked edge could be given to the pom-poms by trimming with a mattress tuft punch.

Light Table for Bedroom.-Figs. I and 2 are end and front views respectively of a light table that might stand by the bedside for the convenience of an invalid. For the ends, procure four pieces of wood each 2 ft .6 in . long, and planed to $1 \frac{1}{2}$ in. by ${ }^{\frac{4}{4}} \mathrm{in}$. These are fixed permanently together in pairs with screws (not shown). Only two connecting bars are required, these being lit. $9 \frac{1}{4} \mathrm{in}$. long, planed to I in. by $\frac{\text { ing }}{3}$. Fix these to the ende as iu Fig. I. For the foundation of the top obtain a board about 2 ft . long, 1 ft . 3 in. wide, and $\frac{1}{2}$. thick, either in one piece or bv glueing two pieces together. This may be povered with oilcloth of the chequered Indian matting
half of the monld is made. This method obviates making au odd-side. Probably an iron moulding machine, similar to those used in wheel moulding, etc., would be an assistance, as the moulde could be more quickly made by using machine pressure. If using the above-named machine, the pattern plate, which bertes ats the parting plate, has half the pattern projecting from each side, as prepiously stated. The mould is formed in sand contained in two moulding boxes which are placed on the pattern plate, one over and one under. The sand is pressed within the moulding boxes by the action or rams, which serve also, upon the removal of the pattern plate, to eject the sand moulds from the boxes. The advantage of the machine is that moulde may be made in one-eighth the time used in hand moulding.

Preserving Clay Figures.-If the clay figures have been painted with ordinary oil paint it would be impossible to fire them, for the heat would immediately burn away the colours. Besides, the heat of an ordinary oven would bave little effoct on the clay except to dry it. To preserve modelled objects without casting. model them in plaster-ot-Paris. A little glue added to the water when gauging the plaster will prevent it setting, with the result that the plaster may be handled like clay. Cream of tartar will also retard the setting properties of plaster. When quite bard, the modelled figure may be dipped in melted paraffin wax, so

Light Table for Bedroom.
pattern, which is easily washed, and which may be fixed down with thin grlue. Fig. 3 shows how the bars ou the under side are arranged. They are all of 1 -in. by $\frac{2}{2}$-in. under side are arranged. They are all of lin. by t-in. material. First glue and sclew on those marked A, B, and
C (Fig. 3), aud then by long screws fix those marked Dand E to the tops of the pieces forming the ende, shown by black rectangular patches. Now place the top in position and glue securely to the bars D and E, and screw from the under side. Run a piece of stop bead I_{4}^{2} in. by ${ }_{3} \mathrm{in}$. round the top and mitre it at the corners. This gives a good finish and prevents anything sliding off the table. Two coats of blue enamel paint may be given to the article; or, if made in hardwood, it might be polished.

Stump Moulding. - The term stump moulding is generally applied to ironfounding, in which parts of cast-iron are added to other castings or to wroughtiron work, as in bedstead work, where the cast-inon knuckles are cast on the anglefron forming the sideotays. This operation is done in the same way as ordinary founding, by placing the part to be innerted In the flmished mould and pouring the metal on it. In brassfounding the term denotes the method used in cocknfourding known as plate casting. In this method the patterns are epecinlly made and fixed on a metal plate in a frame, which is leversible. Instead of the moulding tub, use brackets on the wall or otber stand in the ghop. The mould is made to one side filst by applylng the peg.side and making the mould in the ordinary manner. The peg-side is removed, the plate frame is reversed. a holc-side is put on, and the other
that it becomes susceptible of a high polish, and by the addition of certain pigments to the wax a colour may be imparted to the figure. For instance, a little yellow ochre will give the appearance of old ivory. Drapery may be represented by dipping strips of cloth in the plaster and arranging them oll the figure. To judge the amount of size water to be used when gauging the plaster, dissolve some good glue in water aud measure a certain quantity of this with a certain quantity of water. With the mixture gauge a small quantity of plaster to discover how long the mixture takes to set. Small clay models, if rarnished, may we preserved for an indefnite time, hut, being simply dry clay and not haviug beem burnt, they are easily broken.
Colouring GoId Articles. - Gold alloys of not less quality than 15 carat may be made to asenme the colour of fine gold by carefully bolling them in a mixture of nitrute of potash 15 oz, table sult $7 \mathrm{oz} .$, alum $7 \mathrm{oz} .$, and spirit of salts Ioz." The work must be previously annealed and boiled out in aquafortis pickle, and wired with platinum wire. It nust only be exposed to the colouring mixture for flve minutes at a time, and well rinsed in boiling water between each opsration. If 18 -carat gold alloys are employed, the colouriug mixture may consist of I or. more of each of the above ingredients, omitting entrrely the sphrit of salte, and making the other powdere into a paste with hot water. In all cases it is advisable to thin the colouring mixture with hot water iss the process of colouring prograsses, so as to avoid overdoing the work.

Making Red Stencil Tnk, - Below are instructions on making a red stencil ink for marking boxes, etc. Get 3 lb . of pure pipeclay (not a mixture of pipeclay and whiting), and crush or scrape into a fine powder. Make a stiff mixture of Indian red in water, scrape a few shreds of soap into the lndian red, and mix well. Now gradually add the pipeclay until the mixture is of the consistency of putty. Then make it into cakes, and dry with gentle heat for use.

Determining Diameter and Pitch of Rivets.For eingle riveting up to l-in. plates the dinmeter of the rivet may equal one and one-fifth times the square root of the thickness of the plate, the rivet hole being one-twelfth larger. The pitch may equal 1.09 in. pins the diameter of the rivet hole. For a sin. plate the rivet by this rule would be $l_{1 / 2}^{1}$ in. in diameter and the pitch about $2{ }^{3} \mathrm{in}$.

Baker's Steam-heated Oven, - The accompanying sketch shows the pirinciple of improved decker ovens, heated by steam, for haking bread. lt should not be taken as a working drawing, as the erection of such ovens must not be undertaken without previous experience, or working to a maker's particulars. The ovens are heated by a row of tubes running trom back to front, the hack ends starting from the furnace Hue as shown, whence they slope upwards. The tubes are each separate and have their ends welded up, but previous to being closed they are about one-fifth filled
effects upou the foil. In say a landscape, the figures, sun, and water may be covered with toil, whilst the other portions of the landscape may be executed in orls, and should be suggestive rather than detailed. When dry, wash with water containiug a very little soda, and finish by varnishing.
Malsing Wrought-iron Cone.-Below is explained how to make from $\frac{x}{8}$-in. thick plates a wrought-iron cone of a rather pronounced slant. The lath being so great, the fiange may be thrown alf, and the seatiug at the small end of the cone worked in after the cone has been bent to shape and the seams made. To cut the pattern for a coue made in this manner, fir'st draw an elevation of a section through the centre as A BCD. Produce the sides of the cous, and make the length to $A^{\prime} B^{\prime}$ equal to the length necessary for the fange, and also make the length to 0^{\prime} equal to the length to be worked in to form the seating. Where the lines produced intersect at 0 is the apex of the cone. Use this as centre, and with the radius o A^{\prime} draw an arc of a circle. centre, and with the radins o A^{\prime} draw an arc of a circle.
Now divide the quarter circle $O^{\prime} \mathcal{B}^{\prime} \mathrm{E}$ (using $\mathrm{O}^{\prime} \mathrm{B}^{\prime}$ as radius) into any convenient number of equal parts, and set of a corresponding number of similar divisions on the

Baker's Steam-heated Oven.
mith water. The sloping position of the tubes causes the water to come where the heat is felt, with the result theit the tubes get quickly filled with high-temperature steam. It will be noticed that the furnace comes at the rear of what may be considered the front of the ovens, and all stoking is done away from where the preparation and baking ale done.

Chinese Lacquer Worls.-The red gold and pale Fellow effects seen on Chinese lacquered cabinets, etc. are produced by the aid of lead, tin, or silver foil laid upon a smooth surface, and coated with various gum varnishes. Very effective panels may be made upon this principle, and these may be utilised in the construction of screens, cabinets, etc. When sheet metal is used it, should be perfectly free from marks of any kind, and should be highly polished. If wood is employed it must be planed very flat and then emoothed with fine glasspaper, being afterwards sized and primed with two coats of white lead and yellow ochre mixed with drying oil and a little oil size ; rub down each coat with pumice powder and water. Next coat with flat black and rub down, first with finest sandpaper, then with a dry cloth, and finally with the palm of the hand, taking great care that particles of dust do not remain. Now give an even coat of a mixture of 2 parts of black japan and 1 part of gold size, and after rubbing down, when dry, with pumice powder and water the panel is ready for the silver leaf. The portions to be treated with foil are then coated with gold size to which has been added a small proportion of linseed oil, and when these parts are of the proper "tackiness" the leaf or foil is laid on, as in gildiag. When dry and the surplus metal removed, the enbjects are toned, shaded, and tinted; for the darker shades, di zgon'e blood mixed with thrpentine is used; gamboge torma the lighter shades. All the transparent oilcolours, as used by artiste, may also be used for various
curve of the pattern, as A'l. Now take the distance $A^{\prime} 1$

Abstract

How to Clean Engravings.-The following method of cleaning engrevings has been found effective whenever dirt and faint stains were to be removed, though probably it is not so efficient as the chloride of lime process (described on p. 206) in dealing with stains of long standing. The specimen to be cleaned ehould, it possible, first be detached from its mount. Lay it facs upwards on a clean, smooth board in the sink, or similar place, and sprinkle it with ordinary salt till thinly covered. Then take a lewon, cut it, and squeeze the juice over the eugraving so as to dissolve the greater proportion of the salt. Then raiee one end of the board to slant at an angle of about 25°, and flood it with nearly boiling water until all the salt and lemon juice are wrshed away. Drying must be allowed to proceed spontaneously
Transferring Design to a Saucer.-If it is wished merely to fit the design to the concave face of the saucer, to be painted over by hand afterwards, fold up the to be painted over is desired to transfer as shown at Fig. 1 in such a manner as to fit the curved surface.
colours composing the design there lis certain amount of oil, which stains the biscuit ware; this oil has to be burned off before the glaze is applied. This is done by placing the ware in a heated kiln. When the oily matter has been expelled, the sancer is dipped into the liquid laze, which is a solution of borax glass contnining lead salts and silica. The saucer will be dry in about five minutes, when it looks as if it had been whitewashed, the deslgn being completely obliterated. The saucer is now put in an earthenware sagger, or crucible, and heated to a white heat for sixteen hours in the kill, during which period the glaze has fused and turned into t transparent glass through which the design is visible. The saucer is now finished.
Polishing Ebony Mirror Frame.-Unlese the ebony is of a particularly good quality there will be a brown or greenish tinge that should be overcome by wiping the frame with a good quality ebony stain, which can be bought ready made. The frame may then be finished by polishing with white or transparent polish. Or a combined ebony stain and polish mav be used.

and adapt the drawing to these folds. Fig. 2 shows the drawing mranged to suit the folds. Manufacturers, however, adopt a different method. Fig. 3 shows the pattern repeated thres times round the sircle. It will be noticed that the desigu does not entirely fill the circle, but that fa small blank space lias been left. In the necessary folding of the draw ing to fit a circular concave surface the diameter of the circle on which the design is drawn must be considerably larger than that of the saucer-that is to say, ln a saucer of 6-in. diameter, it will be necessary to draw the design on, say, a 7 -in. circle. The spaces marked +++ in Fig. 3 are left vacant, so thet there may be es $+{ }^{+}+$in Fig. 3 are left vacant, so that there may be as pattern on to the saucer. Fig. 4, shows the appearance of the laper containing the design when stuck on the saucer. The following is the process employed in producing these designs. When a design has been drawn, the engraver cuts it out on a copper plate, making the incisions deeper wheré a darker shode is required. On to this engraved plate paint is rubbed to flll the lines, all supertluous colour betng carefully cleaned off. A sheet of thin tissue pajer is laid over the plate and pressed into it by means of an iron roller covered by three or toul wrappings of felt. The plint is then eut out with scissors, laid round the saucer, and worked into place with a dabber made ot rolled flannel. The transter is left on the saucer, which is in the "biscuit," or halffired, state, for half an hour or fo, when the paper is washed off, leaving the design on the saucer. In the

This is mede by mixing with the polish sufficient ges black or Frankfort black to gain the tone desired. An aniline spirit dye is used in most good shops, for the reason that it does not thicken the polish. In any case the best results are gained if the black i's used thinly in the preliminary stages, and the final bodying up and finishing out are done with transparent polish. As ebony is f close-grained wood, no grain filler is required, and only a small quantity of polish. To apply the polish use wadding pads, slightly moistened with linseed oil.
Removing Varnish from Oak Carving.-To remove varnlsh from an oak carving a solution made as follows is used. Put equal purts of turpentine and methylated spirit into a stone jar and place the latter in a saucepan partly flled with water-glue-pot fashion. Put this in an oven and bring up to blood heat; then brush the solution over the carvinge. As the varaish softens take it off with a nall brush. When all the variish has been removed, apply several applications of oxalic acid-2oz. to 1 pt . of water. Swill off with-plenty of clean water, and flnally brush over with common malt vinegar to kill any trace of acid.
Paint for Leather Trunks.-To paint leather black, flrst coat it with a solution of alum 1 oz., and water 1 pt . The next cost should consist of drop black $\frac{1}{2} \mathrm{lb}$., ground in turpe, and terebine $\frac{1}{2}$ oz. Thin with turph. When this is dry glve a final coat or drop black and Coburg varnish, mixed to the consistency of cream. For white paint use zinc white instend of black, and bugnr of lead, ground fine, lnstead of terebine.

How to Fix Marqueterie Transfers,-Marqueterie transfers as used by French polishers for decorating framiture are fixed as described helow. The design, furniture are fixed as described helow it, The design, the sheet, and is laid, face upwards, on a sheet of newspaper. A thin, even coat of good quality spirit varnish is then applied with a camel-hair brush and allowed to stand for a few seconds till the varnish hecomes sticky. The design is then laid in the desired position, face downwards, and pressed well down so that all parta thoroughly adhere. After an interval of five minutes the back of the paper is damped with warm water and pressed down again. The paper is then eaturated with water and allowed to stand for a few minutes, after which the paper should glide off, all surplus moisture being taken up with a clean moist washleather. The work is then set aside in a warm place. The best results are gained if the design is fixed fifter the work is merely bodied up. The subsequent hodying up and finishing will enable a fair body of polish to be applied, thus gaining solidity and appearance of inlay. To ensure accurate fixing of the design, tally marks should he made at its chief points, corresponding marks being made on the article to be decorated.

Crucible Steel Furnace.-The sketch herewith gives a sectional visw of a crucible steel furnace. The melting chamber A should be 3 ft . high from the grate bars B; oval in shape, 26 in . by 19 in ., and lined with 6 -in.
lan in diameter; mark off twelve equal parts on the edge, and from these draw tangents to the guide clrcle. With a sharp chisel mark in the lines to about \& in. back from the rim, and mark lines across the rim join. ing the marking on both sides. Saw these lines in about in. with a sharp hack-saw, for receiving the cups. From ridin. sheet brass stamp the cups with the punch (Fig. 3) and trim off with shears. Then place the cups in position, tin the joints with a soldering bolt, and place the cup disc on a fire to sweat. Castings for the place the cup disc on a fire to sweat. Castings fir the

Crucible Steel Furnace.
ganister. The flue E leads from the melting chamher A into the chimney stack F. The cold-air flue M leading from the cellar D is used to regulate the draught. The chimney stack F, lined with firebrick, should be from 35 ft . to 40 ft . high. K is the cover of the melting chamber; Ithe shelves for drying crucibles; N the chamber hehind the stack for drying crucibles, storing charcoal, etc.; and n , 2 the annealing orens.
Recipe for Saddle Soap.-To make saddle soap, gently heat over a slow fire, constantly triturating till thoroughly incorporated, 1 lh , of heeswax, 8 oz . of soit soap, 2 oz . of linseed oil, and t pint of oil of turpentine; put in pots or tins. Rub a'very little well into the saddle and polish with a soft brush.
Small-power Water Motor, - The motor shown in plan by Fig. 1 and in elevation by Fig. 2 will develop $\frac{2}{3}$ brake-borse-power with a fall of 30 ft . through a $2-1 n$. pipe, and $\frac{7}{\text { t }}$ brake-horse-power with a fall of 50 ft ., the speeds being about 3,000 and 5,000 revolutions per minute. To make the wheel, get a brass casting A (Fig. 1) to be turned to $2 \frac{3}{6} \mathrm{in}$. diam. by $\frac{1}{2}$ in. wide. Fix centres in the disc and scribe a guide circle

Fig. 1

Smallepower Water Motor

making the groove in the centre an exact fit for the soin. sheet metal, of which the casing is constructed Obtain a casting for the gland to which the nozzle is fitted, s.nd turn this inside an exact fit for the nozzle From $\frac{k}{8}$-in. sheet iron cut out and hore the two flanges 0 (Fig. 1). The lower half of the casing is worked from $\frac{3}{8 \pi}$-in. sheet ircn (blued). First cut out two pleces to shape B (Fig. 2). At each top edge file out a central semicircle exactly the diameter for the hushes. From the same metal cut two strips $l_{1}{ }^{s}$ in. broad and 6 in . $10 n g$, and bend metal cut two strips 1. in. Fix the whole of these parts by twisting thin wire round them and solder all together. The top cover is next made in the same way. The nozzle gland is then carefully fitted and soldered or brazed on. As a caution, do not make the nozzle of a high-speed motor more thau $\frac{2}{6}$-in. bore at the opening, but make it larger for a slower speed.

Press for Mangle Shafts.-The accompanying druwings show, with scale, a machine for pressing shafts in mangle rollers to be driven by stean. Two belts, one open and the other crossed, dripe the pulleys $\mathrm{F}, \mathrm{L}, \mathrm{F}$, and L^{\prime}, and hy means of the striking gears P and Q the pinion A can bs made to revolve in either direction, or the straps can be moved to the loose pulleys. As will be seen, the pinion drives the tooth wheel B, and the latter, being keyed on the same shait as the pinion c, the tooth wheel \mathbf{D} is driven in either direction as required. \mathbf{D} has a thread cut in its boss aud works the screw E, causing it to move back wards or forwards through the thrust block X. The plain parts of the screw shaft at F and G are for the purpose of preventing accident in the erent of the striking gear not being moved quickly enough. Thus, when the tooth wheel D gets on the plain parts it will simply revolve without causing any movement of the screw; then the screw can be turned into the thread of D by the hand where H. It will only be at such times as these that the screw shaft will revolve, as the hand wheel H will be locked to the driviag head K as indicated. The driving hesd K works between the planed sides M sind N. The fixed head sit 0 is simply for holding the mangle shaft S in position and for adjusting the mangle roller Z; this latter is held in position by means of the four cramps 1,2,3, and 4 as shown. The
on the rubber at this stage. When a fair body has been obtained on oneside, turn the coffin over and do the other, working the head and foot as well. When the second side has about es much polifh as the first, turn back to the first side, and with very fine worn giasspaper remove any small lumps. If the filling is well done the grain hardly ever rises, except on damp or coarse-grained stuff; therefore the old plan of papering half the polish off to thet the grain down is apoided by this method. Now guits body up a sids-that is, as well as time and price quits body up a sids-that is, ss well as time and price reasonably warm, with a few coats of very thin glaze. When this side is done satisfactorily, treat the other in the same manner, finishing the ends with the second side. The lid must be well bodied in and its mouldings glazed off, but the top should be spirited out. When a good body has been applied, wet the rubber with half polish, a sprinkling of spirit, and a little oil so that it works freely; continus to reduce the polish and oil, and in. crease the spirit, until a fair shine is obtained with the rubher marks showing in oil. Sprinkle a few drope of spirit on a rubber that has not been used for polish, and lay two or thres thicknesses of clesn rag over the face; rub this on the work until dry, then wet it again and repeat the process; aifter three or four such rubhers tho surface should be well cleaned off and should shine well.

backthrust block R , with its slides T, T, can be moved liackwards or forwards by means of the hand wheel W and gerew working through the block V, and when udjusted can be firmly held to the bed by the two bolts and nuts showu at 5 and 6 . The bed should be bolted to iron supports or other suitable foundation by bolts and nuts shown at $7,8,9,10,11$, snd 12.
How to Polish a Coffin.-The following is a good method of polishing a coffin. Coat with linseed oil, and fill in with a paste of best Paris white (not piaster-of-Paris) and turpentine, coloured with yellow ochre for pitch-pine and oak, and with a mixture of brown umber and ochre for elm. A very smsll quantity of polish is mixed with this to assist it in setting. Rub the filling well in across the grain with a piece of coarse rag or a wisp of long tow, and then rub off all supertuous filler and leave it smooth and clean. The whole body of the coffin, including the lid, should be so treated, and should then be allowed to stand as long as is convenient-the longer the better. Another good filler is plaster-of-Paris, oil, and polish, but it is not 60 easily used, as it sets quickly; with this filler do only a very little at a time, or it will set and get muddy before it can be rubbed off. The polishing may be commenced gis soon as the work is all filled in; start with the side first filled in. Make a big rubber of wadding, wet it well with polish, and cover with a piece of rag; put a little oil on with the finger and lay the polish on with long, straight strokes, not attempting to work it, , but tsking care not to leave any wet stresks. After two or three rubbers of polish have been applied begin to work it, but unless the coffin is panelled do not try circular work, but use aweeping strokes 3 ft . or 4 ft . long with a mort of twist at each end: do not acrub backward and forward over the same spoi. Do not be afraid to ure oil

If time presses, wipe over with a folded rag on which spirit, has been sprinkled to clear the grease off more quickly, but, of course, not so well as by thoronghly spiriting out. If too cold to glaze, the body of the wood must be spirited out similsily, hut the glaze saves time if it can be used. Always use a large rubber-one with a fince as large sis the palm of the hand-and do not let it get sodden ; but, if necessary, pull it to pieces and tighten it up. For a panelled coffin, the above plan must be modified a little; a smalier rubber must be used, and great care must be taken to get into all the coruers; the glaze finish is su'table for this aleo. Note the time spent on different portions of the work; a lair division would be to allow about two-thirds of time to the body and onethird, or rather more, to the lid, and take care that about equal time is given to both sides, as upon this a satisequal time is given to both sides, as upon this side satismuch time may be allowed for the job, and then divide it up carelully and stick to it, or one part may look fer better than another, a result cer'tainly to be avoided.

Renovating Fur Necklet. - The only practicable method of renovating a fur necklet that is moth-eaten in parts is to cut away the latter. Open the neeklet, remove the padding or lining, aud place the slin, fur side down, upon a table. Cut out the spoilt part with a sharp knife on the skin side, taklng care to cut only through the skin and not the fur below. Now cut to the required size a piece of ekin of the same kind as that just remored, place it in position, and sew it in, being carreful not to catch in the fur. If a epare plece of the skiu is not to hand, sufficient must be cut from one end of the necklet, thue shortening it. A third alternative is to make the necklet of a dilierent shape, neatiy join ing the small pisces cut off ; probably there will then bu sufficient to replace the spoilt parts.

Renovating Silvered Glass.-To renorate aglass in one corner of which the silvering has assumed a frosted appearance, or has bscome spotted by damp, proceed in this manner. Cut out the affected silvering, first mark lng it off squarely with a straightedge and chisel; lay the glase flat on its face and apply either of the silvering solntions given on p. 103. Mix equal parts of (a) and (b), and pour upon the clear glass, allowing the solution to flow evenly over the bare place. Distilled water should be used, and the solutions should be kept in black bottles.

Solubie Prussian Blue used in Inks.-In many ink recipes solubla Prussian blue, which is a preparation of Prussian blue and ferrocyanide of potassium, is mentioned. This soluble blue is made thus. With a pestde and mortar thoroughly incorporate a quantity of ordinary Prussian blue with half its quantity of ferrocyanide of potassium. The mixture is then put Into distilled water and thoroughly shaken from time to time; then it is alloped to stand and the sediment tiltered off

Folding Stand for Baby's Cradle.-Figs. 1 and 2 are end and Gide views respectively of a folding stand for a baby's cradle. To make the stand, procure four pieces of sound pine, ash, or oak, as preferred, 2 ft .7 in long, and plane them to $\frac{1}{2}$ in. by $\frac{{ }_{4}}{4}$ in. These form the ends; set them out as shown at Fig. 3. Four pieces 1 ft . 11 in . long
worked now as they were 2,000 years ago. The Abruker mine has been sunk about 200 ft . following the piteh of the vein, and all the mica and refuse are raised and carried away by natives. No machinery of any kind is used; drills and hammers are the only tools employed. The refuse and the mica are placed in baskets which each hold about 10 lb ., and which are passed up from hand to hand by women who stand in aline on a ladder. When the top is reached the baskets are dumped and returned down the ladder in the same manner, but $b y$ another line of women. The crude mica is first roughly trimmed and then sorted into different grades, according to sizes and qualities. It is then split up, and the size to which it is to be sheared is marked upon it. After shearing, the mica. is cleaned, weighed, and packed ready for trangport. At the Abruker mine the packages of mica are loaded in to carts drawn by bullocks, and carried in this way to seaports hundreds of miles away; the bullocks travel at the rate of about ten miles a day. There are many kinds of mica, prominent among which are Muscovite, the common potash mica; paragonite, an analogous soda variety ; biotite, a magnesia mica having a black or dark green colour; phlogopite, a bronze-coloured mica fonnd in crystalline limestone and serpentine rocks; lepidomelane, a black mica containing much iron ; and lepidolite. the red-rose or lilac lithia mica. Mica has niany uses, its chief perhaps being in the electrical indnstry. The fact that mica is elastic and fireproof, and that its insulating

wnd planed to I in. by $\frac{5}{8}$ in. will now be required for the connecting bars, the ends of which are seen in Fig. 1. The two pieces forming each end are pivoted together by a brass bolt $2 \frac{1}{2}$ in. long, with wing nut; the bars are fixed by light screws litin. long. To make the bars on which the cradle rests, heat one end of a piece of bar iron and form a ring on a stout screw eye. Bend the other end at right angles to fit into a corresponding eye, as seen in Fir. 1: When these bars are attached the stand is complete.

Red Oll nsed in French Polishing.-In making the red oil used in French polishing, the alkanet root is merely broken into small pieces and the oil poured over. If well stirred up a reddish tinge will at once be imparted; leaving the root in the oil overnight will yield a stronger red. The red oil is usually kept in a large jar, more oil or root being added as required. The addition of a little turpentine assists in fetching out the colour if the root is very dry.

Mica and its Uses.-Mica is an anhydrous silicate of calcium and aluminium, and crystallises in a laminated mass, easily split along its axis; it can be subdivided down to $\frac{\pi}{r o n}$ in. in thicinness. Deposits of this material are found in various parts of the world. The occurrences of pockets in which mica is found cannot be predicted by the geological formation of the locality. The best quality mica is obtained from India, whence has been furnished the bulk of the world' 6 supply for centuries. These mines, the principal of which is the Abruliel mine, are in the interior of the country, remote from clvilisation, and extremely inaccessible. Here the deposits are
qualities are unaffected by time, has made it peculiarly* adapted for use with electrical machinery. It has been used for vibrating plates in the photophone, and for diaphragms in telephone construction. In commutator work mica is almost indispensable, as also is the case in hundreds of other electrical machines and instruments. For the purpose of armature insulation in high-tension alternating machines mica is especially adapted: unfortunately the expense of the mineral has to a great extent jurohibited its use. Mica waste has oneor two electrical uses. Insulators are made by splitting up the mica into laminæ and solidifying these thin sheets at a hirn temperatnre and under a heavy pressure. It is claimed that this treatment increases the insulating properties of the mica. Mica replaces glass in positions exposed to mneh heat, is used in wallpaper varuish, and in packings for machinery; it has many other applications,
Making Glass Beads.-In making small glass beads, a portion of melted glass, coloured or uncoloured, is taken from the crucible upon the end of a long iron blowpipe; the melted glass is then blown into a thick bulb, to which another iron is attached exactly opposite to the first. The bulb is drawn out into a long narrow tube by two men, who pull the two pipes asunder. The narrow tube, many feet in length, is laid upon supporcs. The tube is cut into very short lengths to forin the beads. If the beads are to he rounded they are either heated in an iron vessel kept in constant motion to prevent the beads adhering to each other while the edges just fuse, or they are revolved in a vessel with water, when the edges are rounded by mutual at.r.tiou.

Elackening of Stlver Goods by Gas.-The coal gas used for lighting will sometimes cause silver and plated goods kept near the gas burners to hecome discolourad. This blackeuing is causad by the presence of aulpliuretted hydrogen in the gas. No special form of hurner will prevent the blackening of the silver if the gas is impure, though the use of an incandescent burner whll lespen the evil. hecause asmaller quantity of gas will ba consumed, if the sulphuretted hydrogen canuot be removed from the gas before it is sent out l'oni the gas. works, a small puritier filled with slaked lime, through which the gas mnst be paased, should be fixed on the premises. This lime would remove the sulphuretted hydrogen. Tha spent lims ahould be removed from time to time, and frash lime put in its place.

Brass Money Box.-To make a brasa aavinga bank or money box (Fig. 1), cut a piece of sheet brass llitin. long by 4 in. wide. Clean it with emery-cloth, plavish, bend it round over a mandrel, and braze the ends together, using borax as a flux. Fils the joint smooth, and raiae two swagings on it, each to be l_{1} in. distant from the ends. This constitutes the body. For the foot, cut a disc of brass $5 \frac{1}{2}$ in. in cliameter, and hollow it on a block so that It resembles an inverted aancer. Swage this about $\frac{1}{2}$ in. distant from its edgea, and cut a 2-in. hole out of the centre. Now file the edges perfectly plane, and bolder thatre. body on, having frat fixed it in the centre. The top

Figil

Brass Money Box.

Hs made by cutting two disce of brasa each $5 \frac{1}{2} \mathrm{in}$. in diameter, and hollowing them together on a block, to resembla a shallow howl. File the edges of these perfectly plane, and awage one about $\frac{1}{2}$ in, diatant from the edge, afterwarda jennying up a small edga. In this, the top hollow, cut \& central alot to allow a large coin to pass through easily. Now file the bottom hollow, coin that when an edge has been jennyed up it will fit so that when an edge has been jennyed up it will fit tighty solder hoth hollows together, afterwards fixing the top over the centre ol the body and soldering round. A small slot plate (Fig. 2) will ghow to better advantage if made of German silver. File it so that any coin can pass through easily, hollow it alightly to fit the top, and after fixing it in the centre aolder it on. Now, if desir. able, cut a name-plate a (Fig. 1) of German silver, and atamp or etch the name on ; then fit it to the body, and golder it ou. Cut a disc of hrasa about 3 in. in diameter, to be soldered underneath the foot over ths 2 -in hole. When full, the bank can be emptied by unsoldering this dise, without in any way injuring the bank. Scrape off guperfuous solder, and clean with emery and oil.
How to Bronze a Fricze.-Here are instructions on bronzing a Cordelova (imitation plaster) I'rieze. Apply to the fricze two coata of oil paint. For the brones colour, mix in oil $\frac{1}{2}$ b. of hurnt umber, $\frac{1}{2}$ lb. of Brunswick green, and add Venetian red until a good bronze colour is obtained. A penny that has been in circulation for a year or two may be used as a colour test. Thin the colour with half varniah and half boiled oll, and give the frieze a good coat. On the following day, while the trieze ie atill tacky, apply bronze powder (copper, silver, or gold) to the parte of the rrieze in relief. A paperhanger's roller covered with plush cau he uged for thle purpoge. Run the plush-covered roller through the
bronze and then over the parts of the frleze that are in rellet. A white coat brughed over with knotting thinned with methylaied spirit givea a good imitation of old ivory.

Using Watchmaker's Turns for Drilling a Staff, etc.-below is described how to drlll watch ataffis for fine pivoting. The centres sold with a new pair of turns are of very limited uae, so, when iuying, a length of brass rod and a length of ateel rod a length of brass rod and a length of freel rod to fit tharn ahould also bs purchaaed. froper runners for turning and pivoting balance staffa, etc., are made. The brass and the steel rods Ghould be cut up into 3 -in. plecee, each piece to form s runner. Ons steel runner, to be used as a back centre, should bs flled up as at A (Fig. 1), and a minute centre marked upon it with a fine centre punch. This is for general use in turning ataffs and pirione. The other end of the runner may hava a hole drilled near ita edge, and a brass pin B (Fig. 1) ingerted in the hole : a emall hole, through which a pivot can be passed, must be drilled through the thin end of the pin. Thia ls a safety back centre to be used in turning a'staff, cylinder, or pinion that has a fine pivot, which might break if lts end reated in the centre $A ;$ by passing the pivot through the hole in B the strain of turning is taken by the ahoulder of the pivot only. A steel runner ehould have fine centre punch dots round the end C (Flg, 2); as at E, and. be filed to a triangle D at the other end, and have three centre dots as near the edge as possible as at F. Theas are for front turning centres for pivoting. The triangular end D is to be used for s very fine pivot, thus enabling the graver to get at the extreme end of the

Fig. 4

Fig. 8
Method of Drilling Watch Staff.
pivot. A brass runner should be fled at both ends, as ahown in Fig. 3, small holes of graduated aizea being drilled through its end, through which pivota can be drilled through its end, through which pivota can be brass runner should be filed at each end, as shown in Fig. 4, slight grooves in which pivota can lis during polishing with oilstone dust and red-stuff being made st the enda; ons end ahould he kept for oilstons dust and the othar end for red otuff. For drilling ataffa and piniuna, a central hole' must be drilled in a brass runner and a short drill made and ingerted friction-tight. The back pivot of the staff or pinion runa in a brasa safety centre liks B (Fig. 1), but in the centre of a runner. The centre liks B (Fig. 1), but in the centre of a runner. The
work is revolved by a bow against the drill, which is held to it by the right hand, and alowly revolved to keep it true. Befors drilling, the broken pivot is filed off tiat, the centre carefully marked by a pointed chamfering tool, and care ia taken that the drill is started in tbis centre. Fig. 5 日hows a pinion being drilled with the parts in poaition. Fig, 6 shows a pivot being turned on a staff. Fig. 7 showa a pivot being rounded up with a file. Fig. 8 shows \& pivot being polighed by \& steel polisher. In all thesellustrationa the bow and ferrule are omitted for the sake of clearnes.

The Use of Fusible PIngs.-A fusible plug is a brasa case containing \& core of an alloy that whil melt at \& temperature a little higher than the heat of the water or steam in the boiler. It ia practically imposaible for the core to refusa to melt if the boiler ruua sufficiently short of water to leave tha plug exposed to the fire heat only, though, owing to ignorauce, the plug might be only, though, owing to ignorance, the plug might be
placed where the tire could not readily act on it. If deposit inside the boiler covera the plug it may melt before ita time. A fuaible plug is olso an element of aifaty when there ia danger by excessive pressure, for as the pressure increases bo does the heat of the water or ateam, aud when the latter reachea a temperaturs higher than normal the plug will act. Fusible pluge are, of course, no protection when a boller is wesk or deveiops defecta in etructure.

Fixing Handle of Walking Stick, - It is often required to fix the horn head of a walking stick or umbrella to an iron screw dowel that is firmly tixed in the stick itself, the joint being covered by a silver band. As a ruls, the hole in the horn handle has worh too large for the dowel screw to grip, and if so a new screw of larger gauge is necessary: Screw the horn on the screw tirst. If the screw is tight and thers seems danger of splitting the horn, warm the screw in a flame and screw home whilst hot, and then inmediately immerse in cold water. There is no cement that will make a firm joint. A wooden plug might be tried, but it will he difficult to get the old screw into it, as the plug will prohably wind out. Fill the silver mount with wax cament or sealing wax, and screw the handle up tight whilst the wax is fluid.
Stocks for Shoeing Kicking. Horses.-Fig. 1 shows side elevation, and Fig. 2 end elevation, of a set of stocks for use in shoeing horses that kick. The ground is marked out to Figs. 1 and 2, and $7-\mathrm{in}$. square posts A are sunk in each corner. If the stocks are put up in a building or against a wall there must be clearance d bay 2 ft . or 3 ft .) in front for the horse's head. Two cross
the edge of the mount), and place it on a few thicknesses of blotitiug-paper in a beaker or saucepan. Pour warm water over the lens and keep warm for a time; this will soften the halsam, and the lenses may then be carefully slld apart. Note the positions of the lenees, so that in putting them together again the sams sides of tha lenses as hefore may fuce each other. Clean the lenses with beazole. Now place a lens, concave snrface up, on a warm plate, and drop into it a spot of balsam fres from bubbles, and lower upon it the conves surface of the other lens, and gently but flrmly press well together till the excess oozes out. Put in a clamp or bind up together until dry. On heating, the balsam should remein hard. On resetting the lens, the fungoid appearancs will most likely have disappeared.
Gums used by French Polishers.-Shellac forms the foundation of most polishes and spirit varnish. Garnet lac is a very dark variety useful for "black" or varnish for japanniug purposes. Orange shellac has many grades, from common to best. Lemon shellac is for best work. White or bleached shellac is used for decorative work, such as polishing inlaid work for decorative work, such as polishing inlaid work
and fancy woods that are to be kept light in colour. It

Stocks for Shoeing Kicking Horses.
sails B (Fig. 2) are fixed in front, and, lf desired, movable ones at the back, similar to rails seen in stable stalls. The top cross rail in front should come just under the horse's chest, There are also two rails \mathbf{C} (Figs. 1 and 2) at each side, as shown; also a roller D (Fig. 1) on ths near side, and a centre rail E (Fig. 2) opposita on the off side; the sheet or webbing is strapped round the rail and made a fixture on the roller so that a man at the and made a fixture on the roller so that a man at tbe back working the roller lift the horse off its feet, which are strapped to the rings shown at the bottom of the posts. The roller is turned with iron pins \boldsymbol{F} (Fig. 1), like those seen on knacker carts. The bow seen at the top of the front poste is of iron.

Blackening Brown Boots.-To blacken brown boots and shoes, first clean off all the dye with a strong solution of hot soda water, using a tooth brush. When the dye is removed, rub with a little black dye, which can be bought at most boot repairers' or grindery shops (a pannyworth will be ample). Allow this to dry, dub with a bit of pork fat, which makes the leather soft, and alterwards give the boot a good blacking and polishing.
Taking apart Photographic Lens, - The balsam used as cement between two photographic or other lenses sometimes assumes a sort of fungoid appearance. This, if sligh', will practically make no difference to the working of the lens, but it may be removed as follows. Take the lens from its mount (and this removal may necessitate the turning up of
is best to mix the lac whsn in solution. Gums such as benzoin, sandarach, and mastic are not absolutely necessary in polishes; their object is to gain a bright surfiace with a minimum of trouble. The addition of such gums aud resin converts a simple polish, easy to manipulate, into a varnish difficult to use with a rubber without an undue quantity of oil.

Using Mixed Jet for Himelight.-A mixed jet can be used for oxygen and coal gas, and the light would be about the same as a blow-through jet with the same gases. The hydrogen should he rather more than 2 to 1 of oxygen, and the best proportion is heing used when the best light is obtained. With coal gas and oxygen, use about 10 of gas, to 8 of oxygen; here, again, turn on the oxygen till the best light results. If oxygen cannot be obtained at a definite pressure from a bag, fill a bag with coal gas also, and leave both in a゚double set of pressure boards uuder the same pressure. Failing this, the preseure of oxygen will commence at 9 in., and will gradually fall to nothing. With an oxygen cyliuder the pressure can be regulated to about that of the gas. For preparing oxygen, 2 parts of chlorate tol part of oxide of manganese are heated in a retort. Wright racommends 2 lb . of chlorate to $\frac{1}{2} \mathrm{lb}$. oxide of manganese aud 6 oz . of common salt, hecause the oxygen comes off from this mixture very regularly. 1lh. of the first mixture yields ahout 4,800 cub. in. of oxygen, and 1 lb . of the second mixture yields about $\overline{5}, 000 \mathrm{cub}$. in. To compress the mixture, powder aud moisten it with water first.

Mechanism of Perpetual Calendai Watch.-Fig. 1 shows the arrangement of a perpetual calendar dial. At the top is the mouth hand; on the right is the date hand; on the left is the day-of-the-weel hand. Inside the seconds dial is the moon dise, showing by observation or by the numbers the age of the moon. Fig. 2 shows the mechanisur underneath the dial. D is the moon disc. It has two moons, and around ite edga are fifty-eight teeth, going round once in two lunar months. It ridas loose upon a central pipe, and is driven, ons tooth each day, by a pin in the wheel Es, drlven in ita turn by the wheel F. Fis on the hour wheel of the wateh, and goes round once in twelve hours; it has forty teeth. It drives the wheela E^{1} and E^{2}, having eighty teeth each, and going round once in twenty-four hours. The wheels E^{1} and $\mathrm{E}^{2}, \mathrm{by}$ means of pins projecting from them, as shown, drive the day-of-the-week wheel B and the date wheel C one tooth each day. B has geven and C has thirty-one teeth. The day-of-the-week hand is fastened to the axis of B, and the date hand to the axis of C. Λ is to the axis of B, and the date hand to the axis of c. A is round once in four years. It is driven by the intermediate wheel G, driven in its turn by the date wheel d. Upon A is mounted a steel dise having notches of vary. Ing depth in its circumference. Thus, the 6 pace representing the month of January is high; February is a deep slot, as it is three days short; March, again, is high;
to A, and caused to return, when drawn back cach day, by a steel spring, as shown. The month wheel A, day-ol-the week wheel B , date wheel C , and moon dise D are all beld in position by spring flirts resting between their teeth. and causing them to jump ong tooth accurately aach. time they are moved. This is but ono of many forms of perpetual calendar movements. All are complicated and difficult to make, and even when properly made frequently give trouble.

Curing Birdo' Skins.-A preservative used in ourlng birds'sking consiste of $1 \frac{1}{2} \mathrm{lb}$. of whiting and $\frac{1}{2}$ lb. of soit soap boiled in 1 pt . of water, with the addition of $\frac{1}{2}$. of chloride of lime and $\frac{1}{3} \mathrm{oz}$, of tincture of musk. This recipe works out at less than a farthing for a starling or blackbird. Instead of musk, tincture of camphor might be used: it is a little cheaper but not so good. In using the preservative it is painted on the inside of the sking; then the "stuffing" is done.

Polishing Fbony Fretwork.-The polishing should be wholly or three parts done before the fret-cutting is begun. After sawing the wood, fix it to a firm flat bench and plane the surface smooth; then proceed with the cutting, drilling the entering holes for the saw from the face. Ordinary work may be finished by using various gradee of emery cloth down to a fineness of 00 , the final polish

Mechanism of Perpetual Calendar Watch.

April is a shallow notch, being one day short; and so on. It will be noticed that three Februaries are deep notches (three days short, or twenty-eight days), and one Febru. ary is not so deep, being two days short, or twenty-nine days in leap year. The lever II, a finger on which enter's these notches, regulates the number of days shown for each month by operating on a projecting pin on the date wheel c. The position of the lever II with regard to the wheel o varies according to whether its flnger piece rests in a deep or a shallow notch of A. Thus, when resting on a high space, or a thirty-one-day month, the cam shown on C passes the lever without disturbing it at the end of the month. But when the lever If is resting in a notech, it projects farther over C, and the cam comes in contact with it one, two, or three days, as the case may be, before the end of the month. The pressure on the cam causes the pin in C to rise and coms in the path of the lever H, as the latter is drawn back each day by the impulse pin in \mathbf{E}^{1} acting on the arm I. Each day when the arm I is released, If springs forward again and ordinarily does nothing, as there is no projecting pin on C; but after the cam on C has come in contact with H, the impulse piu C is caused to rise, and the lever II coming forward forces cround for several teeth. The wheel c is a delicate piece of work. There is a cumnection hetween the cam upon it and the impulse pin upon which the lever II acts. The connection is underneath the wheel, and consists of a spring lever. The effact is that, as soon as the cam presses against the and of II, the impulse pin rises from the level of the wheel and stands up in the path of If. It remains in this position until about the middle of the month, when it comes into contact with a of the month, when it comes into contact with a position level with the surface. The lever II la kept up
being given by briskly rubbing with a hard brush ow which has been placed a little heeswax. Or the following process might be tried. Wrap the emery cloth tightly round a piece of cork 4 in . by 2 in . by 1 in , and rub up. and down with the grain of the wood. Great care mint be exercised so as not to break off any portion of the more delicate fretwork, and change the gride of the emery cloth as the surface gradually becomes smoother. Should it be preferred the surface may be lightly French polished, nsing silk for the outside of the rubber in place of ordinary cotton; silk will last longer over thesharp surface of tha fretwork.

Photographio Vignettes.-Flashed glass is used for making photographic vignetting glasses, the colour being removedtrom the centre by rubbing with hydrofinoric acid. The operation is a messy one, howsver. Cardboard ls by far the most convenient material to ueer for making vignettes, as a fresh one has generally to be cut for each negative. It is not necessary to keep a card vignette moving whilst the negative is printing. The usual plan is to shape the vignette according to the density of the different parts of the negative, to fix it at a greater or less distance from the negative, and, if neceseary, to cover it with tissae paper. Many failures have been due no doubt to fixing the card too near the negative; it should be more than $\frac{1}{2}$ in. away, and should lap over whare the negative is thin, for there the light will spread rapidly. Sounetimes It is advisable to tuck a little cotton-wool under the vignotte, giving a loose edge to the wool to avoid a hard line. To make a successful vignette by any method the backgrcund must be light; but vignetting is old-fashioned and seldom artistic, and should be avoided if possible.

Finamelling and Pollshing Slate. - The slabs of *late are cut to size, shaped, moulded. carred, or incised as may be required, then polished with sand and water to a fine suriace. The enamel is then carefully and regularly laid on, or the slab is marbled to a. design, inen stoved in an oven capable of being heated to $350^{\circ} \mathrm{F}$. Some colours require less heat than others. The time necessary for stoviug depends on the colour; experience will teach this. The colouring is then polished with rottenstone and sand and, when a very fine inish is required, completed with the hand.

Pattern for Conical Rim.-It is assumed that a copper hoop is to be put round a wooden bucket to ornament it. Bclow is explained how to draw a plan to wnich to cut the copper so thatit will ht snugly to the shape of the bucket. The pattern wanted is a frustum of a rigint cone, and to sel this out to the correct taper first draw a semielevation of the bucket as ABDC (Fig.1). Next draw the position of the rim $\mathrm{r}^{\prime} \mathrm{f}^{1}$ e E, and from E draw a line $\mathrm{E} f$ at right angles to $\mathrm{E} e$, and draw $\mathrm{f} f^{1}$. With f^{1} as centre, and with $f^{\prime} F$ and $f l$ as radii, draw quarter circles F L and $f l$ to repleseut a quarter plan of the rim. Divide these quarter circles into an equal number of parts, as $\mathrm{F}, \mathrm{G}, \mathrm{H}$, f, g, h, etc. Join $F f$, $G g$, etc., and also join $F g$, $G h$, etc., by dotted lines as ahown. The lines $F f, G g, H h$, etc., will be the plans of a series of slants of the cone, and the dotted Jines $\mathrm{F} a$, etc., will be the plans of a series of diagonals. $\psi^{\prime} E$ is the slant of the frustum, and to find the slant of

Pattern for Conical Rim.
of animals, but a small consumer will find egg albumen more suitable. The albumen of one egg will coat two sheets of paper, but to cover the dish that must be used to the depth of about $+i n$. about twenty eggs will be required. The paper may be coated in quarter sheets. The whites of the egge must be thoroughly separated frorn the yolks, no trace of the yolka being in the coating solution. Tap the shell on the edge of a cup to crack it, hold the crack uppermost, and, placing the thumbs in the crack, pull in two and pour the yolk from one half shell to the other. While this is being done, the white will of itself fall into the cup below. Pour the whites one by one into a deep vessel, add 8 gr . per ounce of ammonium chloride, and beat to a froth with an egg whisk or' a bundle of quill pens. Allow the mixture to settle till next day, filter through fine muslin, pour into a flat dish, and, to coat the paper, which is more easily done if it is slightly damp, fioat it on the solution, lowering the paper at one corner, and pushing it forward along the dish until the whole surface is in contact. Care must be taken to avoid air bubbles, as such spots cannot be sensitised. If the paper is at all dryit will curl back off the solution. The paper may be tinted with Judson's dyes, if desired. For double albumenised paper, immerse after the flrst coating in s. solution of 4 parts methylated spirit and 1 part water, then give a second coating of albumen. The paper is sensitised just before use by Hoating on a solution of silver nitrate 50 gr . to the ounce.
Defects of Gas-meters.--When the floats of wet gasmeter's are being soldered together, the air inside the floats becomes rarelied owing to the increased temperature caused by the heat of the bolt used in soldering. When this inside air is cooled by the water in the meter, the pressure of the outside air upon the float becomes so great that any sudden slight increase of pressure will frequently overcome the resistance of
the metal, which is only soft pewter Floats should always be made with egg-shaped ends instead of flat ends, so as to offer more resistance. In dry gas-meters
the faces of the hard white metal valves sometimes become coated with a deposit, cansed probably by the action of the gas on the oil used to keep the diaphragms soft. In course of time this deposit hardens until the pressure of the gas is insufficient to move the valve cover. The top of the mater and the top of the valve-box inside should be taken off, and the valve covers taken out and thoroughly cleaned with a little naphtha, the faces of the valves being treated in the same manner; the meter should then be put together again and be retested and stamped by an authorised inspector. The only remedy is to soften the diaphragms with an oil that is not affected by the particular gas in use.

Manufacture of Lucifer Matches. - The tipping composition for "strike-any where" matches consisto of red phosphorus with other ingredients as follow. (l) Phosphorus 1 part, chlorate of potash 8 parts, glue 4 parts, whiting 2 parts, powdered glass 8 parts, water 22 parts. (2) Phosphorus 2 parts, chlorate of potash 5 parts, glue 3 parts, red lead lis parts, water 12 parts. Safety matcheshave no phosphorus on the tip, butitiscontamed in the rubber. For tipping safety matches, use (1) Chlorate of potash 1 part, glue 2 parts, sulphide of antimonyl part, water 12 parts. (2) Chlorate of potash 4 parts, bichromate of potash $1 \frac{1}{2}$ parts, red lead 4 parts, sulphide of autimony 3 parts, with sufficient glue and water to form a paste. The rubber on the box is treated with phosphorus 2 parts, powdered glass 1 part, mixed with sufficient glue solution to form a thin fiuid while warm. Red phosphorus varies in colour from red to brown; it is formed by heating the ordinary phosphorus to $240^{\circ}{ }^{\circ} \mathrm{O}$. or $250^{\circ} \mathrm{C}$., either in a closed space or in an inert gas, such as nitrogen or carbonic acid. On heating the red modification to a temperature of $260^{\circ} \mathrm{C}$. it changes back to the ordinaryphosphorus. Red phosphorus, whenfreed from the ordinary phosphorus, is non-poisonous, passing through the body unaltered; but red phosphorns is rarely, if ever, free from ordinary phosphorus, and hence cannot be said to be non-injurious. Red phosphorus does not take fire by simple friction like the yellow variety, but must he raised to a temperature of $24^{\circ} \mathrm{C}$.

Lenses for Magic Lantern. - Plano-convex lenses are genergily used in magic lanterns, two to each condenser, with their convex sldes towards esch other. The smallest condensers used are 4 in . \ln dlameter, The smallest condensers used are in in diameter, and this is nove too much, as the slide pictures are should have a condenser not less than 41 in. in diameter. Biunials and triples require $4 \frac{1}{2}$-in. condensers to allow for the rolling of the curtain, and also a little margin to get the two or three discs coincident on the screen. For the objective, the following lenses are required:The front combination consigts of a double convex lens and a plano-concave leus cemented together. These and a plano-concave leus cemented together. These tion has two lenses sepsrated by a short space; the one nearest the front is a meuiscus, with the convex side towards the frout, and the other is a double convex lens of unequal curves, the curve with the longer radius being placed nearest the light. These lenses should be 2 in . in dismeter. Au objective of this description has a focus of about 6 in. and gives the best results. When, however, an objective of very long focus is required, a , single an objective of very long focus is required, a, single ciently large to take all the rays of light. A single levs of 12 -in. focus should be at least 3 in. in diameter.
Constructing a Bamboo Bedstead.-Fig. l shows the foot of a hamboo hedstead, 3 ft . wide and 3 ft .10 in . high; Figs. 2 and 3 are alternative designs for the head. The flamework of each of these sections must he made from caines $i^{\frac{3}{*}} \mathrm{in}$. to 2 in , in diameter, and great care
hand when it is ready for moulding. For this, nae an iron monld with a plug attached to a handle. Thor mould should be filled with the clay and the plug hammered in, to form the hollow of the crucible. It is kept in a warm place for a few days, when the crucible will leave the mould, and may be turned out. It is drled in a Farm place for several Feeks, and gradually heated when it is used for the first time.

Varnishing Photographic Negatives. - The retouching of a negative should always, if possible, be done before varnishing, such portions of the negstive as are to be operated on being covered with a retouching medium. This medium may be purchased, or may be made of girm dammar 96 gr , turpentine 1 oz . If it is preferred to varnish before retouching, the varnished negative must be rubbed down with powdered. resin to give a surface on which the retollching pencil can be used. The following varuish is recommended. can be used. The following var. 1 oil of lavender' 40 drops, alcohol 10 oz . Powder the resins and disgolve in the alcohol, and add the rest of the ingredients. Warm the negative till it is as hot as can be comfortably borne by the back of the hand,

FIG. 4

Constructing a Bamboo Bedstead.
must be taken in making the joints and seeing that the dowels are s good fit. A (Figs. 1, 2, snd 3) is a piece of beech 7 in . wide and la in. thick. This must beflted in position 1 ft . above the ground before the filling work is commenced, and should be securely fastened with round-headed screve passed through the lega and crose rails into the wood. The strength of the bedstead in a great measure depends on the firmness of this piece of wood, as on it are fastened the angles by which the wood, as on it are sastened the angles of which the head and foot are stretched. The filling work can next strong snd a perfect fit. Fig. 2 shows a design suitable for an upholstered back, 7 ft . 9 in. high; if preferred, similar work to that shown in Fig. 3 can be used. For the bedstead bottom, iron fittings similar to those used for wood bedsteads are advised. Fig. 4 is a sketch of the iron angle, and B (Fig. 2) shows the position in which the angles are placed. They are securely in which the angles are placed. They are seculely fastened to the wood with serews, and the
Removing Stain from Pollshed Wood.-A sodawater stain on polished wood should be wiped over with linseed oil as soon as noticed. If left unoiled, the only alternative is to repolish, first removing the damaged poish by rubbing with No. 1 glasspajer and oil. If this treatment is not a success, use sprit instead of oil.

Maklng Plumbago Crualble.-In making a crucible with a quantity of plumbago dust, mix the plumbage with an equal weight of fireclsy, and add water while kneading to form a stiff dough. Keep this in a cool Hlece for a few days, aud work it from time to time, when it will become less sticky and more plastic; the clay should be almost too estiff to work by the
pour a pool of varnish in the centre of the plate, and let it flow tirst to the top right-band corner, next to the top left-hand corner, then to hottom left-hand corner, almost touching the thumb, and pour off the excess at the bottom right-hand corner into the bottle. The negative should not be rocked, If the varnish is inclined to be streaky it is too thick, and more alcohol must be added. Conduct the whole operation as slowly as possible. Drain thoroughly, and bake the varnished possible. Drein thoroughly, and bake the varnished varnish is quite hard. Heat the negative evenly or it will crack. The negative should be held by the extreme corver with the thumh and forefinger or the left hand, unless it is larger than half plate.

Colouring Gold.-The simplest method of colouring gold jewellery is to bring it to a uniform heat, allow to cool (and thus become annealed), and then boil until bright in a pickle of 8 oz. of rein water and 1 oz . of sulphuric acid. Another method is to anneal the gold, boil it in a pickle of nitric acid and water, again anneal, and dip in the followiug colouring mixaguin annea, Two parts (by weight) of saltpetre and i part of table salt are heated in their dry state in a colouring pot or blacklead crucible; when hot, make into a paste with hot water, boil, add lit parts of muriatic acid, and stir well. Use at boiliug point; lesve the gold in the solution for not more than 90 seconds, as the solution removes more or less of the gold. On taking the gold from the colouring solution, ringe it in a pickle, dip it in hot water, and dry in hot'sawdust: the gold will be spotted if not thoroughly dried. Thlo method may be used with gold ranging between 12 aud 20 caratis fine, the best results belng obtained with l5-carat gold.

The Preparation of Chromic Acld.-Chromic acid ($\mathrm{H}_{2} \mathrm{CrO}_{4}$) is produced by two or three methods. In one, 2 parts (by measure) of a cold saturated solution of bichromate of potassia are mixed with 3 parts of sulphurle acid; on cooling, the chromic acid is deposited in crystals, the mother liquor being then decanted. Perhaps the methed of producing chromic acid more generally followed commercially is to decomposs chrominm sulphate with lhme and to heat to redness the resultant pasto of lime, gypsum, and chromium oxide. Ths chromate of lime formed is treated with sodium sulphats to yield soluble sodium chromate and gypsum. The addition of sulphuric acid liberates the chromic ucld. A less wasteful process than this is the electrolytic one now being worked in Germany. by Lucius \& Bruning. In a solution of chromium sul. phate in sulphuric acid are imnersed both lead anode and lead cathode, chromic acid being liberated on the former and hydrogen on the latter. A current at 3.5 volts with a current density of 300 amperes per square metrs is required, the cells being at the temperature of $60^{\circ} \mathrm{C}$. ($122^{\circ} \mathrm{F}$.).
Making a Bone Apple-scoop.-In every sheep there are two bones specially suited for making apple-scoops, and with them only a small amount of trouble is left for the workman. The shank. bones of Welsh or other mountain sheep are generally preferred for scoops; they maks neater articles. But for larger scoops the shank bones of sheep of the larger breeds come in handy. To clean ths hones, boil, say, for from half to threequarters of an hour ; too much boiling is liable to canse the head of the bone to slip off. With a tenon saw or a butcher's meat sam, on the flat side of the bone, as at a

Making a Bone Apple-scoop.

(Fig. 1), make a shallow cut just deep enough to reach to the hollow containing the marrow. Next saw off the lower end of the bone, as at B. All the bone from the middle of the front between A and B has then to be chipped out. For this purpose, use a $\frac{1}{8}$-in. gouge, and afterwards a small chisel driven with a mallet; or a knife can be used, but then the work will take much longer. To cut the bone now left remaining to the shape of Fig. 2, use a half-round file. The two sides of the front and the circuit of the point must be bronght to a sharp edge, as by these the apple is cut. Whilst the bone is being worked it will be sure to show more or less grease; this can be removed by a rag dipped in whiting, or by a crumpled-up piece of blotting paper. To extract the marrow from the hollowahovea (Fig. 1), use a bit of crooked wire and a few smail rolls of blotting paper. The opening should then be stopped with a neatly-fitting piece of cork, tucked in tightly. To finish, smooth the bone with cork, tucked in tightly. To finish, sm

Putting Sash Lines in Window Frames.-Before beginning to replace broken sash lines, carefully lower the top sash to see whether the hreakage is at one or both of the lines. The bin. head of the side at which the line is to be restored must be removed, a blunt chisel being used; a broad ohisel bruises less than a marrow one. Begin ths prising of the bead from the back, as, though the paint must be broken, it need not be defaced more than necessary. The lower sash can then be removed and the old line cleared with pincers or a blunt chisel. If the upper sash line is broken it is often best first to remove the line from the lower sash so that it may be put out of the way. The parting bead must next be removed, and pincers are better than a chisel for this. Sometimes a chisel, nsed to cut the paint at the lower half of the bead, is an advantage. Remove the pocket piece and take out the weight and old cord. If it is difficult to remove the weight, it is sometimes possible to tie a new line withont removal. Ths new line is passed throngh the sash pulley by means of a "monse," a piece of lead not thicker than the ling and about 2 in . long, to which a fine strong twine is affixed; the twine is bitched to the sash line twice or thrice and the mouse is entered through the pulley, drawn through the pocket, and the line pulled through by its aid. If the weight is andill in the sash frame, the line can be inserted in the atill in the sash frame, the line can be inserted in the
knot. Lift the weight as bigh as possible and fix the line so that the sash will just reach the sill. Superfluous line is often a hindrance to proper working of windows, as the line always stretches in uso. The replacing of the pocket piece can be dons before the ling is fixed to the sash, and, in ths case ot the lower sash, the parting bead can also be put in. The f-in. or stop head shouid be spruag in by getting nails nearest the ends in first. Sometimes they will need shortsning, but no nails ought to be removed, and all should be guided to their holes, first those nearest the ends, and then those at the middls. If needful, a nail or panel pin may be insorted, but this is not necessary unless the bead springs away from its placs. Care mirst be taken to strike on the old nails or the stopping will come out and the bead be made unsightly.

Condensation from Under Side of Iron Raof.-The dropping of water from the under side of a corrugated iron roof is caused by the moisture of the warm atmosphere of the room condensing on the colder surface of the iron roof, and this coudensation, of course, goes on more rapidly during frosty weather. The remedy is to fix at the bottom of sach sheet of iron a small half-round gutter to catch the water. Lead it to one ead of the roof, and bring it to ths ground by a down pipe. A lining of slag wool or silicate cottor suppor'ted by matchboard will prevent the condensation sometimes.
How to set a Ruling Pen.-By taking out the screw of the ruling pen and looking directly at the point. of the pen, it will be seen whether the worn point has a flattened suriace. If so, place the pen on an vilstone (fine

Method of Setting a Ruling Pen.
Turkey preferred) in the position shown in the sketch, apply a little oil, move the pen backwards and forwards at the same time slightly rocking it horizontally and vertically. Wipe and examine the pen occasionally, and atop just short of bringing the point to a sharp edge, lf one point of the pen has been injured and is snorter than the other, hold the pen upright on the stone and grind both points level before removing the screw and setting the pen. If the points are too sharp, the pan will cut the paper, and it will be necessary to take off the kosn edge by using it for a few minutes on a piece of brown paper.
Making Photographic Printing-out Paper, - No. one, unless he is likely to be a large consinmer and able to afford a proper apparatus, should attempt to make P.O.P. The paper is sold so cheaply that it conld only be mads in large quantities at the same price; aud expensive plant and long experience are necessary to expure good results. Prepare two solutions. (A) Ammoensure good results. Prepare chloride $50 \mathrm{gr} .$, Nelson's No. 1 gelatine 160 gr. , Heinrich's hard gelatine 3itogr., distilled water 20 oz . (B) Silver nitrate 150 gr. , distilled water $\frac{1}{3} \mathrm{Oz}$. Dissolve the gelatine in $40 z$. of water, walm and add the remainder; then add aolntion (B) a little at a time, stirring thoroughly between the additions. Allow the emulsiou so formed to set, then wash by equeezing through mosquito netting, and washing or soaking in a fer changes of distilled water. The shreds must then be well drained, melted down, and the emulsion is ready for use. The paper is unrolied over the surface of the emulsion, which is placed in a trough or a dish tilted to an angle.
Cutting Blinde.-Linen or art print blinds ars cut upon a large flat table, using a long straightedge and marking awl. Equal width at ton and bottom can be secured by folding the stuff so as to prick both at once; aquaring must either be done by a large square working on a trued edge of board or by folding the blind (when made parallel) edge to edge and pricking through. Lines are made with a marking awl, and for cutting some use shears, others a knife and straighte lge. Whenever possible, cut off the selvedges. Blind cloths vary in width ; prints are made in every 6 in. from $3 t$ in. to 60 in . ; unions in almost every 2 in , in saleable widths.

Making Cells for Optical Worle, By following these instructions amateurs who have a small lathe these instructions amateurs who have a small lathe adepts in the use of chasers, can make the brass cells and similar worlk for microscopes, telescopes, etc. The apparatus hers described will turn and cut the threads without displacement, thus ensuring perfect centreing, without which the best lenses will give unsatisfactory results. To hold the cells, etc., use boxsatisfactory results. co hold the cells, etc., use boxdrilled truly in the centrs of the chuck while in the lathe. Into this hole fits a turned iron or steel mandrel of the shape shown at Figs. I and 2. The part o should be a tight working fit in the boxwood chuck. The poppet end of the mandrel has a thread cut on it of a pitch suitable for optical work. Fig. 3 shows the complete mandrel and tool-rest. The hole B (Fig. 2) is tapped to receive the screw that requlates the cut of the tool, while into the hole a (Fig. 2) slides the guide; and the set-screw E (Fig.3) takes up any shake in the rest. To complete the tool-rest, picces F (Eig. 3) to carry the tool and G for the handle sind will be required. The ordinary poppet must be discarded; in its placs use a wrought- or castiron poppet, made as shown in Figs. 4, 5, and 6, The hole II (Figs. 4 and 5) receives the bush I (Fig. 6), which is drilled and tapped to suit the screwed end of the mandrel M. J and \bar{K} are nuts, and L is a handle made fast to the mandrel; it actuates the cut of the tool monge fast to the mandrel ; it actuntes the cut of the tool bolting down the poppet. When facing, boring, or turning a cell, etc., the nut f is released and the nut K is
is run into coolers, thess being wooden troughe lined with zinc, and in twelve hours' time the material, then in the form of jelly, is loosened from the trough by running a wirs along it, the wire being bent to conform with the rectangular eection of the trough. The block of jelly is cut up into cakes, and these are then sliced in an arrangement of fine wires stretched tightly, across an iron frame about $\frac{1}{2}$ in. apart; this frame is drawn through the jelly. The drying frames upon which the slices of jelly are then placed are about 5 ft .6 in , long and 2 ft . wide, and are made of galvanised 5 fir 6 in , long and 2 tt . Wide, and are made or galvanised wire netting. The irames, when through which the air can circulate freely. It takes but a few days for the jelly to dry in a cool west wind, though a system of artificial drying, by means of which the size becomes glue in but a few hours, is now being practised. In drying, the material shrinks to onehalf its former bulk. The hard glue is now washed to remove dust, etc., and to produce a glazed appearance. In some factories the cakes of glue are cut up into small pieces by means of two rotary knives, each making 300 revolutions per minute. First the glue is passed between two 4-in. toothed rollers which hold it in position and draiv it forward after each stroks of the knife. In England the raw material, before being boiled, is limed: this treatment is not necessary in the case of hide cuttings from leather dressers and tanners, scrap

Making Celle for Optical Work.

from trotter-boilers, dry glue pieces and narchment cuttings, which are already limed. The liming is effected by soaking the material in milk of lime contained in pits. Afterwarde it is necessary to remove or kill the lime by washing with water in vats or pits or even in revolving drums. The lime in old glue pieces is killed sufficiently by the action of the atmospheric carbonio acid, the glue being spread out in trays 60 as to be mors readily attected. In 60 ms works the washed materials are subjected to heavy pressure, butiu others the boung is proceeded with at once. The boilers or pansgenerally have each a capacity of several tons. A false bottom of bars kseps a cleur space at the bottom. In the middle of the boiler is a removable vertical framework, and its object, like that of the false bottom, is partly to give free space, so that the boiling liquid can circulate thoroughly, and partly to simplify the straining of the liquid. The pans are heated by a fire beneath, by steam, or by the two together. In placing the materials in the pans, any horn "sloughs" that may be ueed are built up around the central framework, the rest of the material being then put in. During the boiling intermittent stirring is necessary, and the fat which rises to the surface has to be skimmed off. The charge for the pane is in the proportion of twelve tons of fleshings to one ton of water. On the completion of the boiling, the fire is put out or the heat is otherwise removed; s. time is allowed for partial settling and cooling, and the liquid is then drawn off through a wooden channel from the space beneath the false bottom. In this wooden channel are beneath the false bottom. In this wooden channel are cooling troughs, where it is allowed to cool and harden into a jelly or size. The succeeding processes by which the size becomes glue resomble those practised in America and prevlously noted. The methods outlined above admit of endless variations, nearly every manufacturer adopting a system that in some particular differs from that adopted by his tellows.
Soldering Gun Barrels.-Cramps are generally used for holdiug gun barrels together during soldering, although they can be bound together as a makeshift with stout binding wire. The heat is applied with iron or copper heaters, which ars placed inside the barrels. The best finx for the purpose is sal-ammoniac. Baker's preparation can also be ueed as a soldering fluid.

Fixing Needle to Compass Card-Large compass cards often have two naedles, in which case the agate cap is fixed in the card. In small cards the agate eap is flxed in the centre of the needle. Draw a pencil line on the under side of the card from N. to S . points. Fix the needle to this with sealing wax or glue, and screw or livet through the card.

Cabinet for Beadwork. -The cabinet or workbox here described is suitable for holding headwork articles. It can bs made of deal, and almost enough wood can he obtained from an old cube-sugar box; this, wheu sandpapered, stained, and varnished, will repay the time and labour exponded. The following pieces will be required for the top case A (Figs. 1, \%, and 3). Two, $11 \frac{1}{2}$ in. by 7 in . by $\frac{1}{2}$ in., for the top and bottom; two, 10 in . by 7 in . by $\frac{1}{2} \mathrm{in}$., for the sides; two, $10 \frac{1}{2} \mathrm{in} . \mathrm{by}$ $6 \frac{1}{2}$ in. by ${ }^{3}$ in., for the shelves; one, 10 in. by $6 \frac{1}{2}$ in. by $\frac{1}{2}$ in., for the vertical partition; six, 5 in, by 3 in. by in., for the fronts of the drawers; twelve, 6 in. by $3 i n$. hy in., for the sides of the drawers: six, $4 \frac{1}{2}$ in. by 3 in. by $\frac{1}{4}$ in., for the backs of the drawers. The bottom for the drawers should be cut to fit the inside of the framework. The racks B (Figs. 1, 2, and 3) are 7 in . by 1 in. by $\frac{1}{2} \mathrm{in}$., and should have thres holes bored in them to hold the tools. To make the desk C (Fig. 3), use two pieces of wood, each $15 \mathrm{in} . \mathrm{by} 4 \mathrm{in}$. by $\frac{1}{\text { in., for the sides; one piece, }}$ $8 \frac{1}{2} \mathrm{in}$. by $10 \frac{1}{2} \mathrm{in}$. by- $\frac{1}{2}$ in., for the top; one, $10 \frac{1}{2} \mathrm{in}$. by 15 in . by $\frac{1}{3}$ in., for the bottom; one, $10 \frac{1}{3} \mathrm{in}$. by 14 in . by $\frac{1}{2}$ in., for the back; one, $10 \frac{1}{3} \mathrm{in}$. by 3in. by $\frac{1}{2}$ in., for the front of ths drawer ; two pieces, lisin. by 3 in. by \ddagger in., for the sides of
somewhat similar method of preparing crocus is to heat sulphate of iron alone in an iron pan ; constantly stir with an iron spatula after fusion until it is thoroughly dry and drops into a pale Jellow powder. This is then powdered iu a mortar and sifted, placed in a fresh crucible, aud calcined. On cooling, the crocus appears as a red powder. The colour of the crocus varies from pals red to brownish red, blue, and violet, the colour pale red to brownish red, blue, and vielet, the colour which it was raised during its manufacture; the greatsr the heat the darker in colour and harder is the material; thus a pale red (rougu) is used for gold and silver, while violet, knowu as "steel red," is emplozed for polishing stegl. To obtain the best results with crocus it should be ground as fine as possible, and then washed with watsr. Three clean glasses are used for the latter purpose, ons being filled with water ; a quintity of crocus is well stirred in with a wooden stick, left to stand for ahout thirty seconds, and the fluid is then carefully decanted into the second glass, leaving a sediment at the bottom of the first; after two minutes in the second glass the fluid is decanted into the third, where it is left for soveral hours to permit the complete sattling of the powder. The sediment contained in ths first glass is too coarse to bs of use ; that in the second is a crocus of a finer quality; while that in the third is of the best grade. Crocus of varying degrees of fineness may be ohtained on this principle. The material requires to dry slowly to be fit for use. It is advisable to moisten the dried powder with alcohol, and then to ignite it so that all traces of fat may be hurnt. For this

FIG.

FIG. 2

FlG. 3^{+}

Cabinet for Beadwork.

the drawer ; and one piece, 10 in , by 3 in . by 1 in., for the back of the drawer. To make the case, nail the top and bottom to the sides of the cass a (Fig. 1). The partition and shelves are notched so that they will fit in flush with one another. The partition should be nailed to the top and bottom of the case, as should the shelves to the sides. The last are nailed to the top and bottom, and the case A is fastened to C by nails or (preferably) screws. The back, when fastened in, holds the top and hettom together. In osix holes should be cut to hold the saucers; thess should be $\frac{1}{2}$ in. deep and 1 in. in diameter. Ths fronts of the drawers are rebated so that the sides will fit into them. After making the drawers, hore a, hole in the centre of each of the fronts and glue a knob in to serve as a handle. The bottom drawer should have a partition in the centre, so that there will be a drawer for the finished articles; the othar part can he used for the wire, etc. It would be advisable to label each drawer with the name of the beads it is intended to hold. The lahels can be of paper glued on, or of tin nailed on ; or if tha necessary skill be possessed an attempt may be made at painting the name on the frout of each drawer, the black letters being on a rectangular backgronnd of white. If glue also is, used it will make the case look much stronger.
The Preparation of Crocus.-Crecus is an abresive material used as a polishing medium for many metals. By one method of preparing it, a mixture of salt and sulphate of iron is putinto a shallow crucible and exposed to a red heat; vapour escapes, and the mass fuses. When vapour ceases to be given off remove the crucible and allow it to cool. If the heat is too intense the oxide of iron produced will have a black colour. The mass, when cold, is pulverised and washed to separate the sulphate of soda. The crocus powder is then to he submitted to a process of careful elutriation, and the finer particles reserved for the final stages of polishing processes. A
purpose the crocus should be containedinaniron pan. An excellent crocus powder for applying to razor strops oan be made by igniting in a crucible a mixture of equal parts of well-dried green vitriol and common salt. Take care that the material does not boil over in a pasty state and be lost. When well made, out of contact with the air, it has ths lustre of freshly cut blacklead, after grinding, elutriating, and drying, a powder is produced that, by applying to a smooth buffleather strap, may form aser. viceable razor strop, or by being mixed with hog's lard or tallow may make a useful polishing paste for many kinds of metal.

Brush Marks in Enamelling.-In using air-drying enamels on cycles great difficulty is sometimes experienced in gettiug a surface thatis entirely free from brush marks, Assuming that the enamels are not stoved, the trouble may be due to ona of the following causes. First, the brush may be too stifi ; uss a very soft brush with a big head and long hair. Secondly, the enamel may not be sufficiently thinned; add a little turpentine, when the coat of enamel will be thiuner and more uniform, but not so lustrous. Thirdly, the enamel may dry too quickly; this is often the case with enamel priuts, many of them showing signs of drying immediately after they ars laid on, and such enamels show brush unarks very strongly.
Repairing Mackintosh.-If the water penetrates the mackintosh in a few places only, ohtain from a ruhher warehouse some rubber cloth in the piece as near like the coat as possible; also get some rubber solution. Cut the rubber into circles large enough to cover the leaks, spread the rubber solution upon them, and also upon the mackintosh inside wherever a leak occurs, and press the circles of rubber into place. Press under a weight for a day or two. The mackintosh should be thoroughly dry before boing treated.

Boots Cracking Acress the Toes.-All boots, and more especially ull-fitting boots, have a tendency to crease and crack across the toes, and to countsract this tendency the following precautions should be observed. Patent leather boots should always be rubbed down across the joint over the toes while the foot is sligintly bent, the rubbing being done with the hand or with a piece of soft rag. If the weather is at all cold, the boots should be warmed in front of the fire before they, are put on, and then rubbed. Calf leather boots should always be carefully treed up when cleaning them, and each time the boots are worn the creases should be taken out by rubbing with a bone.

Moulds for Casting Brass.-In making moulds for fine brasswork, ordinary sand should be mixcd with loam, which is a more clayey sand. The mould must be well dried before a ire, and then dusted with very fine charcoal powder. If a very delicate surface is desired, it could be smoked over with a pitch torch. This method is more treublesome, but the results are excellent. The patterns must be inserted after the smoking, and the two faces brought together again. The soot from the smoking will give a perfectly smooth surface, and the castings will come out clear and sharp.

Testing a Try-square.-Below is given a method of testing a carpenter's square. Shoot the edge of a piece of board quite straight, apply the square as shown at A (Fig. 1), and draw a line; then turn
mixture the most varying tlats can be produced. The porest and best of these colours should be used; then only a little coloux will be necessary. Straw hat varnish making is throughout a cold process, only carerul intermixing, slow digestion to complete the solution, stirring from time to time, and perhaps filtration, being necessary. To the above stock varnish add, to obtain black, 55 grammes of spirit-soluble ivory black per 9 litres of varnish; the shade may be varied beautiper lily by a slight addition of spirit blue or poalachite green. For olive brown, add 15 grammes of brilliant green, 55 grammes of Bismarck brown, and 8 grammes of spirit blue. For olive green, add 28 grammes of brilliant green and 28 grammes of Bismarck brown. For nut brown, add 55 grammes of Bismarck brown and 15 grammes of nicrosine. For mahogany brown, add 28 grammes of Bismarck brown the colour may be deepened by a little nicrosine. For peacock blue, add 55 grammes of spirit blue and 28 grammes of induline. The above are mostly dark coloured varnishes, for the The above are mostly dark coloured varnishes, for the pighter coloured solutions will now be given. A white stock varnish suitable for the preparation of lightcoloured straw hat varnish is a solution of 27 grammes of sandarach, 9 grammes of elemi-resin, 9 grammes of pine resin, and $2 \frac{2}{5}$ grammes of castor oil in 18 centilitres of methylic alcohol. To produce a golden Fellow of chiysoidine and 55 grammes of aniline yellow. For pale green, add 55 grammes of brilliant green

Fig. 2

Fig. :

Testing a Try-square.

the square as at B, and if it is true the blade should fit the line; if it is less than a right angle it will be as shown at $O D$ (Fig. 2), and if more than a right angle the defect will be as indicated at EF (Fig. 2). If the blade has moved or has been knocked out of truth through a fall, it should be knocked back into its proper through a rall, it should be knocked back into its proper position and, when true, the rivets should be tightened otock, bnt untrue, it must be filed true to the stock.

Prevention of Nodules on Electrotypes.-Warty nodules on the edges of electrotypes are usualiy caused by the employment of small currents. This may happen by using a small cell or small elements in the cell, or by the employment of connecting in the cell, or by the employment of connecting wires having a high resistance. It is unusual to find their existence points to a soiling of the parts whilst blackleading the mould. When these nodules are troublesome, it is usual to take out the moulds, cut or file off the warts, give the copper a dip in nitric acid to clean it, then re-immerse the electrotype, and proceed with the deposition.

Coleured Varnishes for Straw Hats. - All struw hat varnishes are required to dry in a few minutes and form a firm, pliant, and elastic cover, though a high lustre is not essential. Hence spirit varnish is particularly suitable; any desired colour is gained by the addition of pigments soluble in alcohol, the coal tar (aniline) colours being best adapted for this purpose. Generally, the manufacturer of straw hat varnish prepares two or three colourless stock varnishes which may be coloured as occasion requires. Shellac is the indispensable gum ior every spirit varnish, but it cannot, owing to its brown colour, furnish a white or pale varnish, so it is suitable only for dark coloured varnish. A' good stock varnish from which black, brown, dark green, deep blue, and similar tones may be made is obtained from 180 grammes of shellac, 45 grammes of soft Manila copal, 45 grammes of sandarach or resin, 1 gramme of castor oil, and sufficient methylic alcohol to form a suitable solution. To produce coloured varnishes from this the respective alcohol soluble aniline colour alone need be added. Ivory black, spirit blue, Bismarck brown, aniline yellow, brilliant green, safranine, and crystal scarlet are among the celour's suitable for this purpose, aud by their
and 7 grammes of aniline yellow. For medium blue, add 55 grammes of spirit blne. For deep blue, add 55 grammes of spirit blue and 55 grammes of induline, Vary the proportions of these two pigments to obtain other blue tones. For peacock blue, add 5.5 grammes of spirit blue, 28 grammes of induline, and a little brilliant green. For violet, add 28 grammes of methyl violet. For crimson, add $5 \overline{5}$ grammes of safrar nine. For chestnut brown, add 55 grammes of safranine and 15 grammes of induline.

Molting Silver in an Open Fire.-Procure a small freclay crucible in which to melt the silver. For a flux use equal quantities of finely powdered charcoal and sal-ammoniac. Make up a large, bright coal fire in an open grate, and when the fire is quite clear break a hollow space in the centre. In this space place the crucible, and allow it to get red bot; then put in the silver, and draw some of the het coals closely around and over it. Blow the fire with the bellows until the crucible gets white hot, when the silver will melt, the fusing point beiug at $1813^{\circ} \mathrm{F}$. ($10227^{\circ} \mathrm{C}$.). Then add the tux to cleir the surface from scum. Again make the crucible hot, and quickly pour the contents into an iron ingot mould previously made scalding hot. One or two ounces of silver may be melted at a time in this way. The fiux may be stirred with a pointed rod of iron previously made red hot.

Particulars of Rectilinear Photographic Lens.The word rectilinear simply means "right lines," and is a name applied to lenses which do not distort straight lines when such fall near the margins of the plate. Such lenses represent a square as a square, and not like a pin-cushion or a barrel, as is the case with a single lens when the stop is placed respectively behind or before the lens. Consequently, rectilinear lenses are doublets-that is, they have a lens at each end of a tube, with the stop between, thus introducing both kinds of distortion, the one nullifying the other.
Cleaning W.C. Basins.-To clean w.c. basing apply spirit of salts by means of a piece of old rag tied to the end of a stick, and after sufficient time has elapsed for the incrustation to become softened, or partially dissolved, wash with clean water. If the incrustation is very thick, the operation can be hastened by ecraping. Any spare acid should be thrown down the drains, as it is a dangerous poison.

Making Brass Gas-cocks,-Here are given full instructions on casting and finishing emall brass gascocks. The patterns mas be of wood or brase, but brass is to be preferred, as it wears much better than wood. Core prints must be turned on the ends of the patterns so that, when moulded, places will be left in the mould in which to insert the core. The patterns must be made sufficiently large to allow for shrinkage and for the metal turned off in finishing. The snds of the core patterns must be exactly the same size as the core print on the brass pattern. Core stocks for each of the cores must be made. The keys may be made in the same manner as the body of the casting. Fige. 1 to 4 give views of the body of the cock and the key in two positions. The key minst be sufficlently large to turn down for grinding. Make the moulds, trim tnem, and they will be read $\overline{7}$ for finishing. In finishing the cock, use an iron bell chock or an ordinar'y hrass-turner'schuck. Turn one end of the cock square, and thread the hole with a suitable sized thread. Reprat the operation at the other end of the cock. Skim the cock all over, and face both ends of the keyway. Then turn the hole for the key slightly taper as cast. Now skim the outside of the key casting on the taper similar to that of the hole in the cock, and press the cock on. If it does not go on as it should, skim a littles more till it is correct. Square the end off, drill a hole up it, and thread with a screw to carry the small brass screw that holds on the D washer, to prevent the tap being pulled off and to obviate the

Making Brass Gas-cocks.
escapa of gas. Each tap must be turned to each cock, and must be left in it till ground; this will save time and waste. In grinding in, fix the tap in the chuck, place a little loam and water on it, and press on the cock. This will canse the loam to grind down the surface of the key and make a good joint. The common test applied by the workman is to draw out all air by the tongueand mouth, when the cock will, if sound, adhere to the tongue. The key must have a round hole drilled through it, and at the top should be inserted a pin, which catches on the top of the cock and prevents its being turned more than halfway round. In making the sand core, insert a piece of thin iron wire through lengthwise; this will strengthen the core (see Fig. 4). The cores in each case must be made to suit the purpose, and will depend on the size and nature of the cock in hand.

Making Eand-cart for Carrying Furniture.-The cart here described is 6 ft . long by 4 ft . 6 in, wide, and may be used for carrying furniture. As the wheels are to run underneath the bed of the cart, the distance between the springs must be less than is customary in ordinary work. Set out a full-size plan of the cart, mark in the position of the wheels, so that the stock hoop does not project beyond the side of the cart, and mark in the position of the springs or stays to which the axle is fixed, as summers have to be framed in to fix these to. For the outside framing, two rails 2 in. wide by $1 \frac{1}{4}$ in. deep, front and hind bars 2 in. wide by $2 \frac{1}{2}$ in. deep, are framed together square and true, and fiush on top. This framing is boxed out on the top inner edge,量in. on by $\frac{5}{8}$ in. deep, to take the boarda to form the floor. At such a distance in from the outside as the springs will come, frame in two summers $2 t i n$. wide, thick enough to be level with the boxing out on top, and fiush with the cross-bars at the bottom. If the cart is to have two handles, these are bolted to the summers; if there is to toe only one handle, it is fixed in the centre underneath the bottom to both the hind and front bars. Next bolt on the springs or stays; if springs are used, see that the scroll irong and springs combined are of such a depth that the wheel is 3 in in. clear at the top to the under side of the frame; if iron stays are used, 1 in, clearance will
suffice. Having bored on the springs and fixed the axle, put in the bottom boards of red deal $\frac{3}{3}$ in. thick, the grain of which should run from side to side. To protect the outer corners of the frame, iron corner-plates should be fixed round, about 6 in. each way. The wheels should be about 2 ft .9 in . high; this would bring the top of the cart about 3 ft .3 in . from the ground line. To make the cart more nseful, portable boards may be fitted round by placing small iron staples on the outside of the frame, and irons on the boards, the irons being so made as to slip into the staples.

Why the Welsbach Mantle gives Light.-The tem. perature of the incandescent bodies with which a Welsbach mantle is impregnated may be assumed as being about $3500^{\circ} \mathrm{F}$. The quality of the light depends to a certain extent on the amount of air admitted, which should be just sufficient to ensure combustion of the gas; the burners employed are constructed ou this principle. The quality of the light in an incan. descent burner depends on the raising of the finely divided rare earths (thoria, ceria, etc.) to the highest degree of incandescence by the agency of a Bunsen burner, which is constructed in such a manner that the amount of air and gas supplied to the burner are in the proportion which will yield a non-luminous flame and give out sufficient heat to effect the object required.

Stereoscope for Holding a Number of Views.-A simple effective stereoscope for exhibiting a large number of view is shown in the accompanying sketch. The apparatus consists of a box A with sliding adjustment along a wood strip B similar to the usual form

Stereoscope for Holding a Number of Views.
of cheap stereoscope. At the back of the box at c are two spiral springs which sink into a recess. By these springs the tront picture is kept in position, whatever number of views the box may contain. Acrobs the front of the box is a rod D worked by a handle E. With this rod turn two rubber-tyred wheels F, one on each side. To use the apparatus, the box is filled with pictures (which should be pasted on thin mounts), and the focus is adjusted for the front picture, which is removed as soon asitis done with by turning the handle in the direction indicated, when the wheels F drag the pictare out of the way and it falls into the top. The next picture, pressed forward by the spring, is already in position. This apparatus might easily be constructed in pedestal form if the focal adjustment is effected by means of a long screw with a handle and an nut in the bottom of the box. The changing handle would, of course, be fixed outside by lengthening the rod D.
Depositing Nickel on Wax Moulds.-Before nickel can be deposited on a wax mould so as to get a smooth sheet it is necessary to prepare the mould with blacklead or with bronze powder as for the electrotype process, and first deposit on it a thin film of copper in an electrotype bolution. If the object desired is a copy of a design impressed on the face of the mould, it will be advisable to remove the mould to the nickel vat when it has become coated with a very thin film of copper, and deposit the nickel on this film, If the design is not undercut, it may be possible to peel off the film of copper from the nickel; but some difficulty may be experienced in getting a deposit of nickel thick enough to form a plate or sheet, as thick deposits have a tendency to crack, curl up, and peel off. To get a tough coat, the nickel should be deposited slowly with a low-tension current.
Cutting the Top off a Stoneware Jar.-In cutting the top off a stoneware pickle jar, first make an ink mark right round the jar at the place where it is to be cut; then with a new triaugular file wetted with turpentine make a mark over the ink mark, cutting through the glaze. Enlarge the file mark with a rasp, lubricating with turpentine. It is better to cut through the jar with the rasp, but as this process is very tedious, after cutting halfway throngh stand the jar in water up to the file mark, and with a chisel and hammer tap on the file mark until the top comes off.

Making Rubber Solution. - With a sharp knife wetted, cut into thin slices loz. of pure Para rubber. Place it in a wide-mouthed bottle, cover it with carbon bisulphide or benzene (coal-tar apaphtha), and cork down. Next day the rubber wlll have ewollen constderably and have absorhed most of the liquid; pour on more liquid, and continue the addition until a thick finid is obtained. One ounce of ruhber will make ahout 1 pt . of solution, which is used asa cement for rubher goode.

Making a Safety Guard for a Circular Saw.-The lability to accident by timber heing thrown from the ctrcular saw has necessitated the provision of safety guards. The guard about to he described is simple in construction, efficient, and comparatively in expensive. Fig. I of the accompanying illnstrationsehows a saw bench fith a suitable guard fixed in position; A is the bench, B the saw, C the fence, D a pillar, E radial arm, F the guard hung to the arm and secured by means of a small pin G. The radial arm is held in position by means of a setscrew H. By easing this screw the guard may he turned back out of the way while screws are being changed, or while a saw is being topped in the bench. Immediately underneath the secket of the radial arm there is a collar washer J, which is also held in place by means of a setscrew K. The advantage of this washer is that when the
radial arm, thus securing the guard to the arm. Hole should also be drilled at the ends to secure the piece to the guard by means of emall rivets or holte, shown at Q (Fig. 1), passed through holes in the guard and riveted, or the nuts screwed up tightly, as the case may be. A piece of wood tin, or in. thick ls now shaped as shown at R (Fig. 1) ; the bent piece of iron or guard is screwred to thle. This piece of wood not only protects the saw but also makes the guard more rigid. The guard is now completed, and when shlfting guards, all that has to be done is to withdraw the pin G, place the other guard on the arm, and insert the pin lower, or raise the guard, as the case may be, to sult the diameter of saw or depth of piece that is being sawn.
Turned Wood Case for a Drum Clockr. The useful and ornamental clock case illustrated below is in three separate mouldings A, B, C, and is thus much easier to turn than if it were all in one piece. It can be made in satin walnut, mahogany, oak, ete., but the first is very easy to work, cheap, and, when polished, looks well. Start with the moulding marked A, the

Making a Safety Guard for a Circular Saw.
set-screw that secures the radial arm is eased, the washer prevents the socket of the arm from sllding down the pillar. If there were no washer, the left hand would have to be used for holding the arm so as to prevent it sliding down the pillar, when the guard would drop on to the saw. L indicates a piece of timber partly cut hy the suw. It will be seen that the guard does not come dows on to the piece that is being sawn. The sawyer is theretore able to see the tooth in the cut. This is au important point; for if nothing can be seen of the teeth or cut (as is the case with some guards), it is impossible for the sawyer to see whether the saw is making a true course or not. It will also be seen that this guard may be raised or lowered to euit timber of different depths. There should be two or three guards of different sizes There should be two or three chards of difierent sizes answer for all the gnards. The iron pillar D (Fig. 1, and Illustrated hy Fig. 2) should be of suitable length, and about lit in. in diameter. At M there is a shoulder that rests square on the top of the table. The part N is square, and there is a cotter-way 0 to receive a small cotter. Near the onter edge of the table a \quad quare hole is made by first boring a bole and then filing it aquare. The square part N of the pillar should fit nicely in this hole. A cotiter is then driven in the cotter-way, which holds the pillar tirmly in position. The square prevents the pillar from turning in any direction. The guard F (Fíg. 1) is a piece of wrought iron about $1 \frac{1}{8}$ in, wide by $5{ }^{3} \mathrm{in}$. thick, and of suitable length, and drilled to receive the necessary screws and rivets, or small bolts with nuts (see Flg. I). This piece of iron is bent to the required curve. A piece of iron is now made to the shape shown at P (Fig. 1), or any convenient shape. A hole is made at the centre to receive the radial arm E , and another bole drilled at the top down through the centre to receive a pin that passes down through it and the

Turned Wood Case for a Drum Clock.

wood for which should be 1 in. thick. The back is first planed or turned fiat, and the block is then placed on the screw chuck and the outside turned and finished with glasspaper. Then with pencil or compasses strike a circle $6 \frac{1}{2}$ in. in diameter and cut right through on the line with a thin parting tool; this inside piece will then be large enough for the top moulding C. The middle moulding B should be made in the same way. For the top monlding c turn and finish the outside, and hore to $3 \frac{7}{8}$ in. for the inside lip at $D, \frac{3}{1 \pi}$ in. long. Theu place the moulding in a hollow chuck and bore it out to 4 in in. by $\frac{1}{1} \frac{5}{0}$ in. deep. The sizes given are for the globe drum clocks, costing a shilling or $\theta 0$ each. Of course, the inside measurements must be varied according to the size of clock to be fitted. The three mouldings are glued together, three screws latin. long being put through a into B, and three through 13 into C. Ungerew the ring and lege from the clock, and drive soft wood pege in place to keep the works from slipping. A ring E, which jnst overlaps the edge of the clock and fills the apace, is not glued in but is held in position by three screws, bo that the clock can be removed at any time if required for repairs, eto. A brass plate screwed on the back for hanging the clock completes the case.

BIack Streaks in Nichel-plating.-Black streaks in deposits of nickel are caused by bubbles of hydregen gas, whlch form in clusters on the surlaces of articles and then hurst. They may be prevented by gently agitating the articlee whilst being plated, or by strokingthe clustere with a stout feather and thus bursting them.

They appear frequently when nickel solutions have not bsen agitated for some time, and have consequently settled in a stratified condition. It is therefore advisable to stir the solutions occasionally in the evenings, and thus thoroughly mix the contents.
Fitting a Wateh Elairgpring.-In applying a new bairspring to a watch, the centre coils are broken out, about a quarter of a turn at a time, until there is room for the collet. The effect of this upon the time of the watch can be neglected, as the actual length of thering removed is so small. Now bend a length of apring removed is so small. Now bend a Place the collet, right way up, on a broach, and push it on tightly; hold the broach in the left hand, pass the hairspring down the broach, and with the tweezers in the right haud, insert the end of the spring in to the hole in the collet. Lay the broach down, with the collet and spring on, and file up a brass pin to fit. Then fix it in and break off the pin, which should previously be half cut through with a pocket-knife.
Mounting Stereascopic Photographe.-It is sometimes the case when viewing mouuted stsreoscopic prints that the objects in the background, when seen through the stereoscops, appsar in front of the picture. The cause of this may be gathered from a consideration of the following principles. Let AB (Fig. 1) represent a pyramid and o the lens-board of a camera, with lenses D 'and G forming inverted images R and L on the plate P. Supposing the operator to be standing behind the plate, the image formed by D at B will be similar to that seen by the right eye, and the image formed by G at L similar to that seen by the left eye. Now if a print be taken from this negative by placing a sheet of seusitive paper against the film it will be like

Fig. 2-that 1s, the Ieft-hand view as seen by the left eye will now be on the right, because the images have been turned the right way up. Practically, the reason why the distant objects coms forward is that the right eye is looking at the left eye view, and vice versa, owing to the two views not having been transposed in mounting. In mounting stereoscopic prints, to prevent confusion, lay them face down, and run a short line across the back of the paper where the two prints join (see Fig. 2). Trim straight across the two prints for the base line and for the top. Now cut the prints in half and trim to about 2 in in. square, leaving on the right of the right-hand print in more of the picture than appears on the left-hand print and on the feit of the left-hand print $\frac{1}{4}$ in. more of the picture than appears on the right-hand print. Now mount the prints about inin. apart, with the hall-lines on the outsids of the print instead of being joined as they were before the print was cut.
Cubing Round Timber.-Ths easiest way of measuring. round timber, to get the solid contents, is to take one-fourth of the middle girth of the timber in inches, square this dimension, multiply by the length in feet, and divide by l44; the result is the reputed cubic contents. If the bark is on, make an allowance for it by deducting lin. per foot from the actual girth before dividing by 4. Example: Round log of oak 20 ft . long, 18 in. diameter one end and $12 i n$ the other, girth 48 in . Then 48 in . $=4 \mathrm{ft}$., 1 in . per foot $=4 \mathrm{in}$., and $48^{-4}=44 \mathrm{in}$. quarter girth $=11 \mathrm{in} ., 11$ squared $=11 \times 11=121$, and $121 \times 20=2,420$. Then $\frac{2,420}{144}=168$, say 17 cub . ft.
Copper-plating Model Boat.-Instructions are here given on copper-plating a boat made partly of metal and partly of wood. First well soak the woodwork of the boat in linseed oil to close all the poresand prevent the copper solution penetrating the wood; then expose it to the air for a day or two to oxidise and harden the oil. The part to be coppered must now be coated with blacklead, well brushed in and polished. On this coating the copper will be deposited, therefore the connecting wires must be in close contact with it at several points. Dissolve
copper sulphate crystals in hot rain water until the water is saturated with copper, and will not dissolve any mole. Allow this to get cold, then add 4 fluid ounces of sulphuric acld to each gallon or solution. Use anode plates of pure copper connected to the copper elements of the battery. Work the solution cold with current from two Daniell cells of $\frac{1}{2}$-gal. capacity. Connect the cells in series (copper of one to zinc of next) to start the deposit, and when the boat is covered with a thin film of copper connect the cells in parallel to finish.
Cutting Shoe Finishers' Irons,-Irons for ironing up the edges of boots and shoes are of various forms, a few of which are shown in the illustrations. They will serve as examples of how irons should be made and recut. The iron is of such importance to the fuishing of all classes of work that it is worth while to learn how to cut kit, as it is called, especially by those who are at a distance from any large town If new irons are to be made, stocks for them must be procured; these stocks are oblong pieces of aquared iron, which are ultimately shaped as shown in Fige. 1, 2, 3, and 4, each iron having a stem at the bottom that can be driven into a handle. The better way however, is to buy the irons already shaped, qs they are very cheap, and then a careful recutting pruduces a good iron. Stocks for some of the smaller irons can be made from the butt or shank ends of files or rasps. A small vice and the necessary files are the tools required. Fig. 1, in which the crease or indentation B produces a bead on the edge of the sole, can be made like all irons of that kind, single and double, in sets in various sizes. The sime remark applies to Fig. 2, but in the latter an indentation or crease is thrown upon the welt side. If these two irons are combined in one, the crease at Fig. 1 being placed at C in Fig. 2, a double iron is produced, and a set of such irons would be very useful. They can run up to almost any size, by widening the

space between 0 and D (Fig. 2) from $\frac{1}{s}$ in. upwards, increasing the space by $\frac{1}{3 \pi}$ in. for each size, Fig. 3 is increasing the space by $\frac{1}{3}$ in. for each size. Fig. 3 is shows a double pump iron, which is made to fit two thicknesses of edges; it is, in fact, two irons in one, and being larger than one iron only, it retains heat for a longer time. In Fig. 4 the curve marked F can be modined ass required; being a waist iron, it is used to set up edges of all kinds, some of which ars thin and square others round, and others of various angles. The fllee can be bought in sets; they are called kit files, and can bs obtained probably at almost any leather grindery stores. These files consist of a four-cornered file, a flat four-sided bastard file, a tapered file, a knife-shaped file, a small rat-tail file, and a triangular file. Jewellers' files of various shapes may also be used, and they come in very handy for cutting different fancy ehapes. The rough eutting can be dons with coarse files, and the finishing of the shaping process with finer files, a last touch being given with frocess wit files. When the proper shape has been obtained the creases can be cut, or the beads squared up with the tapered file, the knife-shaped file, and the small rat-tail file, and the square beads finished with the triangular file. So far, the iron has only been shaped up and roughly finished as far as files can do it; the final finishing and polishing are done with emery powder. Coarse, medium, and flour emery are mixed with oil, the paste being smeared on pieces of leather and the iron rubbed, upon it; the coarse emery is followed by the medium and then by the flour emery, the finishing being done with dry fiour emery. If the iron is for setting up a stout edge, several pieces of leather are mailed together, and the emery smeared on the topmost one. During the filing operations the greatest care must be taken not to wear away the creases and beads.

Fireproofing Theatre Scenery.-In 3 gal. of water dissolve 1 lb . of alum. With a stock brush thoroughly soak the stretched canvas curtains or other fabric, leaving no part unbrushed. When thoroughly dry, prime in for painting. Another solution consiste of 10 per cent. sodium tungstate. Apply as above, and when dry prime in.

Ghost Illusion for Amateur Theatricals. - Paint on canvas a scene representing a room or library, and showing a bookcase. The part of the bookcase that would contain the ehelves and booke must be cut out of the cauras, the framework only being left, and this framework must be so painted as to have a solid, substantial appearance. The canvas that has been cut out must be replaced by a black net or graze, and the shelves and books must be painted on the gauze, so that shelves and books must be painted on the gauze, so that
when lighted up from the front the bookcase will apWhen lighted up from the front the bookcase will ap-
pear complete. Behind the ganze and close to it the movable cat cloth is hung. This is a piece of canvas dead black in colour, 12 in. larger all ronnd than the cutout portion of the bookcase. The ghost or vision stands behind the cat cloth. The light is new turned down in the soene so that the room is darkened, and at the same time a good light is turned on at the back, and is so arranged that it falls on the front of the figure either arranged that it falls on the front of the figure either darkening the scene and turning up the lighto behind the cat cloth must be pulled up or drawn on one side, and the ghost scene is complete. With judicious management this will answer for tableaux by adding accebsories on a large or small scale as may be necessary.
A. Simple Sledge.-The accompanying illustration shows an sledge for two persons; it can, however, he shortened to accommodate one person only. It is 5 ft . long, 1 ft .5 in . wide, and $1 \mathrm{ft} .4 \frac{1}{8} \mathrm{in}$. deep, and should be made of red wood, being afterwards painted. The eldes A are mortised to receive three raile B, which bind eldes A are mortised to receive three raile B, which bind
them together ; the rails are 3 in . broad. The sides 0 of them together; the rails are 3 in. broad. The sides of of and the seats D are nailed down. To stiffen the seats and frame, iron bands sheuld be inserted, one below each sest, each being long enough to allow a serew to be inserted in the runner. A half-round iron strap is carried along the under edge of the runner, and
dull surface for the next coat, as if two coats were put on without flatting the top coat would "ciss" up and 日poil it. If only one coat of japan is given, the carriage, etc., will now be ready for lining out; for this, camel- or azble-hair pencils, called fine-liners, and picking-out pencils are used. The colour (vermilion) should be mixed in a ismall dipper with gold size or varnish to a creamy thickness. Another small pot varnish to a creamy thickness. Another smant pot
contains clear turps. The pencil is dipped into the containe clear turps. palette; then, holding the pencil between the foretinger and thumb, and using the other flngers as guldes, line out as required. When dry, well clean the whole with a sponge, and give the underworks and wheels a light coat of carriage varnish, and the body a coat of under-coating body varnish. After standing two days well flat the whole as the japan was done, being careful to get out every particle of pumice dust from the corners and crevices, using water freely; then thoroughly dry off, and give the bodr a good full coat of finishing body varnish, and the under carriage, etc., a coat of pale carriage varnish, putting sufficient on to obtain a good finish without getting runs. To make a suocespful job, the carrisge should be done in a light, roomy place, free from draughts, and kept at a temperature of about $75^{\circ} \mathrm{F}$,
Stump Moulding.-The following supplements the information on stump moulding given on p. 36. Stump moulding is so called because the moulder works on a small bench called a "etump." The box parts used are about 18 in. вquare and 3in. deep. The best are of mahogany or other hard wood to combine lightness and etrength; they are hinged at one corner, and have a fastening at the opposite corner, as at A in the accompanying illuatration. The hinges and fittinge

A Slmple Sledge.
curled round in the front to form a loop, as at E, to which may be attached the hauling ropes. The follow. ing is the quantity of stuff required. Two pieces, 5 ft . by 4 in in. by $\frac{7}{1} \mathrm{in}$.; three pieces, 1 ft .5 in . by 3 in . by 7 in ; four pieces, 11 in. by 9 in . by ${ }^{\text {fin. }}$; aud two pieces, 1 pt ; 64 in . by 10 in . by ${ }^{5} \mathrm{in}$. The following are the positions of the rails and seats. From the nose of the sledge to the first rall is 6 in. ; from the inside edge of this rail to the front of the seat is 7in.; the centre rail is immediately in the centre of the sieddge, and the second seat 7 in. from this rail; the back rail is 6 in . from the end.
Palnting and Varnishing a Phaeton.-It is supposed that a phaeton is to be repainted black and picked out in red, and then varnished. If the paint is cracked very much, the best plan will be to remove it by means of a gas jet or burning lamp and an old plane-iron. The vehicle may then be filled up and painted. If the paint has only cracked through the varnish, rub it down to the colour with pumice etone and water, then clean off thoroughly with pumice stone and water, then cleat of colour made of tub white lead and a and give a coat of colour made of tub white lead and a
small portion of driers and lamphlack, mixed etiti. with smaw lingeed oil and thinned down with turpe; this should dry in about ten hours, but should be allowed to stand a day longer to get hard. In the meantime the wheels, under cartiage, etc., should be well rubbed down with glasspaper, and a coat of lead colour applied as sbove. Any holes or dents in the body should now be filled with a 日topper made of dry white lead, gold size, and black japan, beaten up stiffi with a mallet or hammer; and the wheela, carriage, and bhafto puttied no where required, and afterwards lightly sandpapered oll. The body, when the stopper is hard, is faced over very lightly with pumice stoneand water to take out the brush marks in the lead celour, after which the whole is given a coat of ground drop black, thinned with turpe and varnish; this should dry in about iour hours. Then add a good drop of black japan to some of the dead black prediously uned, and give another coat; Iet thie stand for a day, then give a good hard sponging off, ready for the first coat of japan. If the work is to be flnished in a first-class manner, a second cont of japan is necessary but before applying thls the first coat must be flatted down with pumice dust and water on a pad of cloth to remove any nibs which may exist, and to make a

Box for Stump Moulding.
may be of brass. The other two corners of the box are dovetalled together. The box partsare fitted together in pairs, the bottom part being made to take the pegs B. The moulder take the bottom part, brings the ends A together, and becures them. He rams it up on a pattern plate or an oddside, and then rams the other box with the top part on the other side of the pattern plate or the other oddside. The two box parts are then put together and moved off the bench or stump to the fioor. The corner A is unfastened, and the box parts are opened and removed, leaving the sand mould on the floor ready for pouring in the iron. It will be seen that only one pair of box parts will be required to make any quantity of moulds on this principle. Of courge, this method is only suitable for use in casting comparatively amsll articles such as cast heel-tips for boots.

Colouring Gold.-The following pickle has been found very batisfactory for imparting a rich colour to gold rings, scarf-pins, etc. Alum (pewdered) 1 oz., common aalt 1 oz ., saltpetre 2 oz ., and water 10 oz . Wash the artlcle to be coloured in warm water to which a few drops (asy fifteen to twenty drops to a breaktast-cup full of wster of ammonia have been added, using a soft brush and soap. Rinee in cold water, and dry in hot eawdust. Then immerse the article in the pickle for about two minutes, aud again dry in hot sawdust. Finally polish with rouge.
Fints on the Use of a Kodak.-The ordinary pookeb kodak takes pictures 2 in . by litin., and the folding and newer kodak takes pictures $3 \leqslant \mathrm{in}$. by 21 in. When closed, the folding kodak measures only 151 n , in thickness. These cameras, having a fixed focus (that is, allowing of no adjustment of the focus for near objects at different distances), are unsuitable for any but fairly distant views, where the variation in focus is very considerably less than with near objects at varying distances, because everything heyond a oertain distance ls more or lees in focus. Thls result is obtained with a short focus lens and a small stop, but as the latter means long exposure, and as short ones are essential to good hand camera work, the fixed focus patterne cannot abtogether be recommended.

Portable Dog-kennel.-One-inch grooved and tongued boards 6 in. wide is a suitable material of which to make the portabls dog-kennel illustrated by Fig. 1. The boards of the sides should he nailed to a litin. by 2-in. ledge at the top and a 3 -in. by $1 \frac{1}{3}-i n$. ledge at the bottom íeee K and L, Fig. 2). The boards of the front and back should be nailed to similar ledges, as shown at E and F (Fig. 1). The boarde forming each sids of the root should he nailed to the thres bearers M, N, and 0 (Fif. 2). Fig. 3 shows the construction of the floor. It will be geen that the kennel will be composed of seven main pieces. A fillet ahout litin. by linin. should be nailed to each end of ths sides, as shown in the longitudinal section (Fig. 2), and also by the enlarged section (Fig. 4) ; this is taken through A (Fig. 1). B (Fig. 4)
slsting of 1 part of nitrate of tin and 2 parts of chlorlds of gold dissolved in a little water and acid. Remove the article and wipe $j t$ with a clean linen rag. A olight excess of acid will increase the intensity of the black. The following method will alco be found very good, and is the same as that adopted in oxidising silver articlee. Give the article a light sllver-plating by depositlon, in a similar manner to ordinary cheap electro-plated goode. Then prepare a solution made as follows. Dissolve in Then prepare a solution made as follows. Dissolve in nitrate of potash, and 2 dwt. of muriate of ammonia. After warming the articles, apply ths solution with a camel-hair pencil or immerse in the bath, then expose them to the fumes of sulphur in a closed hox. This may readily be done by placing in a tin biscuit-box a red hot

shows a portion of the boarding of the side with the angle fillet D nailed to it. The front and back can be fixed to the sides by eight $2 \frac{1}{4}$ in. by $\frac{5}{8}$-in. bolts and nuts, as shown at Fige. 1 and 2, and indicated by the eection, Fig. 4. Each half of the roof can he fixed to the ends hy eight bolts and nuts in a similar manner. The foor will rest on the ledges G and H (Fig. 2) round the bottom of the boarding. The roof should be covered with felt.
Blàckening Brass.-One method of blackening brass is as follows. Dip the article in a bath consisting of 1 part of sulphate of iron and 1 part of white arsenic dissolved in 12 parts of hydrochloric acid. When the article has become sufficiently black, rinse it well in several changes of cold water to remove the acid, dry in sawdust, and polish with blacklead; it may then be lacquered with a pale lacquer. Another method, and one more generally adopted, although somewhat more expensive, is as follows. Well polish the article with tripoli, and afterwards wash it woll in a mixture con-

Portable Dog-kennel.
iron bowl, such as the bowl off a small lead ladle, in which are a few pieces of culphur. Hang tine articles on a rod across the tin, and close the lid. It will be necessary to do this where there is a fairly good draught to carry off the sulphur fumes.

Tempering Gun Springs,-In tempering springs for guns and revolvers, make the springs red hot (be careful not to overheat them), then plunge them into cold water. Take them out, warm them over the fire, ruh with suet, blaze them oper a clear forge fire, and let them cool. The loregoing operation requires considerable practice to produce a desirable temper.

Making Pipe-eye Scroll-irons.-Coachsmiths' barrel heads of scroll-irons, or pipe-eye scroll-irons, are usually made as follows. For an ordinary sized one having an oval stem, take a piece of square edge iron lin. by $\frac{3}{4}$ in. and well upset one end, making it rather wider than it is thick, setting it in slightly about lo in. from the end to help in forming the eye, and round it off a little. Then make hot a piece of flat iron it in. by in. or $\frac{a}{}$ in. thick, according to the width of pipeeye required, and with the top and bottom fullers eet it in to make a round boss; nearly ent it through at the narrow part with the gouge, and weld it on one side of the Iron already upset. Make another boss, and repeat the weld for the other side, at the same time working the pipe-eye to shape and size, and working up the ofal close to the eye with the fuller so as not to cut in, afterwards using top and bottom oval tools. When the eye is something like the desired shape, punch a small sin. hole throngh the centre, gradually making the hole the required size with a steel mandril and working up the round eye in top and bottom tools.

Detachable Lath for Table Top. - The drawings herewith show a simple and effective arrangement for holding a lath to a table top. A cleat A (Figs. 1 and 2) is fixed to the end of the lath B by a couple of screws, as indicated, the cleat and lath being held to the table top by inserting a wedge W, as shown. Fig. 3 is a view

Lath attached to Table Top.
half turns; the time registered would be the same. The average good threequarter-plate English lever watch, when lying down, has a balance arc of about one and a quarter to one and a half turns, and makes what are termed "long arce." When hanging up it will make about a quarter of a turn less, say one turn to one and a quarter turns, on account of the greater friction at the balance pivots when in that position. The balance then rests upon the sides of the two pivots instead of leesting on the end of one, as in lying down. The watch then makes "short arce." Obviously, if the short arcs are slow, the watch will go slower when worn in the pocket than when lying on the dressing table at night. But if the hairspring is isochronous, causing the long and short arcs to be performed in equal times, there would be no difference in the timekeeping, whether the watch was worn in the pocket or was kept lying down. Ordinary watches with halrspringe that have not been thus manipulated will lose about one minute per day in the pocket more than when lying down, the short arcs being then known as "sixty seconds slow," To test a watch for this error, set it on time by a regulator, noting its rate lying dial up for twenty-four hours. T1en place it nine o'clock up for twelve hours and three o'clock up for twelve hours, and the sum of these two last positions will be itb rate for the short ares, while the flrst twenty-four hours' run will give its rate for the long arce.
Pattern for Saddle-shaped Boller.-A pattern for a saddle-shaped cast-iron boiler made as follows will answer for moulding in green sand. Prepare two substantial blocks A (Fig. 1) made to the inner contour of the casting. To these blocks nail or screw two pieces B and a piece C, all the pieces being made

of the cleat; this and the wedge should be made of hardwood.
Calculating Weight, etc., of Copper and Iron Wires. - In calculating the sectional areas of wires, the diameter in inches corresponding to the number of the gauge of the wire must first be determined, and this can be got only from tables. Then to find the area of cross-section in square inches, square the diameter in inches (that is, multiply it by 1tself), and multiply by -7854 . To find the weight in pounds of a single wire, multiply the crosi-section, determined as just described, by the length in inches and by 28 for iron or by 31 for copper. Io determine approximately the weight in pounds of a strauded cable, multiply the weight of the length of single wire by the number of wires in the strand.
Timing of Watch Hairsprings,-The vibrations of a watch balance occupy exactly equal times (with an average hairspring) only when they are exactly equal in extent. For instance, in a watch with an ordinary flat hairspring, the balance vibrating exactly one whole turn, and going to time lying down, if the power be increased so as to make tbe vibrations of the halance one and a quarter turns, the watch will no longer be quite on time, but will either lose or galn-probably the latter. In such a case it may be sald that the short aros (one turn) are slower than the long arcs (one and a quarter turue). But in the case of a breguet hairspring (with an overcoll), the spring can be so manipulated as to reuder the long and short ares of the balance isochronous-that le, performed in equal times. In euch a watch it would not matter whether the balance vibrated one turn or one and a
to the thlckness of the metal; \mathbf{C} should be saw-kerfed, so that it will bend to the required curve. On each end of B and C fasten D, and two strip E, running the whole length of the pattern. Finally attach \bar{n} ing screws, which may be released to facilitate removal of the core, which is rammed inside the pattern. The pieces F should be stiffened by removable battens to prevent the ramming bulping the pieces outward. The. open part of the core is strickled to shape by a straight strip of wood G (Fig. 2) shouldered down to the thickness of the metal, and guided by and working between the two segments D (Fig. 1). When the mould is to be two segments D (Fig. 1). When the mould is to battens used for stiffening the pieces F (Fig. 1) are removed. The inside of the pattern is then filled with sand and strickled off level with the convex edges of the segments. The latter is done with the flush edge of the strickle G (Fig. 2). After withidrawing the pattern, the stiffening blocke (Flg .1) are stopped off by filling up the spaces left by them in the eand. The core must be supported in the mould by studs or chaplets, must provision must be made for securing the vent of the core through branches or openings on the oastlig. Any branch on the casting not occurring at the sunction of the straight and curved parts of the metal should bs left loose, so that it may be taken nway on a draw-back plate. Shallow bosses or lacloge should also be loose. All external edges of the casting should be well rounded. Fig. 3 shows the finished pattern.

Coloured Cement Floor. - In making a coloured cement floor 2 parts of Portland cement by measure are mixed with 3 parts of sand. Before adding the water, mix with it a little red oxids of iron. The exact quantity of oxide to use will depend on tho depth of colour required, and must be found by experiment.

Particulare of Canada Balsam.-Canada balsam is a sticky, yellowish-white material, with an odour somewhat resembling turpentine, it is a crude turpentine, obtained by puncturing pine trees (Pinus canariensis), and is similar to the other forms of crude turpentine obtained from Pinus sylvestris and Plnus maritima. On heating it, the volatile portion passes off, leaving a hard resin which is used as a waterproof cement for glass, etc., and for mounting specimens for the microgcope ; for the latter purpose it ls dissolved in chloroform.

Brush for Enamel Paint.-A hog's-hair lather brush for which a barber has no further use is best for applying enamel paint. Having been constantly in hot water, the bristles are eplit fine so that no hair marks will be left when applying the enamol. Neither mops nor fitches are of any use ior the purpose; the latter are employed in general painting for touching up, filling in, cutting in, and lining. A fitch can be soltened in hot water.

Setting-out the Bevel of a Fip Rafter.-Below is given a method of finding backing to hips. Set out to scale the line of the pitch of the roof as shown at ABC (Fip. 1), and a portion of the plan DEFG; EG will oe the plan of the hip. At right angles to $m \in G$ eet up $G H$, making it the same length as the height $B C$, then

录His the pitch of the hip. In FG take any point, as K , and at right angles to this line draw DF through K. With K as centre draw the are $L M$ tangent to $\mathbf{L H}$ as shown, join Mn, which is the angle of the backing. Set the bevel to the drawing as shown. Fig. 2 is a sketch showing the bevel being applied to the hip. A drawing as shown at Fig. 1 can be sketched on a board to about lin. scale on a building, and it will be found to take up much less time than the rule-of-thumb method of guess and trial. if work is to be done properly and without mistakes, time must be allowed to set it out. There is no other proper way.

Re-tinning Copper Vessels.-The object of tinning copper stewpans is to prevent chemical action on the copper, which may be injurious to health. It also gives a much better appearance to copper cooking utensils, besides facilitating their being kept clean. To ensure success in re-tinning, the article must be perfectly free from grease or dirt-in fact, it must be chemically clean. For this purpose, first burn off all grease and dirt over a forge fre or with a blow-pipe grease and dirt over a the article is heated to a dull red colour, being untilicular where the handles are riveted on. Now wipe out the inside with a small pad of tow, and set down to cool, and when' cold, thoroughly scour the inside with wet rough sand or powdered coke until it becomes clean and bright. If the dirt has eaten into the metal, or if the surface is very black, wash it with raw spirit of sailts (hydrochloric acid), using a piece of tow tied to the end of a short stick. Rinse with cold water, and then scour bright. When perfectly bright, wash the article
well with cold water, taking care that no grit or sand remains inside, and then dust the inside with powdered salammoniac. The outside must be prepared by coating it with a mixture of salt and whiting; which should be of the consistency of cream ; this prevents any tin adhering to the outside. If the top of the outside requires to be to the outside. If the top of the outside requires to be new stewpans, it should be thoroughly cleaned as before explained. A band of tin 1 in. deep should be tightly held round the top of the stewpan, while the mixture of salt and whiting is rubbed over the stewpan below the band. Now remove the band, and dust the bright surface of the stewpan, formerly covered with the tin band, with sal-ammoniac. A rubber, by which the molten tin is manipulated over the copper surface, is made as follows. Coil the end of a piece of $\frac{\alpha}{4}$-in. wire, about 18 in. long, until it is about 2 in. in diameter, and tin the coil by soaking it in raw spirit of salts for some time, and then dipping it in a saturated solution of salammoniac and killed spirit (chloride of zinc), and rubbing whilst hot on block tin or tinman's solder. Place the stewpanor raforge fire, and in it drop a emall quantity of pure block tin; the amount of tin depende on the size of the vessel. The tin will soon melt, after which it must be rubbed over the copper with the rubber until the surface of the copper alloys with the tin. Any difficulty in getting this result may be overcome by repeatedly and alternately dusting with powdered sal-ammoniac and vigorously rubbing over the tin with the rubber. The top of the outside of the pan may be more easily tinned with a soldering iron, the solution of sal-ammoniac and chloride of zinc being used instead of the powdered

Setting-out the Bevel of a Hip Rafter.
sal-ammoniac. Care should be taken that the article is not allowed to get too hot. The maximum heat is obtained when the molten tin can be rinsed round the inside of the article. The molten tin is then quickly emptied out into another pan, if more than one is to be tinned, and the pan quickly wiped out with a pad of clean tow, which will remove any superfiuous tin, after which it mnst be suddenly plunged into a vesisel of cold clean water, and then dried by rubbing with clean hot sawdust. When pouring molten tin from one pan into another, great care chould be taken in seeing that the pan into which it is to be poured is perfectly dry and warm, otherwise the possibility of the tin flying will make the operation highly dangerous. If a stewpan, ladle, spoon, or strainer requires to be tinned all over inside and out, it should be thoronghly cleaned, and the inside and outside should then be treated with saturated solution of sal-ammoniac and killed spirit of salts, and then dusted over with powdered sal-ammoniac. A vessel containing molten tin should now be in readiness, into which the article should be carefully plunged and washed. The article is then wiped with tow, plunged in cold cleau water, dried with hot sawdust, and polished with whiting.

Develoving Negative Films.-Nothing will prevent films curling during development, unless some mechanical means of keeping flat the film is adopted. A very good plan, however, with emall films such. as those of pocket kodaks is to roll the film, with the sensitised side outwards, round a bottle, the film being held in place with circular rubber bands; the bottle is then revolved in a deep dish well filled with developing solution. Such treatment does not of cource permit errors of exposure to be corrected during development. Special frames are made for printing from films, but ordinary frames can be used, the film being laid on glass.

Cyclopædia

Painting Cardboard for Slate Pencll Writing.The composition for painting cardboard so as to produce a surface that can be written on with slate pencll is similar to that used for blackboards. Four ounces of shellac should be dissolved in 1 qt . of methylated spirit, and then ground with $1 t$ oz. of flour emery, 2 oz. of pory black, and 1 oz . of ultramarine blue. Other blackboard dressings are given on p. 230. Before ueing, the eolution should be thoroughly shaken; a little is then poured out into a dish and evenly applied with a brush. Two or more coats will be required. If the cardboard is very porous, a coat of very thin eize may first be applied.

Ordnance Datum. - The Ordnance datum is an imaginary horizontal plane extending over the whole country at the same height as the average mean level of the sea at Liverpool. This datum was fixed by the surveyors of the Ordnance Department, and the levels of districts are marked on the Ordnance maps as being so many feet above the Ordnance datum, that is, above the average sea-level at Liverpool. The accompanying illustration shows a small portion of the $\frac{1}{0} \frac{1}{0}$ Ordnance

Ordnance Datum.
map. At the corner of the house a bench-mark has been cut (these are usually about 1 ft .6 in . above the surface of the ground), and the figures indicate that the point is at a height of 89.55 ft . above Ordnance datum. The figure in the roadway indicates that the road at that point is about 87.7 ft above the datum, the second place of decimals not being given.

Polishing Brass Tnbe.-Brass tubes are prepared for polishing by being floated with affle, the teeth of which act as cutters and take otl the top skin of the metal. Instead of fioating, the tubee may be polished by grinding with an emery wheel of about 150 fineness. This wheel, 12 in . in diameter, is flxed on the end of the polishing spindle by means of a false nose, the wheel being held in place by a nut screwed tight on the end of the thread of the upindle. On the bench is fixed a large compound sliderest with an arrangement to carry the tube a table is placed both in front and at back of the elide-reet to prevent the tube bobbing about. The advantage of the slide-rest is that any size of tube from $\frac{s}{4} 1 \mathrm{n}$. to 2 in . may be ground by simply raising or lowering the tool-holder and the tube carrier. The tube is placed on the carrier and adjusted till there is the slightest pressure or allowance for grinding by the wheel. The side of the wheel, not the edge, is used to grind with, and the tube is paseed between the rest and the wheel, which takes off from the tube, with a circular motion, the thinnest possible amount of brass. Each side is served in this manner.

of Mechanics.

Thbee are ground much more quickly by thie method than by hand fioating. After grinding, the tubee are treated with ordinary polishing gand and finally finished off with the ordinary cotton mop and compo. The mope. off with the ordinary cotton mop and compo. of stitching should be closely sewu together, the rows of gtitchine by bolting together with four ordinary snap-bead, squareshank $\frac{1}{6} \mathrm{in}$. diameter iron pins with nuts.
Cleaning Paraffin Barrel.-Paraffin oil cannot be removed from the pores of a wooden barrel by chemical means. If the barrel is to be used for storing water, the oil conld be removed by knocking out one end of the barrel and placing some lighted shavings in the barrel. After the oil has been burnt out the barrel may be covered with boards and earth until the flame has digappeared. The charcoal formed by the partial burning of the wood in the interior of the barrel will be an advantage rather than otherwise in a water-butt. The only alternative plan is to take one end out of the barrel and leave it in the open air until all the paraffin oil has evaporated, then give the inside of the barrel a coat of slaked, limen thive the inside of the barrel a This will take longer, but will be safer than the first. method.
Gramophone or Phonograph Motor. - Ordinary brass clock wheels will do for a clockwork gramophone or phonograph motor. The motive power can be the mainspring and main-wheel complete of an eight-day American.

Clockwork Motor for Gramophone or Phonograph.
clock, but a stronger wheel would wear better. The train consists of three wheels and piuions (see Figs. 1 and 2), and each wheel and pinion has a ratio of about 6 to 1 . They are controlled by a weight governor like a steamengine governor. The last wheel of the train carries the discs and drives the governor. The wheels are mounted on studs on a bedplate, gs in Fig. 1. The last mounted on studs on a bedplate, as in Fig
Recipe for Iron Cement.-Iron cement, used for filling up cracks and blowholes in iron castings by application with a hot iron, may be made as follows. Nake by weight 2 parts of sulphur and 1 part of fine blacklead. Place the eulphur in an old iron bowl and hold over a fire till the sulphur begins to melt; then add the blacklead, and stir till all is well mixed and melted. Then pour on an iron slab or smooth stone. To use the composition, a sufficient quantity is broken up, placed in the hole, and soldered in by means of a hot iron, in the same manner as a tinsmith solders sheets. As the fumes of sulphur are very annoying, the material must be melted in a good draught.

Cork Paint for Ships.-"Cork" paint, Bometimes used on ghipg' ironwork to prevent it rusting, is composed principally of white lead, oil, varnish, and quick driers. After the surface to be treated has been gcraped and red leaded, the paint is applied, and granulated cork is thrown on to the wet surface; when thoroughly set the cork is painted over. This method is only adopted where the space is to be utilieed for sleeping accommodation, and where the iron is not specifled to be covered wlth wood. This method le rarely employed in the merchant service, but in cruisers, where as little the merchant service, but in cruisers, where as liting generally mixed up in the palnt shop of the yard where the work is done.

Replacing Jewel Hole in Geneva Watch.-The jewel hole in the balance of a Geneva watch is held In position by the thin edge of its setting being burnished over the edge of the jewel. In fitting a new jewel hole, the old one must be pushed out by a flat-pointed peg, and the odge of the setting raised by very carefully running the smooth point of a centre-punch round it. After fitting the nsw hole, which should go tightly into ita recess, the thin edge must be oncs more burnished over the edge of the atone by running the centre-punch point round it, using a little oil as a lubricant.
Fire-cracks in Plaster Walls.-Fire-cracks (whlch in some parts of England are called air-cracks) in plaster walls should be treated beforg giving the primary coat of paint with a coat of weak glue size (1 lb . best Scotch glue to $\frac{1}{2}$ gal. water) appllad when the aize is quits hot. About 1 sq. yd. should be done at a time, and the size should be wiped off at once with a plece of old rag, the object boing merely to fill all the small oracks with gize. The surface of the plaster should be carefully wiped, for size should never be used on a plaster aurface except for the purpose of filling cracka.
Furnace for Wagon Springs.-Fig. 1 is a cross section and Fig. 2 a longitudinal seotion of a suitable furnace to be nsed when making railway wagon spring's. A shows the firehole, B the blast inlets, and C the chambers for the spring plates. The producte of combustion
the paint. 'Wben sufficient body has been laid on, the work will be ready for polishing; this is done in most cases by rubbing down with a piece of felt dipped in tripoli or very finely powdered pumice-stone. Towarda the end of the rubbing add a little oil, and when the work appears bright and glosey rub with oil only. Care must be taken that there is no grit in the polishing medium, or the work will be scratched all over and spoilt. Finish off with a soft cotton or silk duster. The brass part of the bedstead must be boiled for about twenty minutes in a strong solution of soia or potashsay tib. of potash and lgai. of water i then well wash in clean cold water and dry. If the old lacquer has been removed, dip the parts in aquafortis by means of brasa tongs; when quite bright and clean, plunge in clean cold water, and dry in warm sawdust. The ro-lacquering may then be done. It will be better to obtain the lacquer ready made. It must be applied with a large flat oamel-hair brush, and the pieces of tubing laid on a hot etove or in an oven to set the lacquer. The various parte of the rails may now be put together, and the bed. stead set up again.
Burnt Ballagt for Mortar. - Where clean sharp sand cannot be had, burnt clay ballast or coke breeze are very good substitutes, Coal slack is not to berecommended. The coke breeze should be obtained from the nearest gasworks. The burnt ballast may be prepared in the following manner, the object being to burn the clay hard, as in brickmaking. Four or

Furnace for Wagon Springs.
pass through flues in the bottom of the third chamber, and thence under the floor to a stack in some convenient position. The furaace should be built of brick and liued with firebrick, iron doors being fitted in the usual manner to open with chains, pulleys, and weights or levers. The stays are of cast iron.

Proberving the Colour of Bath Stona.-Ropeatedly cleaning off the face of Bath or other stone by rubbing, glasspaperiug, etc., is to be deprecated, as it removes the natural skin, and, by opening the pores of the stone, makes it absorbent. Ireatment with Fluate or the Szerelmey liquid will give the surface of the atone a siliceous skin, closing the pores, and making the stone non-absorbent. Neither of these preservatives will appreciably alter the oolour of the stone, although it is probable thet in time the stone will become a little darker. An alternative plan is to paint the stone with a flatting coat of white lead mixed with turps and a very little linseed oil; this leaves a dead surface without gloss and not unlike that of distemper, and is also a preaervative.

Re-painting and Re-lacquering Bedstead.-In repainting and re-lacquering a half-tester.bedstead it is necessary that first the brass headrail and footrail be taken to pieces. Thoroughly clean off the whole of the old paint with a shavehook or other tool, then rub down the iron periectly amooth. Mix a quantity of one of the following mixtures: (1) Ivory black and shellac varnish, (2) Molt $\frac{1}{2} l \mathrm{~b}$. of asphaltum, and add 1 lb . of hot balsam of copaiba, and when mixed thin down with hot oil of turpentine. (3) Grind ivory black very amooth with turps on a marble slab with a muller, and add copal varnish till the paint is of the proper consistency; sufficient varnish only must be used to cause the colours to bind and dry firm and work free without becoming either sticky or shiny. The ironwork must then be carefully painted with the varnish by means of a camel-hair brush. About three to five coats must be given, each coat being dried in an oven heated to about 300° F., and if possible the heat must be gradually increased, but not to such a point as will calcine
five old drain pipes, 9 in. or 12 in. diameter, are mild in line with open joints. Alound one end of the flue so formed ia placed a heap of wood, say 3 ft . high and 6 ft . across the base. Over this conical shaped heap of wrood is epread a good layer of coal, and on the coal a wood 18 bpread a good layer of coal, and on the coal a attempting to burn the clay, it should be well turned over, and tempered and dried in the air. When the firo is burning fairly well, more coal or breeze is added, and, when everything is red hot, another layer of clay. More coal and mors clay are in this manner added to the heap, until it becomes so large that further additions to it cannot conveniently be made. The fre is then allowed to die down, and the ballast is broken up and taken to the mortar mill. One cubic yard of clay measured in the solid, before digging, will, when burnt and broken up, make $1 \frac{1}{4}$ cub. yd. to $l_{\text {t }} \mathrm{c} u \mathrm{~b}$. yd., and will weigh about l ton. From sumt. to $l \mathrm{cwt}$. of coal is required to burn 1 cub. yd. of clay; or, according to some authorities, about 11 cub. yd. of breeze and 4 tons of coal, including slack, will buin 100 cub. yd. of clay.
Taking Soundings of Ship's Well.-On each side of a ship's keelsou there are "limber holes," which allow the bilge water to pass freely to the lowest part of the compartment, where thers is an iron periorated casing to keep out rust chips or other sediment that would prevent correct soundinge. These casings ars about 15 in. in diameter, and ons is fitted alongside the keelson in each compartment at the lowest point (which is aft in the fore-body compartments and forward in those of the after-body). Any leakage or cargo sweat is free to run down the skin between the ir rame or ribs to the limbers. The sounding tool is an iron rod 2 ft . $\mathrm{or}^{2} 2 \mathrm{ft} .6 \mathrm{in}$. long, attached to a small ling. The ship's carpenter chalks this rod and drops it into the casing or well (keeping it vertical, of course). The well soundings are entered in the \log book in inches twice dsily. The iron rod is notched with a file at every inch. Some steamers with several compartments have limber holes in some of these which can bs immediately closed, in case of collision, etc., by a screw sluice door manipulated from the main deck.

Removing Cannon Ploion from Keyless Watch.In removing from akeyless wateh a cannon pinion that is fuxed very tightly, if there is a square at the back take hold of it with a pair of cutting nippers in one hand and grasp the body of the cannon pinion with a pair of brass-nosed pliers held in the other hand, and twlet the plnion off. If it cannot be removed in this manner, or if there is no square at the back to hold, the centre arbor must be square at the back to hold, the centre arbor must be just enter the cannon pinion without damaging it. The watch should rest on a stake or piece of boxwood with a hole in it under the centre arber. One smart tap should send the oentre arbor through.

Design for a Carved Photo Frame.-Walnut, oak, or canary wood is suitable for constructing the photograph frame here illustrated. It should be about in in. graph frame here 10 inick, and 10 in. long by 9 in. wide. The outside margin is $\frac{y}{\text { inn. }}$; the size of the inner ovai, from A to B, $4 \mathrm{in}^{2}$; from C to D $\overline{5}$ in. ; and the outer oval is $\frac{3}{8}$ in. larger all round. The oval could be made larger or smailer, to suit the photo; the dotted lines show the method of construction. The design is simple and plain, and easy to mairk on the wood. If the lines A B and CD are continued to the outer edgee of the wood, they will divide it into four

Design for a Carved Photo Frame.
equal parta, and if one part of the deaign is aketched and taken off on tracing paper, it can be applied to each corner. The ground can be punched or cleaned.

Brazing Brass and Iron.-A brazing spelter for small articles of brass consists of 5 parts copper, 3 parts zinc, and 2 parts silver, alloyed as explained on p. 63. If the seams are not required to stand much working after soldering, they may be joined edge to edge. When seams are formed in this way, little nicks, about $\frac{1}{2}$ in. apart, should be filed out along the edges, so that the colder flowing through the nicks during the soldering operation will render the joint sound. If the seam is to be worked after soldering, a small lap is necessary to ensure adequate strength. To form seams of this type, first thin the edge of the metal along the ends that are to form the seame, about $\frac{2}{3} \mathrm{in}$. in from the edge, so that when the two edges are lapped over each other the combined thickness at the seams will be the same as the single thickness of the metal at other parts. Cut a small cramp at the top and bottom of the seam, and fit the opposite edge in these crampe. After preparing the seams by either of the above methods, fasten binding wire round the articles 80 ws to hold the seams becurely in position. Now powder some borax for use as a fux, and soak it in enough water to form a thick paste; place a little of this along the parts to be soldered, and gently heat the article by some suitable means, such as foot bel. lows and blowpipe, so that it will expand equally, and not disarrange the seam; increuse the temperature until the metal is a dull red, and then take a strip of the solder, dip the end in the borax, and, holding the opposite end with the pliers, rub the solder along the seam until a little melts off. Keep the solder in a molten state, and

With a piece of wire flattened at one end gently rub the solder along the seam until every partiojoined, Small articles of iron may be joined in a similar way with equal parts of copper and zinc, but if the iron is to be hammered much after soldering, 2 parts of copper and 1 part of zino would be more euitable. With these solders mix equal parte of the borax paste and graing of solder, and along the seams place sufficient of the mixture to solder them when melted. Some dry borax chould also be kept ready at hand, so that a little may be taken and th own on the solder at any point where the material does not appear to be flowing freely.
An Improved Saw-vice. - Figs. 1 and 2 ehow an ordinary pattern of joiners' eaw-vice, differing from others only in the method of tightening up the jaws; Fig. 3 shows the bare-faced tenon tor uprighte, and Figs. 4 and 5 plan and elevation of eccentric clamp Figs. 4 and 5 plan and nuts. The rod is of $4 . i n$. round iron, with thread each end (mild steel would be more suit-

An Improved Saw-vice.
able), the bends being made by heating the iron red hot for the first, and nearly so when placed through the hole in the clamp and bent. This clamp must be shaped out, and the part where it will tighten on the stock by revolving should be smooth and true. Two ${ }_{\frac{s}{6}}^{6}$-in holes, which will be $6 \frac{1}{2}$ in. down, are bored through both uprights to accommodate the ends of the rod, and collars may be let in flush at the back to tighten the nuts against. When the nuts are adjucted, a saw is instantly clamped by pressing the handle down as shown in Fige, 1 and 2. To release the saw, pull the handle of the eccentric clamp (lever) up. The position of the rod hole is as shown on the handie side of the circle, and farthest from the stock. 1t will add to the grip to make uprights slightly curved outwards in the middle, and a $2 \frac{1}{2}-1 \mathrm{n}$. butt hinge will complete the vice. A strip of vulcanised rubber or leather fastened along the inside edge (top) of jawn will improve the filing.

Cutting Tin-plate.-If a number of pieces of tin-plate the same oize aud form are to be cut, it is usual to have a punch and die cut to the desired shape; these are fitted to a prese, and the pieces are then otamped out. If a limited number only is required, or if the pleces differ in size and shape, a circular hole smaller than the opening required is punched out with a hollow punch upon a lead pequire; the nose of a pair of circular enips is then inserted through the hole and the metal cut away to form an opening of the shape deslred.

Laying Marble Mosaic Pavemont.-The materials commonly used for marble mosaic paring are known as burnt marbles-that is, pure marbles burnt to the desired colours, such as rouge royal (red) and Russ conto (red), with yellows, blues, greens, and greys of various shades, according to the amount of time spent in burning. The natural marbles used in their original form are chiefly St. Ann's marble and Carrara and Irish green. The cubes may measure about in in. square, though the size of the cubes depends on the area of the floor to be covered; but the cubes generally used are from in. to $\frac{3}{4}$ in. square, and are either awn or cut by hand to the required dimensions. For each floor only one size of cube is used. The tesseræ are fixed with a cementing material consisting of chalk lime slaked with water, and left in the open air for several days until it is killed; it is then sifted and mixed with a large proportion of fins crushed brick and water, and well beaten up with wooden beaters into a fine mellowed mortar ready for immediate use. The floor for the resptin of the mosaic is generally formed of Portland cement concrete, floated over to a fairly true face; the mortar is now spread evenly on the floor, and the cubes mortar is now spread evenly on the flor, and the cubes
of marble are laid to the required pattern, a small hammer being used for tapping the cubes in until they are solidly bedded. The floor is afterwards rolled with a moderately heavy roller, and then left for a time until the tessera are set, when the inequalities on the surface of the floor are rubbed off with specially constructed rubbers of sharp grit stone, water being freely used in
dip, after well pickling the articles, place in stronger nitric acid till a frothy appearance results; then wash in water and dip for a few seconds in the strongest nitric acid. Wash in a bath containing a little dis solved argol or cream of tartar, and dry in warm sawdust; then burnish the articles and lacquer in clear lacquer. A different but equally pleasing appearance may be given to the brackets by bronzing. A bath that imparts to brass a shade from brown to a deep red can bs made by dissolving 2 oz. of nitrate of iron and $20 z$. of hyposulphite of soda in 1 pt . of water. Immerse the articles in this till they are of the required tint. For a shade from a pale green to a deep clive green, add 1 part of perchloride of iron to 2 parts of water. For a dark green tint take 1 pt. of water, 1 oz. of nitric acid, aud 4 oz , of nitrate of copper. A bronze which gives a very good finish is composed of 1 part oxides of iron, 1 part white arsenic, and 12 parts hydrochloric acid. All grease must first he removed from the articles and the bronze painted on with a brush. When dry the articles may he burnished in the usual way in part, or plain lacquered with a clear lacquer, or they may be plain lacquered with a clear lacquey
How to Make a Chemical Tank for a Magic Lantern. -The following are instructions on making a small chemical tank for magic lantern experiments. Procure three glass plates 3 in . by 44 in. From one of these plates a half-circle must be cut out with a diamond, using a half-circle of wood as a guide. Canada balsam is used as the cement. It must be placed in ar

Stabling Hammer for Laying Marble Mosaic.

and left quite smooth, and finally finished off with linen rubbers. But a method very generally followed is to arrange the cubes on paper in the workshop, the first step in carrying out the work being to get out a design for the floor. From this design copies are made at furl size scale, usually on brown paper, ready for the full-size scale, usually on brown paper, ready for the that the whole of the design is reversed on the brown paper, as, the cubes being laid on the paper in the workshop, the paper would be uppermost on the job, and if the design were not reversed it would show the wrong way. The workman's paper, when finished, is cut up into convenient lengths (about 3 ft .6 in.), marked with numbhers from 1 consecutively, and handed over to the shop workmen, who require the following tools. A scabbling hammer (see illustration), about il in. long and lin. square, tapered each end and fitted to a short handle, a pair of callipers, an iron block about 9 in . long by 4 in. by 4 in., granite rollers, straightedges, and rubbers. The workman now proceeds to pick out the necessary colours of cubes, dresses the cubes with the scabbing hammer to suit the design, and covers a portion of the hammer with a layer of gum, to which he attaches the cubes, doing small portions at a time until the whole is completed. The design having been completed by the shop workmen, the whole is forwarded to the scene of the job. The mosaic layer is given a plan of the floor marked with numbers corresponding to those marked on the masais paper. Having laid the paving out on the job, the mosaic layer next prepares the cement, to which job, the mosaic layer next prepares the cement, to which cement having become set, the paper is cleared off, and the whole of the paving is subjected to considerable rubbing with fine grit stone, attached to a wood handle having a V-groove. The paving is completed by being rubbed to a level.

Bronzing Brass Braekets.-F'ancy brass brackets, such as gas brackets, are usually only dipped in a nitric acid bath and burnished. If the dipping does not give the desired brightness, the brackets are dipped again and again, and thoroughly washed and dried between each dipping. If the finish is not then suitable, the brackets may be dead dipped; this gives a dead yellow surface, and after the prominent parts are buryellow surface, and after the prominent parts are bur-
saucer and baked in the oven until it is quite hard when cold. The three pieces of glass should now be heated in the oven ar on an iron plate placed over a burner until they are too hot to be touched by the hand. The melted Canada balsam must now be spread with a smooth stick on both sides of the glass plate from which the half circle has been cut, the other plates being pressed one on each side of it to remove all air bubbles. The whole should then be placed under a weight till cold. The tank thus made will appear like Fig. 1 , and may be placed in an ordinary carrier. With a lantern suit. able for experiments requiring a wider tank two 4 -in. by 4 tin. plates may be used, cementing them together as described above by three pieces of plate glass, the bottom piece $4 \frac{1}{2}$. by $\frac{1}{4}$ in. and the two side pieces each 3 in. by in in. to form a rectangular tank $3 \frac{1}{2}$ in. by $2, \mathrm{in}$. by about in. deep (see Fig. 2). These measurements may he altered if necessary to suit the lantern.
Remedying Pinholes in Photographic Negatives. -Ordinary water colours are hest for stopping pinholes in negatives. Almost any colour will do; but the work is more easily and better done when a colour that matches the tint of the negative is used, such as ivory black. The colour should be applied with a grad sable brush, No. 2 being the best size. Run a little of the paint on the smooth side of a piece of opal or even a piece of glass, and take up a little colour with the brush, drawing it with a circular motion to a fine point. If the $b^{w} u s h$ is too wet the paint will run round the spot, and not in it. A white ring round a black spot only makes the spot more noticeable on a print. With the top of the brush touch the exact centre of the spat slowly but very delicately. In some few cases where the film has disappeared it is impossible to remove all traces of the spot; and in such cases it is advisable to fill in the spot densely on the negative, and paint over the white spot on the print. Exceedingly small pinholes, sometimes met with in clusters, are best left alone. A black spot on a print is less noticeable than a white one. Spots are usually the result of dusty slides or camera or dark rom, the duct being finally deposited on the face of the plate. Soaking a plate in water before developing is liable with some plates to cause pinholes, the minute air halls that then form on the surface of the plate preventing the action of the developer.

Finishing Stair Balusters Green and Bronze. Some stair balusters are to be painted two coats, finishing green and bronze. The firet coat should he leadcolonr paint, and when this is dry give a coat of bronze green made from drop black (abont one-third) and yellow ochre (about two-thirds). Thin with benzoline, addiug a few drops of terebine as a drier. Put the hroaze in a pint pot, cover it well with turpentine (which will extract the verdigris), and let it atand for six or seven hours, after which the turpentine should be thrown away and fresh turpentine added. Varnish the balnsters, and when the varnish is nearly dry dip a piecs of plush velvet in the bronze, and apply to the projecting points of the halusters. This should be done while the varnish is tacky, so that the bronze may dry While the varnish
Making Copper Foot-warmer. To make a footwarmer, cut a piece of No. 22 or No, 24 sheet copper to 22 in . long by 12 in . wide. Scour it thoroughly with wet sand, and tin one side of it over a coke fire with block tin, using sal-ammoniac as a flux. When the tin has alloyed itself with the surface of the copper, wipe off with a pad of tow, and immediately immerse Wipe off with a pad or tow, and inmediately ith silver sand, and then drying with hot sawdust. Punch a holefor a feeder screw A (Fig. 1) in the centre of the length lifin. from the edge. The copper should now be planished wlth a planishing hammer on a tinsmith's bright anvil. This will close the "grain," thus increasing the durability, as well as developing a hright, smooth surface. Two edges opposite each other Ghould now be surface off the ends on a hatchet stake, so that when the copper is bent to shape the edges will clip each other. copper is bent to shape the edges will clip each other.

Making Copper Foot-warmer.

and the edges must be "grooved" inclde. When this has been done the section will appear as in Fig. 2. Solder the feeder screw in the hole from the inside, and similarly the grooved joint, leaving a good body of metal on each. This constitutes the body of the foot-warmer. To make the ends, up-end the body on a piece of copper, and mark around, Allow a $\frac{1}{2}-\mathrm{in}$. edge extra, cut the copper, and mark and cut ont another one from it. These pleces should be cleaned, tinned, and planished, These pleces should be cleaned, tinned, and planished, etc., as previously described. Then they should be
slightly hollowed (hoth together) on a wooden block with a hollowing hammer. Now crease or "jenny" the edges so as to fit the body tightly. Before these pieces are finally fixed, two handles B (Fig. 1) must he made from No. 8 brass wire, each with a copper plate which is riveted to the end, as shown. Solder over the heads of the rivets inside, fit each end on, and colder well round. The superfluous solder may be removed by a steel scraper or a smooth file. Rub well with emery steel scraper or a smooth file. Rub finish with crocus and oil.

Particulars of Cellulose.-Cellulose is an organic product having the 68 me composition as atarch, and is a similar composition to sugar, i.e. $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}$. The purest cellulose is sold by chemists, etc., as cotton-wool for medical purposes; the cotton fibres, linen, wood of all kinds, paper, etc., are all more or less impure forms of cellulose.

Buff Balling Bottoms of Boots,-To make out the bottom of a boot, the sole should be huffed or scraped with the huff knife, that has been well sharpened till it has a keen, regular edge. Only the first layer of grain is taken off the sole; when this has heen carefully done and the sols has heen well sandpapered, it should have a fine velvet-like surface. It is, however, very hard to produce in thls way a white bottom upon bad leather, or upon good lsather improperly worked. With a soft hrush remove all the dust of leather made by this process, and scrape some huff ball all over the bottom, and with a fins plece of sandpaper work lt evenly all over the sole, and then smooth it down with the back of the paper. With a clean soft piece of flannel, lightly damp down the whole of the sols, doing it evenly
all over, so that the leather just changes its colour then scrape some buff ball all over the sole while it is damp. Hold the boot firmly between the knees, and hare's foot or piece of soft flannel dab the buff hall down to cover the sole. Finlsh by brushing off any loose dust with the hare's foot.

Wiping Joints on Copper Plpes.-Wiped joints on copper pipes are longer than wiped joints on lead or composition pipes. Copper pipes 2 in . or more in diameter have joints from 2 in, to 3 in. long; 4 -in, pipes have joints ahout 4 in . long ; but it must be remembered that whilst reasonable length and thickness of joint are necessary to enable the copper pipe to withstand pressure and strain, the maximum time of service does not depend on the length or thickness of the does not as in lead-pipe work. That which determines practically the life of the joint is the extent of pipe which is carefully tinned before forming the wiped joint If the interiors of the two pipe ends are tinned, say, for 6 in. or 8 in., on cutting open the joint in a few years' time, it is found that the tinning has diminished to 2 in . or in. a corroding action having taken piace at the end of the tinuing : for this reason it is advisable that the tining be fairlo thick, so as to retard the separation and altimate failure of the joint. In tinning copper, first thoroughly clean it with dilute sulphuric acid or scour with sand and water, and then rinse it with chloride of zino, known as killed spirit. Melt some pure tin, throw in sal-ammoniac as a flux, and dip the copper in the tin, or pour or rub the latter over the copper. In pipes forming a portion of a distillery plant it is especially important that no untinned spots are left on the interiors of the plpe ends as at such soots the an which is a part sectional view of the two pipe ends pre-

Fig. I

Wipligg Joints on Copper Pipes,
pared for jointing, A shows the extent of the tinning, which is on the exterior and interior of the pipe ends and on the edges also. Fig. 2 shows the tinned ends slipped together ready for wiping, the form of the required joint heing shown by the dotted lines. The pipe is strengthened by patting one pipe within the other, and the corrosion of the tinning ie arrested when it reaches the lap. If sufficient lap is siven, the pipe may be handled before the joint is wiped-a great convenience. The pips onds are placed together, when practicahle, over the iron pot containing the molten solder, which is then poured continuonsly over the joint until a heat is got up. This practice is not possible with lead or brass pipes, hecause in the one case the lead would melt, and in the other the molten zine would leave the brass and ruin the solder. When the pipes cannot be moved, a grain scoop (a kind of shovel) is placed beneath the joint and the solder poured on rapidly. When a thorough heat has been ohtained, the joint can be wiped, with the aid of a cloth and of the mushy solder from the scoop, in much the same way as a joint on a lead pipe ie wiped, the latter operation being descrihed on p. 88.

Adjusting a Watch in Positions.-Provided there are no faults in the escapement, pivots, or jewel holes, the adjusting of a watch in positions is mainly a question of exact poise of the balance. The balance, with its pivots periectly clean, should be placed on a poising tool and carerully tested, In a plain balance, filing the inside nnder edge of the rim will poise it. In a compensation halance, small errors can be altered by manipulating the four "quarter screws"-that is, those with long taps. Larger errors must be corrected hy altering the weight of the screws. When perfectly poised, the watch will be very nearly correct in different positions. A loss in any one position generally indicates that when the movement is held in that position, and the balance is at rest, the top of the balance rlm is too heavy.

Removing Ink Stains from Bone Handles, -To remove dirt from bone knife-handles scrub with hot soap and water, and wash well with clean water ; ruh on a solution of oxallic acid to remove lnk stains. Again a solution of oxalic acid to remove lnk stains. Again
wash, dry, and polish with a chamoisleather and whiting.

Traveller's Sample Case.-Flgs. 1 to 5 show the construction of a traveller's sample case. Good red deal, Wirch, beech, or other similar hardwood, in. to 1 in . thick, may be used, according to strength and other requirements. The angles should be dovetailed together, and the boards jointed and cross-tongued, as shown at Fig. 4. To prevent dust, atc., getting in, á fllet about $1+\mathrm{in}$. by in in. should be nailed round so as to $^{\circ}$ project into the lid when closed (see Fig. 3). If the staples are made as shown at Fig. 5, they can be screwed to the front of the rim of the lid, and the returned piece shown at A (Fig. 5) can be let in and screwed to the underside of the lid; this will prevent it being broken offr. The eye and plate can be made so that the eye
woodwork for flush seams to be wiped upright in the centre of their length. For rain water, the sides and ends should be of $7-\mathrm{lb}$. lead, and the bottom of 8-1b. lead ; but if economy must be studied, 6-lb. lead sides and ends, and $7-1 \mathrm{~b}$, lead bottom, would do. To line the tank, first put in the sides, then the ends, and the bottom last of all. After the lead is in position, the upright fineh seams and the upright angies should be soldered, then the bottom flush seams, and lastly the bottom angles. It is assumed that sufficient knowledge is possessed to arrange the laps so that the solder will not run through when wiping, and also to prepare the work for soldering. Upright stiffening pieces wiped on to the sides are better than dots; but

Traveller's Sample Case.
passes through the front, the plate being screwed to the inside; it is thus not likely to be broken off or unscrewed from the outside. Two padlocks may be used, or a rod and one lock, as shown in the illustrations. For ordinary purposes, one staple, eye, and lock would be found sufficient.

Lining a Wooden Tank with Lead,-In lining with lead a wooden tank 20 ft . by 9 ft . by 4 ft . deep, first divide the hottom of the tank into three parts. This gives two seams across the bottom, and where the seams come the woodwork should be dished for the soldering to be wiped flush. The lead for each end of the tank can be in one piece, and if plenty of help is available, the sides could aiso be each in one piece. But if the tank is in a cramped position where the extra hands cannot exert their full strength, each of the sides can be lined with two pieces, dishings being made in the
if it is found necessary to fix stay rode to keep the sides from bulging outwards, these rods would also help to support the lead, and prevent it from bagging as the tank is emptied of water.

Silver Solder for Soldering Copper.-A silver solder for soldering copper is composed of 5 parts of copper, 3 parts of zinc, and 2 parts of silver. Melt the copper first, then adis the silver, and lastly the zinc; directly the zinc is immersed, rapidly stir the alloy so as to render its composition equal throughout, and then oast it in a smail ingot mould. The ingot is then rolled down to form a small sheet equal to about No. 18 B.W.G. gauge in thickness, and from this narrow strips are cut as required. Ordinary solder may be converted into fine solder by melting and then adding the silver in the proportion given above.

Separating Gold from Ashes.-A simple way of separating gold from ashes is to mix the ashos with borax and melt down in a crucible. For this purposs ths highest heat of a wind furnace wlll he resquired. If the ashes contain traces of othar metals besides gold, it would be best to boll first with water several times to get rid of soluble matter, then with aqua regla (3 parts of strong hydrochloric acid to 1 part of strong nitric acid) in a porcelain dish, using a fume chamber or chimney to carry away the fumes. After boiling for saveral hours, water may be added and the liquid filtered. The tiltrate will contain the gold and other metale as chlorida. A solution of ferrous sulphate (green vitriol) should be added in excess, and the liquid boiled. A brown precipitate will coms down; this is pure metallic gold. It may be filtered off, washed several times with water, and dried, when it will form a reddishbrown powder. It may be melted down in a crucible or in a furnace, or fused to a button of metal on charcoal a furnace, or fused
before the blowpipe.

Waterproofing Fishing Lines. - Plaited silk fishing lines are waterproofed by soaking in aqual parts of boiled linseed oil and copal varnish, then stretching in some convenient position to dry, at the venient position to dry, at the
same time wiping ofr superalame time wiping oif auper-
fluous dressing with a rag. Drying will take a coneiderable time; to accelerata it, 1 part of gold size may bs used instead of the varnish to 2 parts of boiled oil.

Frame for Wire Blind. Fig. 1 shows the general form of the frame for a wile window

Fio. 1

blind. Fig. 2 is an elevation of the joint (A, Fig. 1)|to a larger scale. The tenon, mortise, haunch, and wedge are indicated by dotted lines. Fig. 3 shows the construction of the joint, mitreing of the head which is stuck on the solid, and the rebate formed for the movable bead, which is not shown. Tha beads should be about $\frac{1}{2}$ in.

Filtering Cycie Oll.-Dirty cycle or other machinery oil may be filtered through cotton-wool, flanngl, or any similar material without affecting its lubricating properties. Flannel ls not so good as clogely packed cottonwool, because the fibres are openly feltad and the finerdirt can get through. Closely packed cotton-wool makes a slow fllter. The best filtering arrangement is a glass or tin funnel placed in a bottle, and a circle of best white blotting paper folded twice and opened to fit the funnel. The oil will pass pretty quickly through the paper. When the blotting paper baging to plug up it muy be removed and fresh paper substituted.
Wet-plate Photography.-In wet-plats photography the plates are prepared as they ary required, and ave developed immediately after exposure. Any camera
may be used so long as proviston is made in the dark slide to catch the drippinge from the plates; a fold of blotting paper will angwer this purpose. The following materiale will be raquired for preparlag and doveloping the plates. Mawson's iodised oollodion 41 oz., silver nitrate 1 oz., a few pounds of hypo, alcohol 1 oz., acetic acid 1 oz., sulphats of iron 1 oz., an ebonite dipper, and some piecer of clean glass fres from air belle. Make up the following solutions. Silver bath.-Sllver nitrate loz., distilled watsr 11 oz ., 10 dine 1 gr, , nitric acid 2 drops. Developer.-Sulphate of iron $\frac{1}{\text { oz., alcohol } 4 \text { oz., acetic }}$ acid $\frac{1}{2} 0$, water $40 z$. Clean the glass by first swilling wlth water, and, if greasy, washing with a powerful alkali such' as canstic soda, and again swilling. Allow the glass to dry spontaneously. When dry, wipe free of dust, and pour in the centre of the plate a pool of the jodised coliodion, as in varnishlng a negative, and flow first to the top right-hand corner, next to top leit-hand corner, then to the bottom left-hand corner, where the plate is belanoed by the tip of the thumb, and from the bottom right-hand corner pour off the excese into the bottle. As soon as the collodion has set. (which is when the surface becomes dull) immerse the plate in the silver bath by means of the dipper, lowering gently into the solution, where it should remain, rocking occasionally, for about two minutes. As soon as the silver eolution weta the plate svenly (this takes longer in cold weather) the plate is gansitised. The sensitising is done in the dark room, and a flat porcelain dish may be used to contain the bath. The plate is gently removed from the bath, and when it has finished

Fig. 2

Cementing Broken Marble.-As a cement for white marble, use fine plaster-op-Paris mixed to the consistency of thick cream. A thoroughly satisfactory job, however, cannot he made in the case of a mautelpiece, as the repair will show in time. For hlack or coloured marble nse brown or orange lac, obtainable from drysalters or chemists. Warm the broken pieces of marble before the fire, then place on the lac, and when melted prese the two pieces together until firmly set-a few minutes will suffice; the superfituous lac should be gqueezed out whilst it is warm. If desired, the lac may be prepared in sticks by melting it on a hot plate, adding the requisite colouring matter in the shape of oxides, and then rolling into sticks similar to sealing wax.
Tool Chest for a Light Coaoh Body Maker.-A tool chest suitable for a light coach body maker may he made of $1-\mathrm{m}$. sound red deal, free from knots and shakes and perfectly dry. The front and back shonld be jointed and glued in the centre as A (Fig. 1), the ends having two joints as B (Fig. 2), so that the strain is not on a direct line at the joints. The sides and ends should be dovetailed together, and should be 2 ft .8 in in. long outside $1 y^{1} 1 \mathrm{ft} .6 \mathrm{in}$. deep over all by 1 Pt .6 in , wide, the plinthe being fized outside this measure. The bottom is screwed on crossways of the length, and is tongued together as shown in Fig. 3. The top is made up lengthways of the grain, glued
then finer, then the finest. Now rub brigkly with a plece of rag that has been dipped in oil and then intu the dust, etc., Which has come from the horns during the scraping, filing, etc. The horns ghould then be smartly rubbed with a rag dipped in whiting and sulphurio acid or vinegar, then with a rag dipped in oil and putty powder (oxide of tin). Now well rub the horns with a dry cloth, then with crumpled paper, and finally with the bare palm. The rubbing at each stage must he thorough; and between every two steps a good dusting of the horn should be given to prevent the larger particles of the one stage scratching the smoother surface gained in the succeeding stage.
Heat Insulating Composition.-The following recipe for a non-conducting composition has heen given for use with steam pipes, etc. In water, mix fireclay with four times the quantity of small coal ashes to the consist ency of thin mortar. Then mix equal quantities of dry calcined plaster and fiour, each constituent equalling in quantity the amount of fireclay previously used. Add to the ash mixture. Two coats should be used, with a setting coat outside, as wheu plastering a wall.
Cutting Slot in Top of Turned Pillar.-When it is required to cut a slot in the top of a turned pillar a box similar to the accompanying diagram should be constructed, and in each piece of board two kerfs

and jointed in the same manner as the front, and fixed on by screws. The whole is cleaned off,' and the plinths C (Figs, 1 to 4), which are $3 \frac{1}{2}$ in. deep by $\frac{1}{f}$ in. thick, put on flush with the top and bottom, and mitred together at the corners. To form the lid, gauge round from the top edge 2 in . down (see D, Figs. 1 to 3); saw round, keeping true to the line, and then plane off the edges true to a fit. The lid will now be just deep enough to carry a hand and tenon saw when the tools have to be packed for transit. The lid may be hung with $31-\mathrm{in}$. Wrought butts or cranked cross-garnet hinges, and should have a good double action opring lock. For lifting the box, two pieces of beech 3in. wide, shaped as E (Figs. 1 and 3), are fixed on the ends by fcrews from the inside. Holes are made just above the centre (see Figs. 1 and 3): these carry rope handles. The interior of the chest is shown at Figs. 3 and 4, fillets being fixed on the ends to carry a light framing to form the tray f (Figs. 3 and 4) and recess for the drawers G. This framing is supported by a strut fixed ingide the casing H , which is made to slide forward; the space heneath the drawers is for working drawings, sizes, etc. A small board J (Figs. 3 and 4) 3 s in. deep is fixed on the bottom and ends to carry compase, smaoth, concave, and tee planes. Coat the inside of the chest with pale gold size, and the outside with good lead colour.
Polishing Goat's Horns.-In polishing a pair of goat's horns, remove any rough or uneven parts with a spokeshave, then well scrape all over with a cabinet-maker's steel scraper or with the edges at the sides of a woodworker's chisel. When the horn is fairly smonth, go over it with a rasp or file, followed by coarse sandpaper,
should be truly made. The pillar can then be fixed true in the hox by a few wooden wedges, as indicated at A and B. The head should next be sawn by allowing the saw to work in the kerfs as wheu using a mitre box.
Modeliling in Papier-mâché. - In making animal heads with papier-mache, either a natural sknil or one modelled in clay is obtained, and from this a plaster mould is taken. Tn this mould papier-mâché is forced, or sheet after sheet of pasted paper is pressed in every direction, and forced well into the hollows. When dry, the material easily comes away from the mould. To make papier-midché, tear into small pieces a number of old newspapers, and boil until quite soft. The pulp should then he removed from the fire and squeezed. some thin glue and plaster-of-Paris added, and the whole beaten well together. If the material is too dry, add glue; if too sticky, add plaster. When rubhed on the hands it should leave a very thin coating.
Cleaning Aquarium Shells.-It is impossible to keep delicate shells freah and clean at the bottom of an aquarium, for they quickly become covered with a green aquatic growth that defies all efforts to be scrubbed off. The shelis may be cleaned by plunging them in a boiling mixture of 1 part of hydrochloric acid to 10 parts of water Hold them with wooden tongs, and remove after one second to clean cold water. Repeat the operation if necessary, but if the shells remain in the acid heyond the prescrihed time they will be eaten in holes, if not altogether dissolved. If the shells are to be replaced in the aquarium, it is not worth while to clean them repeatedly. Introduce a few fresh-water snails into the aquarium, and they will keep down the green growth.

Particulars of Oil of Turpentine.-Oil of turpen. tine, spirit of turpentine, and ordinary or common turpentine are all the same thing. Crude turpentine is turpentine as it is derived direct from the pine trees. Oil of turpentine really means the escential or volatile oil of turpentine after distillation. Oil of turpentine must not be classed with the ordinary kinds of oils, such as olive oil, etc., which are nonvolatile, and have a different composition altogether. There is an oil of turpentine known as fat oil of turpentine, but this is simply ordinary turpentine that has heen exposed to air for some time and has become thickened or partly resinified by oxidation.

Yellow Stain for Venetian Blinds.-A high-class satin stain for use on Venetian blind laths previous to varnishing can be obtained by dissolving 1 oz . of gamboge in lpt. of methylated spirit. A cheaper plan would be to mix dry yellow ochre, or 2 parts lemon and 1 part orange chrome, in weak glne cize. This latcer mixture should be brushed on, the surplue being wiped off with soft rag.
Determining Bevels for Joints of Oval Cask.-In finding the correct bevels for the joints of an oval cask first set out the oval or ellipse, and a good method of doing this is gbown by the illustration, Let A B and CD be the given diameters. Divide 0 o into three equal parts. On line AB mark off AS and B4, each equal to 0 2. Make 05 equal to 02 ; then draw the radial lines from 2 and 5 , passing through 3 and 4 as ehown.

Determining Bevels for Jointe of Oval Cabk.
Then 2 and 5 will be the centres for the larger curves, and 3 and 4 for the smaller. Next eet out the staves as shown. It will be seen that two bevels will be required. For the eharper-curved etaves, as at B, join the painte 6 and 7 , then join the radial line 74 , and draw E bevel ae shown; the bevel at F can be obtained in a similar manner. The bevels here given are for application at the centre of the staves.

Forging Axles for Vehiclee. The iron for vehicle axles chould be of the best quality. The method of working is as follows. A number of small bars are put up in a bundle sufficient to make an arm, and bound with iron rod to prevent falling about when working. The arm is then placed in the furnace, and thoroughly welded together. Whilst this is being done it is worked eomewhat to the required shape. The collars are now made and welded on. For this purpose dies, or top and bottom tools, are used, the arm being worked at as great a heat as possible without burning, lighter heats being taken for finishing to the size required with light blows; afterwards turn and fit the axles, To case-harden, place the articles in an iron box or casing large enough to contain a packing of 2 in . or 3 in . of the hardening compound around each arm. The box should be sealed up air-tight at bath ends. The compound generally used is leather shreds, ground raw bones, hydrocarbonated bone black, and sal 6oda, the whole being placed in a furnace and kept at a good heat for ten or twelve hours; then remove the articles from the box and coal out thoroughly. Where an extra hard casing is required the articles are re-heated, the box being filled with powdered potash and kept in the furnace until the potash is consumed, Where large quantities of axles have to be cooled out the cooling tubshould be arranged to have an intet of cold water at the bottom, so that the water made warm by the work would flow out over the top, thereby ensuraffixed.
ing a continuous cool supply. The collar platen are stamped out of No. 6 fender plate, and when solid fiaps are made in the axle, these plates have to be cut across one side to allow of bending back to get them on between the collar and the flap.
A Watch-case Galvanometer. -To make a cimple galvanometer as in Fig. 1, get an old brass watch case with one of the brass plates removed. In the centre af this drill a very omall hole to suit an endstone, such as jewellers use iu watches. Then cut a piece of brass to fit across the diameter of the plate, pin. wide and hin. thick. Drill a hole at each end, and set two small brass pillars for the ends, about in in. long by in. in diameter, to raise the cross-bar from the plate. Then drill a central hole in the bar, and put an endstone in this. Taper a piece of watch spring each end from the centre to form a pointer, drill a hoin. hole iu the middle of it, fit a shaft in tight to the hand, and magnetise the pointer ; pivot the shait at the

endstones. Next cut a piece of tin to the ehape of Fig. 2, lap it with silk tape, varnish, and lap agair with about 8 ft . or 9 ft . of No. 28 s .W.G. ailk-covered wire. Next get a piece of spring steel, 1π in. in diameter by lid in. long, magnetise it, and fasten in cross section to the horseshoe magnet after taping and varnishing. Fasten these two magnets to the back of the brass plate by means of a short piece of ebonite and small screws at the ends. Drill two holes at each side of the case for the reception of two terminals, and connect as ghown in Fig. 1. A scale, also, graduated ac shown, should be

Soldering a Joint in a Watch Case.-To solder a joint in a watch case, the old joint must first be filed off clean. This should leave a eemicircular groove in which the new joint can lie true. The joint is cut from drawn eilver or gold tube. Place it in its groove, having first wetted it with borax paste and water. Along its side place a long thln strip of silver or gold solder, and apply a blowpips flame to the case near the joint until it is well hot ; then direct the flame on the joint until the solder rung. As soon as the solder sets, and while the case is hot, plunge it into a pickle made of sulphurio acid l part and water 9 parts, then wash in plenty of water, and clean up. Before soldering, uppin the back, bezel, and dome, and take out the bow, push piece, and any steel springe so that they miay escape injury from the heat.

Making Black Crayons.-To make black crayons, mix 10 parts of pipeclay, 1 to $1 \frac{1}{2}$ parts of lampblack, and $\frac{1}{b}$ part of Prussian blue with water to a stiff paste. Well knead all the ingredlents together. Allow the paste to remain for several days, then roll out on a board and cut into lengthe. A better method, however, would be to press the crayons in a mould; they would be-harder, more homogencous, and less liable to break.

Green Stain for Oak Picture Mouldings.-To stain oak picture mouldings a bronze green, mix bronze green, procurable at paint stores, in hot vinegar or in dilute French polish. If the mouldings are to be polished, mixing in vinegar is advised. Some of the dry colour may then be mixed with the grain filler and also with the varnish, which will be required on oak in order to gain a solid body.

Acetylene Gas Generator for Magic Lantern.Herswith is a sketch (one-eighth full size) of a portable and automatic acetylene gas generator for use with a magic lantern. The apparatue works well, and will
work is detached from the brickwork. The discoloured marble may, however, be bleached by treating it with a solution of boap lyes and whiting, but this bleaching will not be permanent. Mix the soap lyes and whiting to the consistency of a paste, and apply a good ooating with an old brush. Let this paste remain on the marble for a couple of days, then wash off with clean water-rainwater for preference-repeating the process two or three times until the stains have been removed. To make the lyes, obtain, say, 7lh. of American potash from the drysalters, and dissolve in a pailful of rainwater. The lye is of such a caustic nature that it is dangerous to fingers and nails. If, therefore, any of the liquid gets on the hands, they ghould be at once well washed in water containing a few drops of vinegar or acid to neutralise the alkali.

Making Railway Coupling Shackles.-To get railway couplings to stand, the grain of the iron in the shackles must follow round the eyes. To accomplish this, the bar is first nicked with the fuller as shown at A (Fig. 1), and the end drawn out to form a scarf as at B, which is bent

over as at O and welded, the eyes D being finished on the anvil with a pair of tools and a punch. The part between the two eyee is then heated and the bar placed with ons of the eyes on the stud of a bending block A (Fig. 2), and fixed by means of a cotter at B. One of the horns of a bending tool C and D (Fig. 2) is placed in a hole E in the block, and the handle pulled round towards the arrow F, the bar following in the direction shown by the arrow G until the shackle is bent to the required shape Fig. 2 shows the bending block in plan, and C and D are two visws of the bending tool. The shackles are made of l-in. to $\frac{1}{2}-i n$. Lowmoor or Yorkshire iron, according to the class of vehicles on which they are used.
Cleaning Leather-work Brackets.-To clean a pair of leather-work brackets mix a little carhonate of mag. nesia with benzoline to form a thin fluid, and apply it, in large quantity, quickly to the leather. Place the brackets in the open air to dry, then with a light feather brush dust out all the dry magnesia. If this does not serve the purpose, the only way of giving the bracket a good appearance will be to cover the leather with a buff flatting paint of a suitable colour.

Fow to nge a Twaddel's Hydrometer.-Twaddel's hydrometers are sold in sets of six or separately; they read as follows:-

The specific gravity of a liquid is determined by fioating one of the hydrometers in some of the liquid, contained in a tall glass cylinder; if the hydrometer is suitable for this particular liquid, the instrument will sink until the surface of the liquid coincides with some mark on the stem of the hydrometer. Suppose the stiength of a caustic soda solution is to be determlned, and a No. 2 hydrometer is to be used, the level of the liquid reaching 30°, the gravity of the liquid is 30° Tw.; or, if multiplied by 5 and 1.000 be added, its true apecific gravity, i.e. $1 \cdot 15$, will be obtained; then the solution will be found to contain about 13 per cent. of caustic soda.
Eydraulle Mean Depth.-The hydraulic mean depth of a liquid flowing through a pipe is equal to the sectional area of liquid divided by the wetted perimeter. The
the adjustable negative (or fism-holder) frame D. This runs in rails like a rising and cross front. and ls clamped when in proper position by the thumbscrews E and F. On the inner side of thisis a box G fitting closely inside the camera (film end). D is attached to o by the block H, which, resting upon the sides of A, bolds everything film and steady. At J is fitted the front of the enlarging camera, with the opening before the lens and a shallow frame P fitting closely around the kodak. (The kodak Q is, of courge, supposed to b removed from its outer box.) Attached to the front by bellows \mathbf{R} is a grooved frame K large enough to take a half-plate printing frame frame K large enough to take a haliplate printing frame frame runs an iron or brass roa L, over which a staple D may be turned to clamp it and thus bold the frame K tightly in position. When a fllm is used it is fixed, to keep it flat, hetween two pieces of glass and inserted in frame D, the film towards K . A sbeet of ground glass is then placed in the printing frame, the rough side of the glass to wards the operator, and the frame is placed in the grooves S of K, which is then exteuded almost to the full. grooves S of K, which is then exteuded almost to the full. Dis next extended until the image thrown on the ground
glass is nearly sharp. The fine focussing is done by

Diagram of Hydraulic Mean Depth.

Enlarging wlth Pocket Kodak.

manipulating K. It is then clamped by U over L. Adjugt finally in position hy serews E and F . Now replace the ground glass with plain glass and place against it the film side of the bromide paper or plate, and fill in the frame back. Cover the enlarging camera with a thick dark cloth and burn some magnesium ribbon before D. The bromide paper is then developed like a contact print. If only one degree of enlargement is required, the bellows may be replaced by a rigid box.

Extracting Salt from Sheepslin Rug.-Suppose it is required to treat a white sheepskin rug which. during damp weather becomes covered with moisture. First remore any lining or edging that is on the skin, mix together brun and hot water, and with this mixture immediately cover the bottom of a wooden trough to a good thickness. Upon this place the skin with the wool folded inside. Then place on more bran, fold over again, more bran, and so on until the skin has over again, more bran, and so on until the skin has been completely coveled. Then pour on hot water for a day, when the salt will disappear. Wash in clean warm water, and dry in the shade, constantly beating or shaking it. When nearly dry, well rub it.

Watches Stopping in One Position only.-When a watch will go in one position and ctop in another, the fault can generally be traced to a defective pivot or pivot-hole; thus, if the watch be held so that the balance works on one pivot or in one pivot-hole, and the watch stops, that pivot or hole is probably damaged. The pivot may be hent, its end may be bruised and resemble a "mushroom," or it may be too short to come through the jewel-hole and touch the endstone. The jewel-hole or endstone may be cracked. Other cause may be too much endshake to the balance; the balance arms may touch the index curb pins or the hairspring stud; the balance rim may touch the balance cock or the watch-plate, or (in a Geneva) the centre wheel; the hairspring may not be flat, and may touch the balance arms or the balance cock; the lever may touch the roller, or the 'scape wheel may touch the top or bottom of the slot in the cylinder.

Preserving Berries.-In preserving winter berrles, immerse them in a fairly strong cold brine preparred with ordinary table ealt and water. The berries will keep in this way for a long time. Artificial berriee ars nearly always used for decorative purposes, because of the great difficulty in keeping the natural berries in all unshrivelled state.

Making Waterproof Overalls or Oilskins.Unbleached calico is generally used for cheap oilskins, fine drill for better-class goods, and sometimes, but rarely, silk. Best linseed oil, with very little driers, is the most suitable dressing, and should talke about two monthe to dry in a cool, airy place. Lamplack is the cheapest suitable black; ivory black is better, but dearer. One pound to 2 lb . of lampblack may be used for 1 gal. of oil. If oil alone is used, 1 lh . to 1 l lb . of driers for 1 gal. of oll may be added; with lamphlack, 2 Ib . to 3 lb . of driers. Ochre is the only yellow pigment cheap enough to use. If the solution has to be made quickly, uee plenty of driers, and hang the articles quichy, uke plenty of driers, and hang the articles up to dry in a room artificially heated. The solution thin layer, and the first coat must be allowed to become thoroughly dry before putting on a second; two or three coats will be required. The articles should be hung on sticks so that no two portions of the cloth touch. Boiled oil, coloured with ochre or lamphlack, and a dash of driers is also ured. It is recommended, in order to keep the oilekins from becoming stiff, that yellow soap cut into shreds should be dissolved in the waterproofng paint, the proportions being 1 oz . of soap to 3 pt . of paint. A little beeswax dissolved In the paint is also used for the same purpose. A good black dressing is boiled oil and lampblack 1 qt. to which the white of five eggs and loz. of melted
and slightly modified, but his form gives practically the same result. The next important formula proposed was that by Neville in the middle of the century, giving a different value for the coefficient cfrom that of the earller experimenters. About this time Weisbach introduced his well-known formula, which has been for the last thirty years so much used by hydraulic engineers in this country; it is more complicated than any previous one, a varying coetticient c being given, depending on the rate of the velocity. From 1850 to 1858 M. H. Darcy began in France a remarkable series of experiments on open channels and pipes, on a much larger scale than had previously been attempted. Darcy died in 1858, and his work was continued by his assistant, M. H. Bazin. The latest, and by far the most important, researches on the flow of water are due to Ganguillet and Kutter, of Berne, who published their researches in 1869 and 1870. These experimenters continued on the lines of Darcy and Buzin, and found that the Chezy formula could be adapted to all cases, but that the value of the coefficient c varies under very many conditions instead of rec varies under very many conditions instead of re-
maining constant, as in the early form. Kutter estab. lished a series of "coefficients of roughness" "which have been largely experimented upon in America, Germany, and England, 9 nd have been proved to be substantially accurate. The following table shows more clearly the great difference between different formulæ. Comparlaon of formulæ:-

Pipes Running Full-discharge in Cubic feet per Minute.

beeswax are added; give two coats, and allow each coat to dry thoroughly before the next is applied. The drying will occupy quite two weeks. If the drying is not thorough the dressing will become sticky. li driers is used the oilskins are apt to erack. If the dreasing is too thickly applied it will pcel off where exposed to friction.

Cross in Telescope of a Level. - The cross used in the telescope of a level is fixed in the eye and of the instrument, and just within the focus of the eyepiece, generally 1 in. from the eye end. But this varies according to the focal length of each eyepiece. The wires are taken from the spider, and directly laid over the diaphragm, to which they are attached. Experiments have heen made with other material, but the spider's web has proved the best for the purpose. The diaphragm is a ring of metal about $\frac{1}{1} \mathrm{in}$. less in diameter than that of the tube into which it is inserted. Four screws which pierce through the tube hold it in position and serve for adjustment. The ring is bevelled in its inner circumference in order to provide a clear edge. The face to which the wires are fixed is marked off for the number and position of lines wanted; then the web is stretched across in the marks made, and secured at each end by a drop of varnish.

Comparison of Formulz for the Discharge of Water in Pipes,-The fundamental formula for calculating the velocity of water flowing through a pipe or channel, and for calculating the rate of discharge, is based on that of Chezy, a French engineer, who proposed in 1775 the formula

$$
\mathrm{V}=\sqrt[c]{\mathrm{RS}}
$$

Where
$V=$ mean velocity of water in feet per second.
$R=$ hydraulic mean depth $=\frac{\text { area in sq. } \mathrm{ft} \text {. of cross-section }}{\text { wetted perimeter in feet }}$
$\mathbf{S}=$ slope $=$ inclination of water surface
length of pipe or channel
$c=$ a coefficient determined by experiment and fixed by Chezy at $93^{\circ} 4$. This formula was further investigated by Eytelwein, a German experimenter, between 1814-15,

New formulæ proposed are either modifications of the Darcy and Bazin or Kutter forms, or, being dependent upon a single isolated experiment, are not'entitled to any authority.
Making Gold Wire Name Brooches.-The wire employed ior making American name brooches is a hard, tough brass of a gold colour, coated with gold. Various qualities are used, from a lightly gilded wire costing 5s. per pound to a heavily gold-cased wire costing 5s. per ounce. The higher priced wires were first im; ported under the name of "American rolled gold" wire, but wire of an equal quality is now sold as "seamless gold plating wire." The gauges in general use for this purpose are Nos. 20, 21 , and 22, round, and half-round for ringe; also square and other shapes for bracelets, scarf pins, and ornamental articles. For name brooches, No. 20 is beat suited to bold designs with flowing curves, and No. 21 for more compact forms, whilst No. 22 is only used in making names with small letters. But the condition of the wire also arsists or retards the workman in working out his deaign. A hard wire is liable to break if bent sharply, and is also too springy to retain its shape after being bent; whilst a wire that is too soft, although easily bent whilst making a brooch, will as easily bend and crush out the design after being worn a few times. The tools for this class of work consist only of a pair of small round-nosed pliers, a pair of cutting pliers, and a small fine-cut file; these can be bought at any toolshop. The best designe and patterns for a novice are a few of the lower priced brooches, pins, rings, and bracelets. It is adviaable for the beginner to imitate first the simpler designs, such as for an initial scarf pin, in some cheap wire, until a certain proficiency has been attained. Hard-drawn copper wire of No. 20 gauge will be found suitable for this purpose. The stem of the pin may be grooved spirally with one edge of the file, and pointed with the same tool. Twisted pins are made with square wire, held in one pair of pliers and twisted with another pair. When proticiency has been attained in making scarf pins, a safety pin, or a brooch with a simple, short name, may be attempted. Skill in working the wire can be attained only by first practising on copper or some other cheap material.

Deelgn for a Doll's Wooden Bedstead.-Figs. 1 to 5 show the construction of a doll's bedstead. The size will vary according to requirements; any

Flg. 1 is a general view, Flg. 2 a side elevation, and Fig. 3 is an end slevation showing the head. Figs. 4 and 5 show joints, as has been said.

Hollowing Tinplate.-A hollowing block cut preferably from the trunk of an oak or beech tree will be required for hollowing tinplate; a convenient size will be about 3 ft . high and 2 ft . 6 in . in diameter. The be about ftt high and 2 ft . 6 in . in diameter. The diameters with a small adve. If a variety of hollowed articles is to be worked, a set of block hammers will be required. These comprise a bullet-faced hammer for covers; a hammer with the faces curved to a greater radius than the first named for kettle bodies and similar work; and one with the faces flarter than either of the two former ones for canister bodies, etc. When working the metal, if a circle is to be hollowed, place the metal ao that the edge of the circle is over a hole in the block of suitable depth, and then hollow it by delivering regularly with the hammer a series of blows first round the edge, and then in a series of concentric circles as far in towards the centre as may be desired. The work is then smoothed by again going over the hollowed part with light regular blows, or giving a series of radial atrokge upon a planishing wheel. When hollowing ovals, such as a kettle top, the sides of the oval do not require ao much hammering as the ends. If the shape is a rectangle, or an oblong with round corners, the corners are the parte that require most working. Hollowed work in tinplate is usually executed in "tacks" of four or six discs or ovala, according to the thickness of metal used.
Stephenaon's Thermometer Screen.-The aketch shows a Stephenson's thermometer screen, which consiste of a box, either square or oblong, raised 4 ft .

from the ground. The box may have louvred siden, that is, the sidea may be made in a similar way to wooden ahuttera for windows, thus allowing air to penetrate, but keeping out the direct raya of the gun. But it is preferable to have the louvred sides double, aa illustrated in section by Fig. 2, and not single louvred. In strong winda, direct dranght on the damp cotton surrounding the hygrometer wet bulb would produce undue evaporation, and give a lower temperature than would be given by the same thermometer when atanding in still air of the same temperature. The double louvre minimises the riak of direct draught, and keeps the enclosed air as still aa possible. The box is open below and has a wood partition through the middle upon which the thermometers may be fixed. The roof is floped, and may be painted or covered with tarred felt. The size of the box is notimportant; but if it is made smaller than 3 ft . by $2 \frac{1}{2} \mathrm{it}$. by 2 ft ., it will be necessary to have a hinged door at each end through which to take the readings of the thermometers.

Principles of Hydraulio Lifts, - Hydraulic lifts are of many forms and sizes, from the small dinner lift to the paasenger or luggage elevator:. The principlea on which they work are very simple, and can bs illustrated by a common ayringe or gquirt. If the nozzle of auch an appliance is attached to a cock on a water pipe, a piece of indiarubber tubing will do for making the counection, and the piston or plunger is pushed in as far as it will go before $\begin{aligned} & \text { atarting. }\end{aligned}$ On turning on the water, the piston will be forced outwards, and if stood or held upright a load or weight placed on the top would be raised. The weight of the load it would liit would be in proportion to the pressure of the water in the main and the area of the end of the piston or plunger. If the pressure in the main
is say 501 b . per square inch, and the end of the piston an area of 1 sq . in., then 50 lb . of weight could be balanced. If one-third of the power is absorbed by the friction between the cylinder and the packing or gland, then $\frac{50 \times 2}{3}=33.3 \mathrm{lb}$. equala the load that would be raised, the load including the weight of the piston and carriage, car, or platform npon which the load to be lifted rests. If the area of the above piston end was equal to 100 sq. in., then $\frac{100 \times 50 \times 2}{3}=3,333^{*} 3 \mathrm{lb}$. (which is the load piston, cage, etc.) that would be raised.

Conatruction of Fireguard.-Fig. 1 showa the fireguard complete as it would stand round the fireplace. It should be of a size to fit against the centre of the mantelpiecs jambs, and should stand about 30 in . high, though the height may he varied according to the position. The top rail should be of flat iron sin. wide by in. thick, and the bottom bar 1 in. by $\frac{1}{2}$. These are bent as shown in Fig. 1, leaving the ends 12 in . long. This size may be either less or more according to the size of the room. The rails are drilled to receive the standard bars at intervals, leaving 3 in. space between the bars. The bars of round iron sin.

Fig. I

Construction of Fireguard.

FIG. 2
In diameter must be reduced at each end and then riveted into the rails (see section, Fig. 2). The back standard bar should be of flat iron lin. by \ddagger in., with a round hole drilled through at 6 in . from the top to receive the screw on the plate, which is fixed to the mantelpiece, and to which the fireguard is secured by a thumb-nut (zee Fig. 3). Another method of securing the guard to the mantelpiecs is shown at Figs. 5 and 6 . The top rail is turned down to form a hook, which falls into an iron eye on a plate fastened to the mantelpiece. The guard may be made more ornamental by using an angle-iron rail instead of fiat iron for the bottom, and fixing on the front a brass ogee moulding (see Fig. 4) and on the top rail a half-round brass moulding (see Figs. 2 and 3). The guard may bs painted dead black or any tint of enamel as individual taste may direct.
Repairing Broken Cornice of Ceiling. - If the broken cornice is a fluted one, make a zino mould of it, using the good part of the cornice ns a pattern. Remove all loose plaster, dust with a stiff brush, and weli wet the cavity with water. Mix to a proper consistency a aufficient quantity of Keene's plaster, beat it up to a thich paste, and apply with a trowel and aash tcol; gradually fashion the cornice by drawing the zine mould backwards and forwarda until the new portion of the cornice lines with the old. If the cornice is an ornamental one, the broken part must be made good by a casting from a mould taken from the unbroken part of the cornice.

Whitening a Discoloured Celling.-In whitening an old paper-lined ceiling that has gone a bad colour. clean off the ceiling and remove all looee paper; then apply a coat of size, whlsh may he made hy diasolv; ing 6 oz. of glue in 6 pt, of water, and stirring in a handful of plaster-of-Paris. To make a good job, line the ceiling with llning paper and butt the joints: for a strong job, catch-lap the joints. The ceiling may then be whitened in the ordinary way. If the ceiling is a very large one, use Irich muss inctead of slze with the whiting, as the moas will keep the joints from setting.

An Easily-made Snow Plough,-For the construction of the snow plongh here illustiated, two elm slabs about 5 ft . by 10 in. hy li in. are required; the planks might be longer and wlder with advantage. Out one end of each plank as at AB (Fig. 1); then place it on the second, and draw a line along $A B$ as a guide by which to cut the second. Place the planke edgeways, as in Fig. 2, and decide the angle at which to fix them. A suitable angle will make the ende C and $E 2 \mathrm{ft} .6 \mathrm{in}$. or 3 ft . apart. Lay EF edgewaje on the edge of CD . at D at the proper angle, and mark the bevel at D. Then, having fixed $C D$ odgeways, cut down this bevel line with a saw. EF, when placed against this hevel, will now form the angle required, the outer edge being bevelled to a sharp edge. Two strong pieces of wood should then be cut to the length of the cross rails. Place all in position hefore nailing together, and mark with a pencil the ends of the raile on both plankg. Then bore holes from the inglde to the marks, and, when all is bore holes from the ingide to the marks, and, when all is
ready, nail the side pieces together with 3 -in. or 4 -in.
side. Along the hottom of the central groove glue a strip of cork. Having laid the dead insect in the groove, a pin is pushed vertically through the centre of ite a pin is pushed verthe cork; the height of the latter should be just bufficient to bring the wing ahove the edge of the side cork, and packing must be inserted where necesbary to ensure this. Anentomological pin, long and thin with a small head, is used. If the winge can be spread with a couple of eparrows'-tail or flight feathere fixed in a handle, all the hetter. Contact with fingers or tweezers or auch like spoils the wings. Small slips of letter-writing paper are used as straps to hold the wings in their extended position, a conple or more of ordinary pins being etuck through each strap, hut not through the wings. Use plenty of straps to keep the winge extended; putthe set insect aside for a week or so, remove the straps, and stick the eample inside a store hox or case. Camphor enclosed with the epecimens will preserve them from mites, which otherwise might spoil a valuable collection. In the busy insect season many adopt the system of leaving the killed insects to dry unset, 80 that they may be relaxed and set properly at leisure.. Dry insects are easily relaxed by keeping them on damp eand for a few days, when they may be treated on the setting board precisely as if they had but just heen killed.
Table for Silvering Plate Glass.-The illustration shows a hot table suitable for use in silvering glaes; it has the middle slate removed. One-inch board should be used for the top of the table, the slate top s heing $1 \frac{1}{2}$ in. thick. The inside should be lined with zine to make it airtight, the zinc being hrought

wire nails. Place the raila in position, and nail from the outside through the holes already made. A piece of tin, such as a tin canister flattened out, will, if nailed on the front edge at D, ease the paseage through the snow. A strong staple should be placed at each elde, as at F , for harnessing a pony or borse to draw the plough. When in use, some heavy logs or a box of stones should be tied on the plough to prevent it rising over the snow.

Setting and Preserving Bntterfles, etc.-Insects to be preserved in a collection should he killed separately in a wide-mouthed stoppered jar, at the bottom of which is cyanide of potassium covered with plaster-of-Paris. As soon as it is quite dead, remove the insect from the bottle, catching hold of it by the middle -that ia, where the legs join the hody-and uce a pair of tweezers, not fingers or anything as clumay. Suitable tweezers, not ingers or anything ase clumsy. Suitable by hending double a strip of thin sheet steel or brass $\frac{1}{5}$ in. or $s i n$. wide and 6 in . or 8 in . long till the two ends meet and form a delicate substitute for forefinger and thumb. The spring of the metal at the bend should keep the ends ahout $\frac{8}{4}$ in, or lin. apart. The ends can be filed to a blunt point. Touch' the insect as little as possible, and always catch hold of it by the thorax. The wings and other parts of hutterflies and moths are covered with minute feathers, which are rubbed off and defaced at the slightest touch. The dead insect stiffene and dries up rapidly therefore, have ready a settiug hoard, on which to hold it in position whilst drying. The eetting board is made by gluing two etripe of soft, smooth cork, each 9 in . by 1 in . by ${ }^{\frac{1}{3}} \mathrm{in}$., to an under-piece of wood 9 in , hy 21 in . by $i \mathrm{in}$. The two cork stripe are glued to the wood with $\%$-in. groove between thelr longest edgee, and the cork is slightly bevelled off on the outer edge. Insect setting boards used by Continental naturalists are, however, quite flat; but English naturalists congider ingects to be spoilt if set flat. Of course, the larger the ingect the wider will the board require to be. In the $\frac{1}{4}$-in. groove the body of the ineect Hes whilst its winge are extended over the cork on each
over the side. The slate slab should be bedded in redlead, all joints being flled with red-lead mixed with varnieh. The table muet be quite level. A blanket or piece of felt should be placed over the slate when in use, and made wet with water before the eteam is ueed. Steam should be turned on gradually by a valve at I; the hotter the table the quicker the silver will deposit. The outlet pipe ofor ateam is absolutely necassary, and could be regulated by a valve, as the conflned steam would lift off the slate. The outlet pipe should be led to a convenient place so as not to interrupt a clear passage round the table. The pipe W in the bottom of the table is to let out the water formed by the condensing of the steam. The zinc is turmed into the groove G, which is also for the hed of red lead. The glace to be silvered must be chemically clean, and whilst atill wet from the washing it chould he placed on the hot table and have a solution of gelatine or other mordant poured over it. Before this hardens, cover the glase with a saturated solution of nitrate of silver, and allow to remain untouched for ahout ten minutes. After wiping with a leather squeegee; again apply the ailver nitrate solution, and complete the process by a final wiping with the squecgee.

Polishing Cornelian Stones.-Perhape the best way of polishing cornelian stones in the rough is first to grind them level on a suitahle stone, or on a piece of Yorkshire grit obtained from a tombstone cutter. The stone must be kept wet. When a level face is procured, grind out all the markinge with emery powder, not too nne; use this on a thick sheet of lead with water. On another sheet of lead grind with a finer emery all marks left by the first emery. Then grind with finest emery on another sheet of lead; by this time there will be a dull polish. When no scratches are visible, polish With putty powder on a piece of felt or leather. I'wo thlags must be remembered: Do not stop grinding with one powder until all markings of a previous grinding are removed; and secondly, all the grindings must be wet.

Spinning Copper.-Copper is one of the easiest metals to spin in the lathe, because it is pliable and can be sannealed straight off when it becomes hard. The toolmust bear on the metal with firmness, but it is hest nut to take too large feeds, but to mould the metal gradually. It is of great advantage to hold a plece of hardwood against the back of the blank, particularly in the earlier stages. When the blank is first put on the chuck, or after it has been annealed, it feels very coft and yielding, but after a short time it, gets harder, and it is not wise to work it too hard. The tool should not be moved from centre to circumference only; that would tend to draw the metal away from the centre and make it thinner there and more liable to break. When the tool has travelled from the centre outwards, let it travel back again to the centre; in this way the metal can be kept of the same thickness throughout. If the blank is fixed to the chuck by a screw through the centre, turn the chuck gradually during the spinning and anneal rather often.
Bier Stand for a Mortuary.-The accompanying sketch shows the construction of the frame of a mortuary bier stand. All the dimensious are clearly marked on the sketch, and when the top is hoarded over with I-in. hoards (which should run aeross the frame),
been heated in an oven. After the appiication, lay the carbon paper on an old newspaper and return to the oven to allow the mixture to soak in. After about half an hour's heating any axcess of fluid may he removed with a cotton rag; the paper will he fit for use on cooling.
Making Opalines.-In preparing opalines, immerse a photographic print in a 5 -per-cent. solution of gelatine. Warm the glass, and pour on it in a pool a portion of the gelatlne solution; immediately lay the. print, face down, upon this, and squeeze out any air bells. The glasses are generally edged round inside with a rim of gold paint. The prints should be cut slightly smaller than the glasses, and be just large enough to cover the rim. Before the print dries a piece of waterproof paper is mounted over the back. Finally, the strut is affixed with glne.
Air Pump for Blowlamp.-An air pump for a blowlamp, and particularly suitable for the apparatus described on p. 151 , may be made from brass tube 1 in . in diameter and 6 in. long. Taks a thick circular discof brass of the same diameter as the tuhe, and drill a conical opening in the side, and also a cross channel to join it as at D; then braze the drilled disc on the end of the tuhe. File away the surplus spelter, and. with omery and oil grind the conical opening true, so that when the metal ball shown is dropped in it will.

Bier Stand for a Mortuary.

Alr Pump for Blowlamp.
overhanging at the sides and end about an inch, the stand will be complete. The stands may be made of deal, but oak is preferable, though of course more expensive.

Particulars of Microscope Slides.-Somemicroscope cells are made hy painting rings of maring gine upon a slide, and repeating this until the cell is desp enough. Other cells are formed hy cementing pieces of plate glass (with the interior removed) to the slides; whilst others, known as "sunk cells," are formed hy grinding out a hollow in the slide. Others, again, are known as "tube cells," being formed by camenting a section of round or rectangular glass tuhe to the slide glass. Thess may he of any size. Thers are also "built-up cells," made by cementing separate pieces of glass togethor.

Maling Carbon Paper-In preparing black carbon paper either of the two following compositions may he used. (a) Finest lamphlack 5 parts, olive oil 5 parts, cerasin wax 1 part, and petroleum ether 10 parts. (b) Lampblack 5 parts, cerasin wax 6 parts, olive oil 5 parts, and petroleum ether Is parts. The lampblack and oil are ground together in a mortar, transferred to a small dish or pan and slightly heated, and the cerasin wax added; When the latter has thoroughly melted, well atir the mixture, remove it to a safe place, and while still warm add the petroleum ether. For a bluish-hlack shade, add a little Prussian hlue. The mixture, while warm, should ho applied with a brush to paper that has
completely oloss the passage. If any difficulty is experienced in making tha ball fit air-tight, line the cone with thin leather; the ball will then act satisfactorily. C is a plug of leather well soaked in oil, and attached to the plunger rod by means of a small nut as shown. When in use, the hack pressure exerted on the lower end of the plug causes it to expand on the down stroke, and so closely fit the tube that all the air in it is forced through the outlet D. On the upward stroks commencing the hall closes down the hole at D, and air passes the sides of the plunger as it is drawn upwards. A screwed cap B made to fit the barrel completes the pump.
Cemontiog Joints Round Coolding Ranges. - A cement that will not crumble and hreak away from joints in a cooking range and from around the front edges of range covings cannot he obtained. The heat appears to affect the cement, hut the real cause is the expansion and contraction of the range parts when heating and cooling. A slow-setting cement might he used, so that when the fire is lighted the range parts and cement may accommodate themselves to each other. If care is taken to keep the joint very emall common glaziers' putty could be used; this answers well, as it eventually hardens with the heat. But better still will he to have the stone jambs tight up or overlapping tha edges of the covings; or provide a moulded edge up each side and across the top of the range to overlap the jambs and frieze.

The Pulsometer.-The illustration Bhows a sectional elevation of a pulsometer, which is an appliance for raising water by the alternate pressure and condensation of steam. To describe the parts, K is a pipe from a boiler containing steam under pressure. The gunmetal spherical valve is free to move and to alternately cover the necks I and J. The latter form the upper parts of the chambers AA, into which water passe througn the of the E E from the suction pipe F. G G are doors for access to the valves E E for repairs or other attention. Near the bottom ends of AA are side outlets, as shown by the dotted circles, covered by the valves F F, also shown by dotted lines, opening into a chamber with which are connected the air vessel B and the ontlet branch D, to which the delivery pipe is attached. The action is as follows. The pump is first charged with water through plug-holes

Sectional Elevation of Pulsometer.
provided for the purpose, and then steam is turned on at K . This presses on the water on the right hand chamber A (Which is not covered by the spherical valve), and torces it, as shown by the arrows, through the righthand valve F and up the delivery pipe. The steam in the right-band chamber A then condenses, and causes the spherical valve to roll over and cover the neck J, and also creates a vacuum, which is again filled with water through the right-hand valve E from the suction pipe C . When the valve has rolled over J, the steam passes throngh the open neck I and presses on the water in the left-hand chamber A, forcing it through the dotted lefthand valve T into the delivery chamber. When the lefthand chamber A is uearly empty, the valve is again pulled back by the condensation of the steam in the chamber, Which again flls with water during the tlme the other chamber is being emptied, and these actlons contlnue as long as steam under efficient pressure is supplied. As water will not rise'in a vacuum beyond a certain height, a pulsometer should not be fixed more than about $15 \mathrm{I}^{\prime}$.
or 20 ft above the water to be raised, although theoretically the limitis a little more than 30 ft . The pump cans be slung on chains in a well or sump, so that there is very little trouble in fixing it, or lowering it when necessary for keeping within a working distance of the water. The height to which a pulsometer will raise water depends on the presaurs of steam in the boilex, which is used in conjunction with the apparatue.

Making Typewriter Inks.--One of the most popular recipes for ink for typewriter ribhons is as follows. Melt some petrolatum, having a high boiling point, on a water bath. Petrolatum is a soft hydrocarbon obtained from the residues left after the distillation of lighter oils from crude petroleum, or it may be deposited by the latter on standing; its commoner name is vaseline. Incorporate as much lampblack or powdered dropblack as the petrolatum will take up without becoming granular. When the mixture is partly cool, dissolve it, a little at a time, in a mixture of equal parts of petroleum, benzine, and rectified oil of turpentiue. Regulate the quantity of the latter solvents to produce a solution of the consistency of fresh oil paint. Try on one end of the ribbon and, if too thin, add wax ; if too faint, add colour ; if too hard, add vaseline. Appiy to the ribbon and brush off the excess. Many typewriter i"ks have glycerine, a ver'y undesirable ingredient, as the vehicle for the colouring matter. The following recipes are typical of the com. position of such inks. (1) Dissolve $\frac{1}{4} \mathrm{Oz}$. of aníline dye in 4 oz . of glycerine, and add 2 oz of alcohol and 2 oz . of water. (2) Dissolve 1 part (by weight) of powdered aniline dye in 6 parts of glycerine, and add 3 parts of boft soap. Warm until the soap dissolves and well mix. (3) Dissolve 育 oz of aniline dye in 15 fl . oz. of alcohol, and add 15 fl . oz. of glycerine. (4) A good ink is made by dissolving l part of aniline dye (soluble in oil) ja 6 or 8 parts of oil of cloves ; gentle heat assists the solution. The aniline dye in these four recipes may be of any suitable colour; black and vielet are perhaps the most serviceable. Anether method of making a black ink is to grind 1 part of gas black with 5 parts of oil of cloves. All inks containing aniline colouring matter and glycerine are copying inks. Two other recipes for copying inks are here given. (l) Grind 1 part (by weight) of suitable aniline colouring matter with 6 parts of glycerine. (2) Dissolve, by the aid of heat, 1 oz of transparent soap in a mixture of 4 fl . oz. of glycerine and 12 H . oz. of water; mix with a solucion of a glycerine and 12 H . oz. of water; mix with a solution of a sufficient quantity of aniline The unsatisfactory results given by home-made type. writer inks appear to be cansed by the use of glycerine as one of the ingredients, according to Prof. Shuttleworth. The hygroscopic properties of glycerine make it an undesirable ingredient, and the addition of glucose, soap, alcohol, or water does not improve matters. Vaseline, with or without the addition of wax, gives better results, butits cousistence isappreciably affected by temperature. Prof. Shuttleworth proposee castor oil as a more suitable medium; the colouring matter may be any of the salts of the aniline series, and of these methyl violet is practically soluble in the oil mentioned. In preparing the ink, triturate the powdered colour with the oil in the mortar, the work being facilitated by the addition of a very little alcohol a suitable formula for such an ink is that of Higging. Castor oil, 4ez; carbolic acid, loz; oil of cassia, loz.; ouitable aniline coleur, loz. Printing inks may be modified for service in the typewriter by adding vaseline to make them nondrying on the ribbon; if it is found that they are too soft, add wax also.
Fog on Photographic Dry Plates. - If light reaches a dry plate by any other way than threugh the lens when the plate is exposed in the camera, the result is fog; that is, the sensitiveness of the plate is destroyed, and development produces black patches of greater or less intensity according to the amount of light that has accidentally fallen on the plate. This fog may be due to defective slides, to cracks in the cog may be due to deakages of outside light into the dark room, or to an unsafe lamp. In a score of other ways, all of which may be classed under carelese or faulty handling of the plates during their journey from the maker's box to the developing dish, light may reach the sensitive plate and cause fog.
Lead-light Glazing.--As a cement for fixing lead lights to 8 teel irames, the following preparation will probably glve satisfactlon. . Mix llquid glue with a sufficient quantity of wood ashes to form athick mass; the ashes quantd be added in emall quantities to the glue (whlle boiling), and constantly stirred. A sort of mastic is thsn obtained, which, applied hot to the glass and metal, fixer the two firmly together. A good hard stopping can bu made of fine litharge, 2 parts; white lead, 1 part; copal varnish, 1 part; boiled linseed oil, 3 parts; the whole is well triturated together. Lead glazlng may be fixed in either wood or metal frames.

Making Triad Pictures.-A trlad picture is simply three pictures in one; from a standpoint exactly In front of it a certaln Fiew, represented by X (FIg. 1), is seen. From a point a little to the right-hand side is seen a totally different view, represented by Y (Fig. 2) ; while movement to the left discloses a third picture 2 (Fig. 3). The construction is very simple. First get thres. pictures and select the central one. For the purpose of description, suppose it to be 13 in . wide; the beight is
tures. Divide it into thirty-seren parts, and mark each $\frac{A}{1}, \frac{A}{2}, \frac{A}{3}$, ete. (Fig. 7). Now, with a very sharp knife cut off the central picture the slip marked $\frac{\mathrm{x}}{\mathrm{l}}$ (Fig. 4), and paste it on the division marked $\frac{A}{1}$ (Fig. 7). Next take the z or left-hand picture and cut off the slip marked $\frac{Z}{2}$

Fig. 9

Fig. 6

Fig. I

Fig. 4'.

Fig. 2

Fig. 6.

FIG, 7

Fig. 8

Fig. 9

Fig. 10

Making Triad Pictures.
not material at present. On the back of the picture rule pencil lines, dividing it into thirteen divisions, oach lin. wide, and mark these divisions $\frac{x}{1}, \frac{x}{2}, \frac{x}{3}$, and so on, as shown on Fig. 4. Next take the picture represented by Y (Fig. 2). Suppose it to be 12 in. wide; on the back rule pencil lines, dividing it into twelve divisions, and mark the divisions $\frac{Y}{1}, \frac{Y}{2}, \frac{Y}{3}$, and so on, as shown on Fig. 5. Space the third picture (also 12 in . wide) into twelve divisions, and mark each $\frac{Z}{1}, \frac{Z}{2}, \frac{Z}{3}$, etc., to Fig. 6 . Next take a sheet of paper (lining wall paper will do), 37 in . long, and in width equal to the height of the pie-
(Fig, 6), and paste it on $\frac{A}{2}$ (Fig. 7). Then off the Y or right-hand picture cut the slip $\frac{\mathbf{Y}}{1}$ (Fig. 5) and paste it on $\frac{A}{3}$ (Fig. 7). Now return to the X picture, and cut off the $\operatorname{slip} \frac{X}{2}$ (Fig. 4) and paste it on $\frac{A}{4}$ (Fig. 7), and so on, until all the slips are pasted in the order shown on Fig. b_{i} Now fold the combined picture on a piece of millboard slightly larger than the central picture, paste down the first strip X^{2} (Fig. 8), paste Z^{1} and Y^{1} back to back, secure X^{2} close to the first strip, put Z^{2} and \mathbf{Y}^{2} back to back, and so on (see Fig. 9). If the pictures are comparatively narrow, say 9 in . or less from top to bottom, do not cut
the centre one but paste it on a sheet of card, which should be lin. larger all round than the picture. Now glue a l-in. by l-in. wood slip, neatly mitred at the angles, round the edges of a sheet of stout millboard make saw cuts $\frac{1}{3}$ in long and lin. apart in the top and bottom pieces, and fix the frame round the picture. Paste the other pictures on paper having $\frac{7}{2}$-in. margins at the top and bottom. Cut them into l-in. strips, paste corresponding strips back to back, run the brush along the proper edge of the connected strips, and fix the ends into the $\frac{z}{-i n}$. saw cuts. If the centre picture is wider than the others, the height of the upstanding strips will be less than the width of the centre picture strips; when uprights and fint strips are of equal width, as in Fig. 9, shadows are apt to interrupt the side views. Spaces as X^{1} in Fig. 9,1 in. wide, with uprights $Y^{2} \frac{3}{4}$ in. high, will suit a centre picture 15 in . wide, and two others 10 in. wide, or one 10 in. wide, two 64 in. wide, etc.; dimensions respectively of 1 in . and $\frac{1}{2}$ in. suit a centre picture 15 in. respectively of 7 in . and and dimensions of s in in. and $\frac{1}{3}$ in. suit a centre picture 12 in ., and two others $7 \frac{1}{2} \mathrm{in}$. Oleographs and photographic enlargements maks good triad pictures. Triad signboards having worded aunouncements are made as in the section (Fig. 10) with wedge-shaped pieces having l-in. sides and tin. base. Paint these fame as ground, and put a letter in each division.

The Manufacture of Artificial Gems.-As carly as I837 Gaudin made artificial rubies by heating ammonia, alnmina, and potash by means of an oxy-hydrogen blow pipe; the intense heat volatilised the potash and alumina, afterwards producing crystals in rhombohedral forms identical with those of the natural stone, and having the same specific gravity and hardness. Methods of producing crystals of corundum, ruby, sapphire, etc., were discovered abont 1858, but both these and Gaudin's processes had but little commercial value, the great expense precluding their adoption. Un til quite recently, expense precluding theiradoption. Untilquite recently, the only artificial gems known to commerce were backed with silver or a mercury amalgam. Now however, the chemist can produce imitations that, in lustre and hardness, equal the real or found gems; perihaps "imitation" is not the correct word, as the composition of both manufactured and found stones is supposed to be the same. Sometimes it is quite impossible to distinguish between the two kinds of gems, although timguish benween the two examination under the microscope discloses generally examination under the microscope diseloses rubies contain minute cracks which indicate ths lines of cleavage; the artificial gem shows very minute bubbles or gas holes. Analysis hasproved that the sapphire is pure alumina, thatis, oxide of aluminium ($\mathrm{Ai}_{2} \mathrm{O}_{3}$). Thisis found in the form of a white powder fusible at high temperatures only. The colour of a sapphire is supposed to be due to the presence of chrome, and is dichroitic, that is, it varies with the point of observation; thus it is it varies with the point of observation; thus it is French chemist, accidentally discovered a method of producing gems that possessed dichroitic properties. His method is to heat an iron pot to dark red and to place in it 4oz. of superphosphats of lime; this is brought to the same heat and stirred with an iron rod, being then converted to crystallised pyrophosphate, which, on being further heated, becomos a fuid resembling molten glass. It is supposed that in this state a part of the phosphoric acid is changed to a tribasic phosphate. The fused mass is stirred continuously until it is quite transparentand fres from bubbles, when it is transferred to another pot and kept at a white heat for two hours, the stirring being kept up all the time. After standing for an hour, it is poured on to a metallic surface and allowed to cool slowly until as soft as putty, when it is put on plate glass. When cold, a number of stones almost equal to the genuins sapphire may be cut from the plate. Another formula is: Smelt a mixture of 4 oz . of oxide of aluminium and 40 . of red lead $\left(\mathrm{Pb}_{3} \mathrm{O}_{4}\right)$, and stir in 10 gr . of bichromate of potassinm ($\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$) and 17 gr . of oxide of cobaltum (CoO). When cold, stones may be cut that ars as hard, if not quite so brilliant as the genuins ones. The ruhy, also, is oxide of aluminium coloured by chrome. Crystals of the rosecoloured ruby may be produced by melting together aluminium oxide and powdered silica, with the addition of fluoride of barium to form a flux, and then adding a trace of bichromate of potassium; 500 lb . ad these ingredients, after perhaps a week's fusion, will produce rubies of 5 or 6 carats which may vary much in colour, running through all the shades of bluish sapphire and roee to the deep colour of the so-called pigeon-blood ruby. Ordinary borax fused with a little chromium oxide for a week or so produces large ruhy crystals; but 200 lb . of ingredients may be required to obtain even two or three gems of any marketable value. One method of making artificial rubies is to smelt a mixture of 4 oz . of oxide of aluminium and 4 oz . of red Iead, and add from 7 gr . to 16 gr . of bichromate of potassium. Natural emeralds are a combinatiou of the
rare element beryllium or glucinum with silicon; chrome gives the colour. Beryllium is too expensive for use in producing imitations, so oxide of aluminium is used, 4 oz . of this being smelted with 4 oz . of red lead, to which from 8 gr . to 12 gr . of uranate of sodium ($\mathrm{Na}_{2} \mathrm{U}_{2} \mathrm{O}_{7}$) havs been added. Hautefeuille \& Perry, the French chemists, produce some beautiful emerald crystals by fusing silica, alumina, glucina, and a trace of chrominm oxide with acid molybdate of lithia. After a fusion of fifteen days soms vely small crystals, having all the mineralogical and physical characters of the natural emerald, may be obtained. The longer the fusion the larger are the crystals. Emeralds and other gems nave been produced from gas retort refuse by a method discovered by Mr. Greville Williams, F.R.S., who modelled an emerald composed of from 67 to 68 per cent. of silica, 15 to 18 per cent. of alumina, 12 to 14 per cent. of glnciaa, and traces of magnesia, carbon, and carbonste of lime. The colour was an intense green, due, it is believed, to the presence of sesquioxide of chromium. Imitations of the amethyst, topaz, etc., have been made very successfully by Donault Wieland, of Paris, Whose method of preparing "Parisian diamonds" or "Alaska diamonds" is to sinelt a mixture of 65 per cent. of pulverised crystal quartz, 20 per cent. of red lead, 8 per cent. of pure carbonate of potash, 5 per cent. of boric acid, and 2 per cent. of whitearsenic. The briliancy of the red lead and of the carbonate of soda.
Principles of Sewing Machines.-The principle of the lockstitch sewing machine is, roughly speaking, as follows. The needle descends to the bottom of its stroke, and simultaneously the shuttle slides, vibrates, or oscillates as far as the end of its backward movement. Continuing the movement of the balance Wheel, the needle begins to rise, and the shuttle immediately after begins to move forward. As the needle rises the material through which it is passing holds the needle cotton long enough to cause it to loop out behind the eye of the needle under the needleplate. The shuttile, still moving forward, enters this loop and passes through it, the necessary amount of slack cotton being sipplied either by the "time" of the needle-bar or by the check or take-up lever, according to the style of the machine. By the " time" of the needle. bar is meant the movement which is caused by a cam on the bar, causing it to descend the second time after it has risen sufficiently to throw out its loop and to allow the shuttle point to enter it. This descent throws off encugh slack cotton to pass over the body of the shuttle withont causing any strain on the cotton, and as soon as the shuttle has passed through the loop the needlebar rises to its highest point and draws up the cotton into the material being sewn and the bottom or shuttle cotton with it, completing its stitch. Under the material and under the needle-plate is a feed dog which rises just befors the needle has reached its highest point, and, moving back, carries the material. with it the required distance and sinks below the needle-plate before the needle enters the work again. If the machine is a rotary hook maching, the hook, instead of cliding or oscillating backwards, continues to revolve, and is so orranged that when the needle is at the lowest part of its arranged that when the neede is at ise lowest part ittle behind it, generally about $\frac{3}{18}$ in. a little more or less according to the style of the machine. The main points to remember are: (a) Short groove of needle is always toward the shuttle or hook. (b) When the needle is rising and the point of the shuttile is iust level with it, the eye of the needle must be ${ }^{\frac{2}{i / 3}} \mathrm{in}$. or more below the shuttle point. (c) The shuttle must not start to coms forward before the needle begins to rise, (d) The feed must carry the material while the neede is well out of the work. (e) See that the shuttle point is sharp, and that the shuttle driver wherever it touches the shuttle is perfectly smooth, and that all points over which the cotton runs are also smooth. The movements of chainstitch machines are similar generally to the rotary hook lockstitch machine, but the hook having picked up the needle cotton does not drop or allow it to slip off until it has picked the second needlo loop. It is very ossentlal in chainstitch machines to havs the right make of needles, as poor needles cause endless trouble. The short groove of the needle is again nearest the hook, and the hook should pass as near the needle as possible withont touching. See that the hook is perfectly emooth, and in putting together such machines do not alter in the glightest the shape of this hook.
Removing Rust Marlis from Wood.-In re-painting wooden structures dishgured by the marks caused by iron nails having turned rusty, first rub out the rust marks with sandpaper, getting as much rust as possible off the nail heads; then with a small brush worn down to a stump rub well in around each nail head some good oil varnish. When quite dry, apply the paint. The above method will chenk the rust to a great extent, but it will etlll form in the holes against the wood.

Testing Gravel for Gold.-In testing a hard rocky gravel for gold, first finely powder a sample of the grevel moisten it in a taill eylinder with water, and pass chlorine gas through it, whereby soluble chloride of gold is formed After treating with chlorine the gravel should be washed with hot water, the solution collected in a dish, bolled to expel the chlorine, and then heated with solution of ferrous sulphate. If gold is present it will separats as a fine brown powder. Another method is to take, say, 子lb of the powdered gravel, mix it with litharge (oxids of lead) and flour or cream of tartar, and heat it in a crucible in a furnace. The lltharge is reduced by the flour or cream of tartar forming metallic lead, which melts and, as it passes through the gravel, takes the gold With it to the bottom of the crucible. After heating, the crucible is broken open and the but ton of metallic lead is removed. 1t is flrst roasted in a dish in a muffie furnace to get rid of the greater portion of the lead as oxide; the oxidation is then finished on a bone-ash cupel, which absorbs the oxide of lead formed, leaving, at the end of the operation, a button of metallie gold, providing that metal was present in the gravel.
Water-tight sliding Door.-The opening to which a sllding water-tight door is to he fitted in a ship should have an sugle frame all round at the edges of the plats to stiffen up the plating. This angle is on the side of the plate opposite the door. The sketch shows the general construction of a sliding watertight door at the end which takes the screw for sliding the door open. A and D are the sides and top of the cast-iron frame which forms the
and tne topping. The bottoming, which is composed of slag, clinkers etc., is mixed with a hot composition of gas-tar boiled in a cauldron, a little pitch and resin being added. Before being used, the materials must he allowed tlme to become thoroughly incorporated with the tar. The formation level being ready, a thickness of 2 in . of this bottoming is laid and well rolled. The top layer, 1 in . in thickness, is now laid on this and well rolled. The topping differs from the bottoming only in the smaller and finer quality of the materials which, in the case of topping, are mixed with the tar. The surface is now flooded with the tar composition in a boiling condition, and, whilst wet, is blinded with clean white sand or fine granite dust. A footpath of this kind lasts a long time without requiring any repairs worth men tioning. Inequalities and bad patches must be cut out as soon as they occur, and new material well rammed in Every two or three jears, according to the character and extent of the traffio, a fresh top should bs laid over and blinded. These footpaths will, however, lasit usually six or seven fears without requiring absolute renewal.
Cleaning and Mounting Antlers.-Below ars given instructions on cleaning and mounting a pair of stag's antlars. Well wash and scrub the antler's with warm water and soap. Thoroughly dry them with a cloth or towel, then glve another smart ruhbing with a perfectly dry cloth to remove some of the dulness from the sharp edgeat

Water-tight Sliding Door.
bed for the door to slide on. B shows pieces of plate, generally about 3 in. broad, which torm the back sliding surface. The door itself (C) is a casting. Across the centre and bottom of this is a web, as well as that shown at the top. These webs are solely for stiffening the door. A hole is made through at the centie to allow the door to travel up the screw when the door is being opened. The centre of the screw is usually kept about 6 in. from the bulkhead, and it and the gearing rods are supported, by cast-iron brackets. When the gearing has to be angled, bevel wheels are used about 6 in. in diameter, with thirty teeth of $\frac{3}{j}$-in. pitch. The gearing rods are usually about ${ }^{\frac{3}{4}} \mathrm{in}$. in diameter.
Proportions for a Compensation Pendulum.-A zinc and steel compensation pendulum for a regulator clock having a dead-beat escapement is of fairly simple construction. For a seconds pendulum the central rod is of steel, $\frac{s}{16} \mathrm{in}$, thick, and measures 45 in . from the bottom of the thread for the rating nut to the point of suspension. Over this rod, and resting on the rating nut, is a zinc tube 26 in . long and from $\frac{2}{3} \mathrm{in}$. to $\frac{3}{81} \mathrm{in}$. thick. This tubs slides Ireely over the rod. Outside the zinc tube, and depending from its top end, is an outer steel tube (bicycle tabe) 23 in. long. At its lower end an outside collar is fixed, on which the bob rests. This is of lsad, cast with a central hols having a shoulder in its centre. The upper part of the hole just frees the steel tube, and the shoulder rests on the collar. The lower part of the hole is large enough to clear the collar. Thus the bob is supported at its centre and expands as much up as down. Its length is 9 in . and its shape cylindrical. For a $14-1 \mathrm{~b}$. bob 24 in. diameter will be suitable; for a $17-1 b$. hob 24 in. will do.
Laying Tar Footpaths. - Tar footpaths are inexpensive as compared with fiagging, etc., and if properly laid, water will not soak into them, nor will the heat of the sun ruelt the tar. It is laid in two layers-the bottoming
and prominences. The antlers can be mounted by one of the following methods. Fig. 1 shows how, by cutting a piece off the bsck of the antler, it may be fixed to the mount by means of a screw passing through a hole previously drilled in the autler. Fig. 2 shows an arti ficial forehead of wood, with short processes or projections upon which the antlers rest, being screwed from the back. Another method is to drill a large hole lengthwise into the antlor from the base, and in this hole to place a dowel (sse Fig. 3), by means of which the antler may be fixed as in Figs. 1 or 2. Designs of shields or mounts are shown by Figs. 4 to 7. To make these, double a piece of paper, draw half the shield as shown, and cut out through both pieces of paper. Flatten out the paper and mark round on the wood with a pencil. The mounts can be made of oak, mahogany, or wilnut, the first-named for preference. Ebony or ehonised wood is rather too gloomy, though oftem used.
Gilding Steel Pins.-Highly polished steel pins, free from grease and oil, may be gilded in an electro-gilding solution of gold cyanide. When a quantity of pins is required, they may be gilded in dozens at a time if suspended in the solution in a basket of platinum gauze which must be shaken whilst the gilding process is going on. Any gold deposited on the platinum may be afterwards dissolved oft in the gilding solution without doing it any injury. The pins are scratch-hrushed and polished in the nsual manner. This method is applieable to all small steel articles.
Varmish for Wainut Gunstock. - A walnut gunstock may he coated with a very bright varnish mads accord. ing to the following recipe. Take 4 oz . of best orange shellac, 4 oz . of gum sandarach, 2 oz . of gum henzoin, loz. of Venice turpentine, one pennyworth of camphor and 1 pt . of methylated spirit frequently agitate, and carefully strain through muslin. The varnish should be applied with a camel-hair brush in a warm room.

How to Make Photographic Silhouettes, - In making photographic eilhouettes, as the expoeure required is so much less thau that necessary for an quired is sortrait, a slow lens can he ueed. Stretch a ordinary portrait, a blow lens can he used. Stretch a illuminated from without, and set the camera up in the room, the flgure being close againet the sheet. Remove from the room any articles likely to throw light on the figure, which should be dressed in black, and focus the dark outline shown on the sheet. A brief exposure must be given, as it is necescary to expose for the sheet only; backed plates must be used to prevent halation, that is, a spreading of light around the edgee of the shadow due to the light reflected from the back of the dry plate. Magnesinm light is particularly suitable for this work. When the feet are to be included, the figure must be supported upon plate glass covered with thin muslin.
Worlsing Circular Mouldings.-Fig. 1 shows a piece of circular moulding worked on the flat surface. Firet cut out the required shape or plan; get the piece equal in thickness and parallel in width. Sink squares as shown by dotted lines, taking out No. I square first, and so on; then, with a router, as shown in Figs, 2 and 3, work the mouldinge from the outer edge. To work the rebate at 5 (Fig. 1), place the piece in the bench chops 0 (Fig. 2) and work in the same manner as shown
skins are epread over an oval-shaped wooden bench. and the hair is scraped off with a tool resembling a car penter's draw-knife. A similar bench is used in fleshing -the next operation-in which all particles of flesh are cutoff, the skin is given an even thickness, and the ragged ends are trimmed. After being washed in the revolving drum for thirty minutes, they are again fleshed to remove the grease, paddled in warm water, spread out on benches, and slated to remove surplus dirt. After again being paddled, the skins are drenched in a tub of bran and water, being paddled in the drench for twelve houre; this removes the last traces of lime and opens the pores preparatory to tanning. The latter operation is performed in a revolving drum, the tanning liquor being a mixture of alum, Galt, flour, Folks of eggs, and water. The drum makee eighty revolutions per nimute, and at the end of twelve hours the skins are removed and hung up for twenty-four hours in the dryingroom, heated to a temperature of $110^{\circ} \mathrm{F}$. The dry skins are damped with water and softened in a mill, con. sisting of two perpendicular swinging plank $\sigma_{\text {r }}$ having heavy wooden blocks at their lower ends; in front of

Fia 2

Working Circular Mouldings.
for the omall member on the inner edge. Fig. 3 shows how the moulding may be worked on the edge of a shelf bracket. The router can be bought at a toolshop, or made with a piece of hardwood and a piece of 10 in. thick steel. 13 (Fig. 2) and A (Fig. 3) show the cutter. The fence C (Fig. 3) may be either of brass or Iron elotted so as to be adjucted.

Preparation of Skins for Glove Making.-" Kid" gloves are made chiefly from lamb and kid skine, whick have to pase through many processes, such as washing, hairing, paddling, tanning, staking, colouring, and polishing. Firet the ekins, each about 4 ft . long and 3 ft . wide, are soaked for one or two days in cold water contained in wooden vats: the soaking tubs each contain about 600 skine. The latter paes to a circular drum having a horizontal axle, a diameter of about 8 ft ., a width of ahout 4 ft ., and making about one revolution per gecond. Wooden ping projecting into the interior of the drum keep the skine in motion, so that a continuous stream of water thoroughly saturates the skins and free日 them fiom dirt. At the end of fifteen minutes the skins are removed to the lime pits, which may he ahout 8 ft . long, 5 ft . wide, and 8 ft . deep, and capable of holding many hundreds of skins. The lime and water loosen the hairs, and at the end of a fortnight the skins are taken out with long-handled tonge, and the excess of lime is removed by placing them in cold water and running them hackwards and forwards over a paddle wheel, 3 ft . in dlameter, 6 ft . long, and making lorty revolutions per minute, After this paddling, the
these blocks the skins are placed and equeezed and pressed together until soft. The next operation is etaking, performed by drawing the skine over a knifeedge. After a little time in the drying-room, the akins are again ataked, this staking tending to ooften the sking and to remove the dried flour left from the tanning. After ripening for a few monthe, the 6 kin may be dyed,
being first washed in a drum of cold water for twenty minutes and then placed for twenty-four hours in a revolving bath of egg-yolk, which softene the skine and makes them pliable. In colouring, the ekins are slicked out smooth on a lead-covered table and washed with potassium bichromate and soda. The dye is then poured on and rubbed in with a birueh. Iron sulphate is used for black, zine sulphate for drab, and sulphate of alum for tan. After dyeing and staking, the skine are finished by polishing on a flannel-covered wheel. The tanned skins are made up into gloves as described on p .286 .
Polishing Paste for Brown Boots.-A good polishing paste for brown boots can be made with 20 fluid oz. of good malt vinegar, 10 fluid oz. of filtered water, 2 oz. of good glue, 1 dr . of soft soap, and 1 dr . of isinglaes. Colour with annatto or turmeric to the shade required. First mix the water and vimegar, then disgolve the glue in the fluid by gently heating it; add colouring and other ingredieute, and boil from ten to fifteen minutes. When the mixture has been strained thoroughly, it is stored in jars until required for uee. To uee this composition, lay it on with a clean aponge, and colish with a soft rag or fannel.

Tools for Engraving Letters.-Generally speaking, the shank or some other portion of a letter is engraved with a flat tool and finished with a lozenge graver whetted at thres angles. Block lettering is wholly cut with a fiat tool. Old English is cnt with two fiat With a fiat tool. of different widths, and finished with an angie graver, as above. This is the reason that the work looks regular and of equal size throughout, and is kept straight by working between parallel lines. To make a fiat tool for lettering, whet each side of the belly or underside of a lozenge graver at an acute angle, the sharper the better, and then rub away the angle thus formed until a flat is formed of a width suitable for the letters to be cut; then sharpen as from the back as usual. A very moderate set-ofi or bevel is required for flat work, as if the bevel is too great it will cause the tool to slip over the boundary lines, and consequently spoil the work. Before attempting engraving on articles of value considerable practice should be had on a plate of German silver or gheet brass. For drawirg outlines, the only instrument used is the steel tracing point or etching needle.

Construction of Camera Shutter. - A camera shutter similar in working to the unicum is made as follows. Construct a grooved framework a consisting of a board B with an opening for flange and grooved rails A^{\prime}. Cut two blades in ebonite, C and D. The lever E, with slots F and G, is made in thin metal. Fasten to A^{\prime} a cylinder inade from a piece of metass tube H, having a well-fitting piston-rod I. (A

Construction of Camera Shutter.
simple substitute may be made easily by winding some paper tightly around a piece of knitting needle.) Two small rivets, fastened to the blades C and D, pass through the slots F and G, so that when the piston-rod that is attached to E is forced upwards C is raised and D depressed, thus opening the lens. The return of the rod is caused by the suction due to the release of the press ball.

Polishing Painted Furniture,-Before painted furniture can be French polished, the paint must be removed; do this as explained on p. 237. Should the furniture have been finished out with enamel paint or varnish with a spirit basis instead of paint, strong soda water, or a solution of hot borax and rock ammonia, should be used; or, if the lime is objected to, try the following. $\frac{1}{2} 1 \mathrm{~b}$. of American potash, $\frac{2}{2} 1 \mathrm{lb}$. of soft soap, $\frac{1}{4} l \mathrm{lb}$. of rock ammonia, llh. of washing soda, and 1 gal. of water. The outer coverings of the upholstering should have been removed before commencing, and they should not be replaced till the polishing is completed. If the furniture Is of mahogany, it should now be a dark colour, which only needs wiping over with red oil, made as on p. 4rl, and a trace of red in the polish to ensure a rich dark mahogany or Chippendale colour. A red colour is imparted to the polish by adding one pennyworth of Blsmarck brown to each pint. In French polishing, a pad of wadding enclosed in fine rag is used. Saturate ths wadding, cover it with the rag, and draw it up tightly till it presents a face flee from creases. The pad should then be applied with continuous, uniform, circular strokes with slight pressure at first, recharging the pad with fresh polish at frequent intervals, taking care that every portion of the wood receives an equal but not excessive body of polish. A few spots of linseed oil should be occasionally applied to the face of the pad to prevent it st,icking. If the surface of the furniture is uneven, it is impossible for an inexperienced worker to tinish it out perfectly bright with polish only. When
the furniture appears uniform in colour, and the grain is filled up, it should be finished by the application of at least two coats of best quality brown hard apirit of arnish.

Pattern for Compassed Bed of Under-carriage,Below is described one way of marking out a pattern for the compassed bed of an under-carriage. as an example, Fig. 1, which represents an ordinary compassed bottom hed of a brougham under-earriage, is given. To set it out, draw the straight line a (Fig. l) ; square off a line B, and from C mark off the compass $4 \frac{1}{2}$ in. to D, which is the centre of the bed. From D, mark off the width of the bed back and front, as E F. At G and G, which are the spring bearings, on each side of the centre line mark off distances equal to the width of the bed; this is governed by the wheel-iron head. Mark off the size of the wheel plate, as at $H H$, outting these points by half the width of the compass of the bed; then, using I on the square ling as centre, strike a true line to the points D and $H M$. With the sams radius, continue the sweep towards the end until it meets the square line, which should be about lin. inside the spring bearing G. With the compasses of the same radius, describe the inner line of the pattern. Fig. 2 shows the elevation of the beds when together, and the method of sweeping them out. The paits K represent the top and bottom bed plates, L the

Setting Out Pattern for Compassed Bed of Undercarriage.
wheel plate, and M the transom plate; the beds are left straight in the centre until the top and bottom plates are fitted, these being screwed on temporarily. The beds must be swept out as shown, care being taken to leave intact the bearings for the wheel plate and transom plate. In testing a carriage for truth, the tools used generally, are a straightedge, square board, and wax line. If these do not give a sufficiently exact result, draw a diagram as Fig. 3, setting the squares off perfectly true, when any error can be quickly seen.

Jointing Electric Wires.-In jointing up seven-strand electric cables, the insulating coverlng is removed for several inches from each of the two ends to be joined, and the copper surfaces are scraped absolutely clean. They should be touched as little as possible by the hands to prevent any moisture reaching them. Tinned wire is preferable. Care must be taken that nicks are not made in the strands while the insulator is being removed, since such nicks decrease the sectional area of the wire to a considerable extent. The wires are then taken and opened out, the two sets belng placed together and interlinked; the central strand of a seven-strand cable heing cut off short to allow this to be done. The ends are then well wrapped round each other, and trimmed over fairly smooth with pliers. Using resin as a flux, and taking care throughout the whole operation that everything is clean, the whole is then well soldered. The insulation on the cable will determine whether strips of pure rubber or of guttanpercha should be then wound round the joint. The latter should be warmed by a spirit-lamp and well kneaded br thumb and fingers. After several layers of this strip have been applied, the whole is wound round with apecially prepared tape.

Fints on Choosing a Dweiling-house.-In ascertaining whether a house is a desirable dwelling place, first examiue the walls of the house, and if eettlements or examise are discernible, it is more than likely tbat the foundations are faulty; these should be bared and examined. Renewing or underpinning a foundation is a very expensive operation. When any serious eettlement takes place, stone heads of windows show defects as soon as any part of the building. If the external walle of the house are built of rubble etone or brickwork, see that the mortar is of good quality; a simple test is to rub it the mortar is of good quality; a simple test is to rub it intodust, the work will require to be repointed in a ehort time to prevent moisture penetrating. If the house is covered with elates, see that zinc soakers are placed apainst the party walle. If it is covered with tiles, see that cement fllets instead of mortar fillets are used. In the selection of a cottage the sanitary arrangements are the object of most importance. It is essential, before purchasing, to bave the drains tested by an expert. Nurchasing, to have duetbin built against the wall of the house the contents of the dustbin will saturate the wall and contaminate the air of the interior. The damp course should be in accordance with the requiremente expreesed on p. 259, and must not be made of tarred felt material. Find out whether a proper circulation of air exists nuder the ground-floor joiete, to prevent dry rot. If there is a drinking-water cistern, see that it does not directly supply a water-closet, and that the overflow from the cietern does not directly connect with the drain. The soil pipe should never be placed inside the house, because if it is defective in its. original conetruction, or if it be subsequently damaged, a eerious leakage of foul air takes place. The water-closet should have direct light and ventilation. The long hopper pan should be objected to, because it always becomes filthy. The sink abould be in a well-lighted position and always againet an external wall. See that none of the rainagainst an externai wail. see that none of the rainto the interior, see that the doors fit and are out of winding; obeerve the framing and see whether the shoulders are off - that would be an indication of ungeasoned wood having been used. Look to the hingee; there may be only a screw or two in each hinge. Try the locks and see that the furniture is fixed on eecurely. Examine the windows to see whether the sashes are too loose; if so, have the rattling remedied.

Repairlng Worn Watch Pivot Fioles.-It is not necessary to plug and re-drill watch pivot holes when they are worn. Purchase some watch bouchons. These are brass pins, turned true and drilled accurately to centre. Select one that will nearly go on the pivot. Put it in a pin vice, and very slightly file it tapered. Then open out the pivot hole with a broach until the bouchon can be hammered in tight and broken off. File it level with the plate, and amooth off by stoning. Then open it out to fit the pivot. This method leaves the open it out to depth unaltered.

Waterproofing Fabrice, - Woven fabrlcs may be rendered waterproof in a variety of ways, one of the commoneat methode being to apply a coating of rubber solution and then to vulcanise the film of rubber remaining after the evaporation of the solvent. By the waterproofing method of Hime \& Node, zinc is added to a solution of cellulose in an ammoniacal copper solution copper is precipitated, and the fabric to be proofed is immereed in the remaining colourless viecid solution of ammonium, zincate, and cellulose. The impregnated fabric is pressed, dried, and wet-calendered, that is, passed between rollere. By another method, a fabric having a close texturs is treated with sulphuric acid ($115^{\circ} \mathrm{Tw}$.), the fibree being partly parchmentised thereby, and the interstices closed without the texture of the cloth being in any way injured. The excess of acid is waehed out, with or without previous treatment with alkali, and the fabric is passed between calendering rolls, which complete the closing of the interstices. Holfert's process is to pase the fabric through a bath of gelatius and then expose it to the action of gaseous formaldehyde, the gelatine becoming ineoluble. Another method of treatment is to apply to the fabrics boiled lineeed oil, paints, varnishes, Asphaltum, etc., as in the production of oflskin, tarpaulin, etc. (see p. 69). But one of the best of the waterproofing processes is explained below, in which the rabric ls treated with an alumina soap. The word "soap" refere generally to a material ueed in removing dirt, and this it does by attacking grease and by removing the harshmess or which are ineoluble in or quite incompatible with water, and these bave their use in rendering fabrics waterproof. The ordinary soap of commerce is in one of two fate with alkalis. Wlth soda as the alkali a hard soap results, with potash a soft soap, these products being the alkalino talts of certain fatty acids-oleic, palmitlc,
stearlc, etc.-derived from the fate used. When a eoluthon of the salt of any other metal is added to a solution of either of the above soaps, a precipitate of an insoluble soap of that metal is formed, because all but the alkaline soaps are insoluble in water. In this manner it is possible to produce soups of lead, copper, iron, aluminium, etc. Alumiua eoap, 60 largely used in waterproofing, is formed from alum and goap in the manner above described. In waterproofing fabrles with an alumina soap, one of two different methode may be an alumina soap, one of two difterent methode may be required. (l) 1 lb . of alum in 1 gal. of boiling water; (2) 11 b . of ordinary soap in 1 gal. or boiling water. Keep these solutions in separate tubs or troughe. The beet sosps to uee are palm-oil or white-curd soap, but common yellow soap anewers very well. The sosp must be dissolved entirely or the coating will be patchy. When the colutions have cooled slightly, but while they are still warm, the cloth to be waterproofed ehould be immersed in the soap bath for about fifteen minutes. so that the soap sinks into the fibre. The cloth previously should have been soaked in water and wrung out. After wringing out the excess of soapsolution, immediately plunge the cloth into the alum bath, in which it may remain for an equal period, and, being removed, excess of alum solution may be wrung out also. If a thick coating of the alumina soap is required, the cloth may be put through this trestment two or three times, and, after steeping in clean water, it may be hung out to dry. The cloth on drying will we rather etiff and white, and somewhat rongh, but will be quite waterproof; if the roughness is objected to, pase over the surface a hot iron, or calender the cloth between rollers. Any kind of cloth may be treated by this method, but the most suitable kinde are those that are closely woven, no matter how coarse the fibre is. Fabrice waterproofed in this way are but little altered; their feel is, however, fomewhat harsh, and water. poured over them will run off withoat wetting any psirt, the alumina soap baving filled up all the interstices, and formed over the fibres a protective coat, which prevents the water touching the cloth. Tho second mothod of applying the alumina soap is in the form of a solution in petroleum ether. The alumina, soap is formed by mixing together the boiling alum and soap solutions as previouely prepared; for complete precipitation $2 \frac{1}{2} 1 \mathrm{~b}$. of soap will be required to every 1 lb . of alum. The alumina soap separates out as a large cake, which ehould be collected on a piece of cloth, and the water squeezed out. The cake msy be broken un into small pieces, thoroughly dried at a low temperature, put into a dry, wide-mouthed bottle, and covered with petroleum epirit (benzoline); paraffin oil is unsuitable, because it forms an unmanageable etringy mass. As the soap absorbs the benzolineitswells and should be stirred from time to time so that it is mixed thoiroughly. The paste thus formed may be diluted as required with benzoline, but care should be taken not to add too much of it at any one time, because on standing the mass becomes unaccountably fluid, and possibly too thin; is this should occur, a little of the alumina soap is added. The waterproofing bolution made in thie manner may be laid on the cloth with a brush or, better, by passing the material through rollere fed with the eolution. After treatment, the cloth should be hung out for a ehort time in the open air to allow the benzoline to evaporate. If a thicker dressing is required, the cloth may be coated two or three times; for ordinary purposes, however, once is quite enough. The alumina goap may be coloured reddish-brown by the addition of a littile perchloride of iron in place of some of the alum, and green by the addition of sulphate of copper (blue vitriol). It is aleo possible to obtain other colours by employing solutions of other metals, but these are more or less expeueive. The common colours, yellow and or lack, rnay be imparted by etirring in yellow chre or lampblack with the soap solution in the first method, or by kneading it with the alumina soap in the second.
Carrying Camera on Cyole.-The best way of carrying a camera on a cycle is a much-debated question. The slides may be carried lrapsack fashion on the back of the rider, the etand acrose the top bar of the frame, and the camela slung in a case over the back wheel. On a long journey, however, it is uncomfortable to carry anything on the back. If the apparatus is carried on the bandle-bar the vibration is very great, and shatters, etc., eoon get out of order; duet also readily accumulates. The dust trouble, however, may be easily overcome by carrying the camera and slides in dust-proof or closefitting cases, and where the eprings in the dark slides do not keep the plates tightly in position, a piece of rubber tubing put between one of the plates aud the lubber tubing put between one of the plates aud but anything bulky on the handle bar is liable to affect the steerlng, and increases the danger of side slip, while anything carried within the frame of the machine may make the pedalling very uncomfortable.

Killing Butterfiles.-To kill, pinch them under the wling between the finger and thumb, or, for a collection, procure a "killing bottle," which may be bought from most naturalists, or may be home-made. Get a wide-mouthed bottle, provided with a good cork or glass stopper, and into this put an ounce (for a 4 -oz. bottle) of cyandie of potassium in lumps. Then mix up some plaster-of-Paris, and pour this upon the cyanide, so as to cover it completely. Give the bottle a shake as the plaster is setting, so that it forms an even surface, and, when quite set, cover the plaster with a piece of blotting paper to absorb the moisture and to keep the insect from contact with the damp plaster. This blotting-paper shonld be renewed when necessary. The cyanide is a deadly poison, so must be used with care, and the bottle kept corked. Put the insect lnto the bottle, cork it up, and leave the insect in for about ten or fifteen minutes. A lew drops of strong spirit of ammonia poured on a piece of cotton-wool in a bottle will also form a killing bottle. Bruised laurel leares may also be put into a bottle, and prussic acid will be given off, thus forming another killing bottle. A few drops of chloroform poured upon blotting-paper at the bottom of a bottle will also stupefy the insects to death. Nothing is required to preserve butterflies.
British Absociation Screw-threads.-The following table gives particulars of the Swiss small screw gauge as adopted by the British Association:-

No.	Diameter (approximate) in Inches.	Pitch in Inches.	Diameter in Millimetres.	Pitch in Millimetres	Threads per Inch.
25	-01	.0028	$\cdot 25$	-072	353
24	$\cdot 011$	0031	-29	-08	317
23	$\bigcirc 013$	-035	-33	-089	285
22	-015	-0039	-37	-098	259
${ }_{20}^{21}$	$\bigcirc 017$	$\bigcirc 0013$	4	-11	231
20	-019	. 0047	48	. 12	212
19	$\bullet 021$	-0055	-54	-14	181
18	-024	.0059	${ }^{6} 2$	-15	169
17	-027	-0067	$\cdot 7$	$\cdot 17$	149
16	-031	-0075	79	-19	134
16	${ }^{-035}$.0083	$\cdot 9$	-21	121
14	${ }_{-04}^{099}$	-0091	1.2	-23	110
12	-051	-011	13	-28	${ }^{90}{ }^{\circ} 7$
11	-059	-0122	1.5	-31	81.9
10	. 067	-0138	17	-35	$72 \cdot 6$
9	-075	-0154	1.9	-39	$65^{\circ} 1$
8	-086	$\cdot 0169$	$2 \cdot 2$	43	${ }_{59}^{59} 1$
6	-11	${ }^{-0209}$	28	-53	52.9 47
5	$\cdot 126$	${ }^{-232}$	32	-59	43
4	-142	-926	$3 \cdot 6$	-66	38.5
3	$\cdot 161$	-0287	4.1	. 83	34.8
1	$\cdot 185$	-0319	4.7	${ }_{-91}$	${ }^{31}{ }^{2} .4$
0	-236	-0394	63	9	$25^{\circ} 4$

Double-action Harp.-The action is complicated, and unless it works with the greatest accuracy it is worge than useless. Briefly, the principle consists in placing beneath the wrest-pin a small collar having two studs fastened on its "flat" similar to a" wing-nut," the whole working on a stud through the head. These are connected by a system of levers in head and pillar to the pedals, pressure upon which causes a partial revolution of these collars, between thestuds of which the string passer, aud is cousequently tightened or raised in pitch. Varions pedals are required; for instance, one for F sharps, another for O sharps, and so on, each pedal affecting only the notes of the हamename throughout the inetrument.
Laylng Red Tar-paving. - A very dull red tint may be ohtained by using crushed red granite ingtead of limestone. The objection is that each particle of granite has a smooth surface, and the tar does not adhere aatisfactorily. The cost will be from Io. 10d. to 2b. 3d. per superficial yard. Another method is to dye the limestone with red oxide of iron ground very fine. The ordinary method of laying may be adopted, and the cost will be from ls. 6d. to 2s. per square yard.
Toughening Paper.-Soak ordinary unsized paper in sulphuric acid (2 parts of acid to 1 part of water) for a few minutes, then thoroughly wash it with water containing a little ammonia until no trace of acid remains, aud let it dry. This is "parchment" paper, and it is not much less pliable than the untreated kind.
Straighteming Warped Fretwork. - The warping or twisting of fretwork is ofttimes counteracted by the use of three-ply wood - that is, three pieces of very thin board or veneer glued together the middle
one being transverse to the others. Warping is often cansed by excessive polish being applied to one slde only, without a coat of rarnish on the back to counteract. Nothiug can afterwards be done, except to take the brackets apart and slightly damp them with clean water: screw them down between two stout boards till straight, then apply polish or varnish on both sides. There will still be the tendency to twist back again if the brackets are put in a hot place.
Bending and Fitting Ribs for Small Boat.Use straight-grained American elm or oak, the former for preference. After being shaped and dressed, the ribs are steamed or soaked in bolling water till pliable, and bent over the knee where necessary. The ribs on either side are notched to fit over the keelson, and butt against each other where they caunot be carried right across The keelson must not be cut; the ribs are usually spaced closer in the bow to add strength. Floor ribs exteuding on either side of the keelson and between the others are also notched and fitted over the keelson. A fore and aft etringer on either side is then screwed to both sets of ribs, which bind the whole together.
Cementing Felt to Iron Rollers.-To make a cement, cover glue with moderately atrong acetic acid instead of with water, and treat it as for ordlnary glue. Another cement is made by dissolving 2 parts of ohellac and 1 part of Venice turpentine in 7 parts of methylated spirit. For a firm hold the cylinders should not be quite smooth.

Plectric Current Carrying Capacities of Copper Wires. - The following table is based on a current density of 1,000 amperes per square inch; the loss will then be 2 volts for 80 yd . :-

No. S.W.G.	Diameter in Inches.	Area in Square Inches.	Current in Ampères.
22	-028	-0006	-6
20	'036	-0010	1
19	-040	-0012	$1 \cdot 2$
18	-088	-0018	1.8
17	- 056	-0024	$2 \cdot 4$
16	*064	-0032	$3 \cdot 2$
15	-072	-0040	4
14	-080	-0050	5
13	-092	-0066	$6 \cdot 6$
12	-104	-0085	$8 \cdot 5$
11	*116	-0105	10.5
10	-128	-0128	12.8

It is unnecessary to add stranded cable日 to the above table, at their workirg currents may be calculated direct from it. For instance, $7 / 16 \mathrm{~s}$. W. G., consisting of seven strands each No. 16 s.W. G. in size, will carry 7×3.2 $=22.5$ amperes (say). Similarly, $19 / 14$ S.W.G. will carry $19 \times 5=95$ amperes. For currents at other current densities, multiply the current given in the table above by the density required in amperes per square inoh and divide by 1,000 . Thus, with a current density of 500 amperee per square iuch, with a drop of 2 volts per 160 yd. (see reply 16210 on p. 3ə3), No. 22 s.W.G. would carry $\cdot 6 \times \frac{500}{1,000}=3$ ampere. It may he well to add that the size of any single wire should not be reduced below No. 18 S.W.G.; smaller sizes are mentioned in the above table so that the current capacities of stianded wires may be calculated. Also, sometimes the simplest way to find the drop in volte is to multlply the resistance in ohms of the given leugth of cable by the current in amperes.
White Spots on Polished Fnrniture.-Theee may be caused by water spotting, damp or tine use of plaster-ofParis as a grain tiller. Try rubbing the surface with a mixture of equal parts of linseed oil, turpentine, and vinegar'; then clean off any greasiness that may remain by meane of a swab of clean soft rag made fairly dampnot wet-with methylated spirit. Apply this lightly at first then, as it becomes drier, press a little harder and finish in the direction of the grain.

Making Tongues on Spokes of Cart Wheels. Take off the tips of the spokes to about the size of tongue required with a tool somemhat like a large countergink inverted, with cuttersinside, then with the hollow bit cut down to depth; this cuts the shoulder at the same time as it makes the romnd tongue. To do it by another method, mark in the frout of the tongue parallel with the set-stick fixed to tho front of the stock, by which the spokes were guided whon driven in; then mark off the diameter, saw in to these marks brek and front, eplit off, and with the draw-knife pull it out short at the sides aud trim up round, using a fitter to guide the size. A tongue made this way is much stronger than when the shoulder is cut in square all round, as the grain at the side of the spoke in not cut go short.

Preparation of Pitch Pine for Varnishing.-Pitch-pine furniture is geuerally finished by the application of sereral coats of good quality spirit varuish. Interior fittiugs likely to be aubject to hard wear are best finished with a good oil varnish, buch as charch oak. Pitch-pine goods are sometimes first coated with size, with a view to prevent suction. Many have a preferencefor first coating with spirit varnish, as it gives the articles a good colour, and any good quality oil varnish will dry thereon. If a first coat of varnish is llot sufficiently hard to allow fiatting with purnice in three days' time, the drying qualities are poor, or it may have been applied too thickly or hy a dirty bruch. Drying may sometimes be hastened by sponging down with cold. clean water. Another plan is to coat with naphtha, or spirit varnish; the result can also be gained by coating again with a thin oil varuish, the drving qualities of which have been hastened by the addition of japanner's gold size.

Cutting out Umbrella Covers,-For umbrella, covers, first make the pattern by which to cut out the sections or geres. This may be of strong paper, but for permanent use sheet zinc is best. Firet cut a square of paper, each edge of which is exaotly the same length as the frame on which the cover is to be placed-that is, a 25 -in. frame would take a scuare of paper with edges 25 in . long. Cut this acrose from one corner to the opposite corner to produce a piece shaped like ABO in the

Pattern for Umbrella Covers.
illustration. Measure from A toward 60 the aame distance as froma to B (in this case 25 in.), and then cut along the line D B. The part A DB now forms the complete pattern. By measuring down the centre as shown by dotted line, the width of cloth necessary to cut the cover will be discovered. For 25 -in. covers cloth 22 ine wide is required. covered. For Always place the edges B D towards the selvedge edges of the cloth being cut, and allow a margin for hemming and sewing together. Sew the top of the cover with strong thread after machining.
Flow of Water over a Wetr.-The following is a rule for finding the exact discharge of water in cubic feet, or gallons per second, passing over level weire. The depth of the water on the weir x width x velocity, all in feet, will give cubic feet, and this $\times 6 \frac{1}{4}$ will give the discharge in gallons. To find the exact quantity of water that is flowing over a weir would be a very difficult matter unless proper provisions were made for gaugiug the depth of the water and its velocity. For rough approximation the depth would be the difference in level between the weir and aurface of still water ahove it, but with an allowance for curvature of the surface on the weir, which varies considerably. For the velocity it would be necessary to time the movement of a floating object, and from this make a deduction, as the surface travels at a higher speed than the bottom.
Hints on the Manufacture of a Speculum. In the manufacture of specula, plate glass is used, provided the size of the mirror is not such that the disc has to be specially cast. The thichness is in proportion to the diameter, the general ratio being as 8 to 1 -that is to say, the diameter of the speculum should be eight times ite thicknegs. A safer ratio is 6 to 1 -at any rate for large mirrors, where the question of flexure is an Important consideration. Supposing the diameter of the speculum to be 10 in., its thickness would be $1 \frac{3}{3}$ in. certainly not less than lo in. Before deciding the curve, the focal length of the speculum must be determined, as this, of course, in turn detcrmlnes the
length of the teleacope. If the latter must be short, the former must be short allo, and the curve of the mirrol must be correspondingly deep. This will render the figuring much more diffcult to work than when the apeculum has a long focus. The general practice is to make the focal length twelve timee the diameter of the mirror, which, in the case of a $10-\mathrm{in}$., will be 10 ft . The ourve of a speculum, though first ground spherical, is not left so, but is deepened to a parabolic form, as it is found that a spherical surface is unfitted for astrofound that a nopherical surface is unfitted for astrosurface, result in an indistinct image at the eyepiece. Practical experience shows that the curve should be such that parallel rays received on it will come to a foous midway between the mirror and its centre of curvature. Therefore, iu a 10 -in. geeculum the curve must be part of the circumference of a circle having a radius of 20 ft .
Making Zinc Stencil Plates.-Zinc stencil plates for marking boxes and sacks may be cut by hand with the aif of a mallet, a sharp chisel, a pair of bent-nosed snips, and a plate of thick sheet zinc. Taking the letter O, shown by the accompanying diagram, commence by drawing the

Making Zinc Stenctl Plates.
letter; then, asouming that the inside part of the figure is to be held by the straps A B, A B, take the chisel, and, laying the stencil plate upon the sheet zinc plate, cut it through along the lines a a, B b, then, with a circular hollow punch, punch out the boles X, X, X, X. Insert the nose of the open anips through the holes alternately, and cut through the zinc to the corners $A a, B b$ on hoth sides of the figure ; then, from the open epaces formed, cut round with the snips upon the lines drawn, smooth the burr down upon an anvil with a few blows from a smooth mallet, and trim the cut edges with a smooth file to finish the plate. Letters formed by straight lines, as E or F, cau be cut by the uee of the chisel only,
Etching on Steel.-To write names, etc., on steel cover the suriace to be marked with a thin layer of asphaltum varuish, making a little bank at the edges. On the varnish write the names, eto. with a steel scriber, aud, in the small hasin formed by the asphalt bank6, poul a weak solution of nitric acid. When this has eaten in to the required depth, wash with hot water removing the varnieb with hot turpentine. Instead of asphalt varnish, soft beeswax is often used, and an etching fiuid may be made from iodine 1 oz ., iron filinge 5 dram, and water about 4 oz . A solution of iodine, potassium iodide, and water is sometimes used; also a solution of 1 part of nitric acid (by measure), 1 of hydrochloric acid, and 10 of water.

Dyeing Curtains and Tableoloths Turkey Red.The red dye fastest to light, washing, otc., is alizarin or Turkey red. For wool, mordant with a bath of sulphate of alumina and cream of tartar, and dye in a bath of alizarin paste and acetate of lime. For 100 lb . of wool use 10 lb . of sulphate of alumina, 5 lb . of cream of tartar, 10 lb . of alizarin paste, and 5 lb . of acetate of lime. The dyeing of cotton is a more complicated process.

Paint Blistering on Woodwork.-Blisters in almost all cases are due to the escape of moisture that is present in all wood, new or old. New wood is. of courss, more llable than old to give off moisture, and the paint to become more blistered; but old wood will show the same effect if exposed to the heat of the sun. It may be that exposure to the sun is the cause of the paint blistering on this particular door, and in that case the only remedy is to hang over it a kind of sun-blind, made of plain or striped canvtus, during the summer months. This is a very general practice in the London suburbs, and is found to be the best protective. If the door is to be repainted, then see that the work is done in dry weather and with dry brushes. The old paint will have to be burnt off, and more turps and less oil may be used with advantage in mixing the new paint, as a more porous film of paint will in this way be obtained.

Fixing Mooring Bollards.-For mooring steamers of about 900 tons, the concrete block for the mooring posts or bole and 8 ft . deep, with a block of Bramley Fall stone 5 ft . square and 1 ft . 6 in . thick on top. The part of the bollard above the ground line is usually a separate custing, securely bolted to the foundation column, which is bedded in the concrete, with a flange at the bottom bolted to two $12-\mathrm{in}$. by 12 in. baulks of creosoted memel. The shape of the upper casting varies from a post with rounded head and hollowed side, or a capstan-head shape, to a tall or short hook shape. The thickness of metal is about lan in., tapering to 1 in. at the bottom of the concrete. The diameter where the rope goes is about 18 in ., and the bottom end 15 in . The engineer of the dock usually gives the design both for the bollard and the foundation, as every part must be calculated to do its duty efficiently.

Adding an Electric Alarm to a Clock. To fix an electric bell to a Vieuna regulator clock, arrange the electric circuit so that the battery is in a convenient position, and the bell in the bedroom; include the clock in the circuit. One wire should be carried the clock ill the circuit. One wire should be carried of the brass movement, preferably the front plate. The other wire should be carried to the edge of the dial, and should lie flat upon it pointing to wards the centre, the end being brightened and hammered flat so as not to stand up much from the dial suriace. A piece of paper gummed on the dial beneath it will serve to insulate it. The connection is made by the hour hand having a thin flexible piece of brass soldered to the end of it to make contact with the copper wire at the dial edge as it passes over it. Thie extension may be painted white, so as not to confuse the eye. This arrangement will make contact every twelve hourg, but may be switched off during the day.

Reading a Gas Station Meter, -The gas made on a gasworks is always measured by the station meter, and in modern establishments corrections are made for temperature and pressure, in order that the gas may be measured under standard conditions, since, as the height of the barometer, and more especially the temperature of the atmosphere, varies at different seasons of the year, the measurement of the gas is affected in \&ccordance with the atmospheric conditions prevailing; hence, in practice, the volume of gas passing through the station meter is always reduced to the standard conditions of $60^{\circ} \mathrm{F}$. and a barometrical pressure of 30 inl. of mercury. The calculations are based prossure the following physical laws. By the law of Boyle or upon the following physical laws. By the law of Boyle or ing that the temperature is constant, varies inversely as the pressure to which it is subjected; or, in simple language, doubling the pressure reduces the volume to one-half, while, conversely, reducing the pressure one-half doubles the volume, and so on in a similar ratio. Now, supposing a etation meter registered $10,000 \mathrm{cub}$. ft . of gas supposing aretation meter registered 30° in., and we wished to reduce the volume to the standard pressure of 30 in ., since the pressure under which the gas is measured is greater than the standard pressure (30 in .), it is plain that under the last-mentioned pressure the volume would be greater; consequently, we say,

As $30: 30^{\circ} 5:=10000: 10166$ cub. ft.
Or, supposing that we measure the same volume of gas under a pressure of 29.5 in ., and we wished to know the volume at the standard pressure; in this case, the gas is measured under a lesser pressure than the standard, consequently, when reduced to the latter pressure, the volume would be reduced; so in this case we gay,

As $30: 29 \%:: 10000: 9833 \mathrm{cub}$. ft.
It will be noticed that in each case the standard pressure (30 in .) occupies the first term in the statement. With regard to temperature, as is well known, gases expand with heat and contract with cold, and the amount of this is expressed as follows. The volume of a gas expands or contracts by $\frac{1}{4 \pi}$ part of its volume at $32^{\circ} \mathrm{F}$. for every increase or decrease of $1^{\circ} \mathrm{F}$. Now supposing we measure
$10,000 \mathrm{cub}$. It. of gas at a temperature of 80° F., and we Wish to correct it to the standard temperature of $60^{\circ} \mathrm{F}$. (the pressure remaining constant), 492 volnmes at $32^{\circ} \mathrm{F}^{\circ}$ become $492+(60-32)=520$ volumes at $60^{\circ} \mathbf{F}$., and $492+(80-32) \stackrel{ }{2} 40$ volumes at $80^{\circ} \mathrm{F}$. The volume, therefore, of any gas at $80^{\circ} \mathrm{F}$. would bear the same ratio to the volume which it would occupy at 60°, F., as 540 does to 520 ; consequently,

As 540 : $520:: 10000: 9629 \mathrm{cub}$. it.
If the gas, instead of being measured at $80^{\circ} \mathrm{F}$., had been measured at $40^{\circ} \mathrm{F}$., then, as before, 492 volumes at $32^{\circ} \mathrm{F}$. Fould become 520 volumes at 60° F., and 429 volumes at 32° F. would becone $492+(40-32)=500$ volumes at 40° F. Then the ratio of the volume at $60^{\circ} \mathrm{F}$. Would be obtained as follows-

$$
\text { AB } 500: 520:: 10000: 10400 \text { cub.ft. }
$$

It will be noticed that 520 always occupies the second term in the proportion. In practice, the volume of a gas is always corrected for temperature and pressure at one operation by combining the two corrections aud making a compound proportion sum of it, and as two of the terms always occupy the same position, by cancelling we obtain this expression-

$$
\frac{17.333 \times p \times V}{460+t}=\text { corrected volume }
$$

p being the pressure under which the gas is measured, \checkmark the volume, aud t the temperature under which the gas is measured. In gasworks, however, these corrections are usually performed by means of a series of tables drawn up by the Metropolitan Gas Referees, based on the principles already explained, but also taking into account the tension of aqueous vapour, the formula from which their numbers are obtained being-

$$
17 \cdot 64(b-a) \times V
$$

$460+t$
a representing the tension of aqueous vapour to be deducted from the height of the barometer according to the temperature under which the gas is measured, while 17.64 only differs from the 17.333 previously given by deducting from 30 the tension of aqueous vapour at 60° F. By the aid of these numbers all that is required is to observe the temperature of the thermometer at the inlet of station meter, and the height of the barometer, then find the number corresponding to them, and multiply the volume of gas by the number, when the corrected volume at $60^{\circ} \mathrm{E}$. and 30 in. will be obtained.
Smoky Kitchen Chimney.-It is unusual for close-fire kitcheners to give trouble by smoking, and unless the cause is down-blow (which only occurs when the wind blows from certain quarters), then it must be concluded that the range is not properly fixed. Supposing the chimney is clear, it should be above the range is well clear of the flue outlets. There should be at least 12 iu. clear space between the flue outlets at the top of the range aud any brickworls that may come above them. If all is right in this direction, then ascertain whether there are any means by which air can enter the chimney from the room without passing through the fire, which is a common cause of kitcheners working badly, though it may not always make them smoke. The range should be set sound and air-tight, and there must not be any other flues running into the range chimney, except, perhaps, the copper flue, which must have a damper, to be closed when the copper fire is not alight. There must not be openings of any kimd by which air can pass into the kitchen chimney except it go through the fire. It must be ascertained that the soot doors are complete and in their places, and that there are no apertures in the chimney. The position of the fire in its relation to the room door need not be considered with these close-fire ranges.
Removing Fat from Sheepskins.-Practical currlerg immerse the skins in fermented bran and water. Washing the skin in a solution of potash will also remove surplus oil; so also will soap and soda and water. Having taken away the oil, stretch the skin out to dry, and, whilst it is doing so, scrape it and rub it in every direction to prevent it drying hard.

Brass Polishing Composition,-Crocus is very good for polishing any metal under the hardness of iron, and it may be used for finishiug iron and steel, after the rough polishing is done. It may be made into hard cakes by mixing with lard, suet, or tallow, first melting the tallow and then stirring in as much crocus as the tallow will hold, and pouring into an open oblong box, the sides of which may be taken apart to release the cake. For a paste to be put up in tin boxes, the crocus may be mixed with soft coap, with a percentage of a common oil to be ascertained by experiment, the oil preventing the paste from becoming hard. The former composition would be useful for lathe polishers, and the latter for domestic and general use.

Photographing a Procession Instantsueously. To take \& series of photographs of ar procession, the oamera should be directed up the road so that the procession is shown approaching. Do not attempt to taks the procession broadsids on, as the exposure will need to be much mors rapid owing to the movement apparing far mors noticeable. The most 2 papid plates Oadett "Lightning" or Ilford Special Rapid, should bs used. The light varles so that it is practically impossible to say what exposure to glve. Much will qlso depend upon the surroundings, dirgction of light, and the character of the procession-that is to say, whether the clothing of the processionists is dark or light. Experienced photographers usually endeavour to make a couple of trial exposures on the crowd a little before the event; by developing the plates at, once they are enabled to get an idea of the exposure required. For the trial exposure use fall aperture, and let the shutter work as quickly as possible. Develop one plate first and make a print; from the result it may be possible to suggest how the subsequent prints may bs improved. Two or more cameras clamped to the window frame should be used. They should bs focussed before the procession arrives.
Forging Rods for Engine.-To forge the two rods shown in the accompanying dimensioned sketches, if steel were used and a stesm hammer available in an

Forging Rods for Englne.
engineer's shop, the webs might bs drawn down from the larger ends. Iron of common quality shonld be welded so that the fibie in the fiat ends may run lengthways of the ends; or the ends would be opened out to form the flat. Again, where thers is uncertainty about exsct centres, as in vaive setting, welding up to length is often done after the fitting of the ends. For convenience, the web may be drawn down from both ends, and welded about the middle or towards ons end. The forked ends are, when in the dimensions given by the correspondent, forged solid, and then slotted out. They might, however, be forged roughly to dimensione over a former block, leaving little to be toolsd out. As a general rule, the greater the differsnce in the dimen. slons of the two enlarged ends the greater the reason for drawing down from two pieces, and then welding. Upgetting to any considerable amount is objectionable both in iron and steel. If the whole of the work must bs aone on the anvil without a steam hammer, make the two ends as separate forgings, and weld the web to them with two welds (G, F) in the case of Fig. l, aud with one only (H) in Flg. 2, more drawing down being necessary in the case of Fig. 1. For the feet A, take a piece of flat bar and draw down the portion as far as H, fullering it on faces and edges alternately, and leaving the end upset for welding to the web. The inner face J is brought pairly flat by up-ending the broad face on the anvil and going over d with a hammer first, and flatter atterwards. The blows tend to make the forging strike backward, so a block (Fig. 3) must be set in the shank hole of the anvil as a support. For the other ends B, B a bar will be taken a little larger than the flnished section, and the webs will be drawn down to Fin Fig. 1, and to H in Fig. 2.

Thers is very littls drewing down in the latter case. All the weld ends must he upset, and the joints scarfed and rounded (Fir. 4). The lengths of the welds nsed not sxceed $1 \frac{1}{3}$ in. Centre pops and a fixed trammel must be used to check the lengths during welding.
Damp Preventive for Brickwork and Stucco.For painting brickworis and stucco extsriors to repe the damp, amongst many other materials the following have been recommended: (l) Boiled oil applied hot; (2) soft soap and alum, the latter applied twenty-four hours after the former; (3) Czerelmy finid, presumably a silicate; (4) boiling tar; (5) silicate or other good of paint. For stucco work a coat of Portland csment as thin as cream, applied with a whitewash brush; boilsd oil applied hot and afterwards painted regularly; ordinary oil paint applied regularly.
Making Trousers Stretchers.-The simplest form of trousers stretcher 18 that illnstrated by Fig. l; It is known as the "Invisible" trousers stretcher, as it is used by putting it inside the tronsers leg. It is made of stout iron wire. The dimensions are as follows: A to B (Fig. 1), $30 \mathrm{in.;} \mathrm{C}$ to $\mathrm{D}, 29 \frac{1}{2} \mathrm{in}$. A to $\mathrm{C}, 14 \mathrm{r}$ in.; B to $\mathrm{D}, 15 \mathrm{in}$; A to $\mathrm{E}, 4 \mathrm{in}$. ; E to $\mathrm{F}, 14 \mathrm{in}$.

Trousera Stretcherg.

Of courge, one is raquired for each leg. The device la patented. Another kind is that shown by Fig. 2, which is drawn on a larger scale than Fig. 1. Four pieces of wood, in. thick and lin. wids, are required; two $16 i n$. long, and two 13 in . Holes ars bored near the ends, and the pairs are fixed together by small bolts and thumbserews. Ths longer pair bslong to the top of the screws. Ths longer pair bsiong to the top (Fig. 2) to recsivs the end of the bar, and there is a receptaols at B (Fig. 2) having a thread in it, throngh which the screw of the rod is turned. The rod, which is of metal, is about 33 in . in length, and has a screw for about 6 in . of 1ts length from the top. Trousers should be folded hy bringing the two front brace buttons together with the leit hand, and then taking each bottom at $3 \frac{1}{2}$ in. from the side seam, and bringing them together also; the creuse thus formed is the centre line of the leg. The trousersars thus laid in the stretcher, the bottom being fixed first, and the screws tightensd; then the top as far up the leg as it will go, and the stretching ts accomplished by turning the ring at the top. The articles should then be left for some tims.

Filling Cracks in Blackboard,-As a fillng for cracks and holes in a wooden blackboard, if the crack is $\frac{1}{8}$ in. or more in width, $\{$ slip of wood should bs fitted and glued in the opening and afterwarde planed down level to the surfece of the board. But it the erack is less than $\frac{1}{8}$ in. wide, it can be flled in with s mixture of plastar-of-Paris, glue, and a littla lampblack. This should be allowed to dry, and then scraped and glasspapered flush with the surfice of the board.

Renovating Lacquer of Microscope.-To clean a microscope that has become ruaty through lylag in a damp place, well rub the affected parts with paraffin. If the spots are merely superficial the paraffin will fetch them off; but if the damp has penetrated deeper, the only remedy is to remove the entire coating of lacquer, re-polish the metal, and re-lacquer. To do this, remove the lenses, take the microscope to pieces, and boil the acquered parts with a handful of Btrong soda in water. This will remove every trace of the old lacquer. When dry, with some No. 1 blue-black emery paper grain the pieces as before. The old graining will give the direction. When all the pieces, screw-heads, etc., have been separately grained, they must be separately heated and lacquered. The draw tubes, if stained, need only be cleaned up with paraffin; but if it is thought desirable to paper them also, they muist not be lacquered, but ghould be rubbed over with vaseline instead.
Silvering Brass and Copper.-Any article of braes or copper can be silvered by the French-silvering process as follows: Dissolve a stick of nitrate of silver in t pt. of water; add cornmon salt, which will deposit the silver in a white mass at the bottom. Pour off the water and add fresh, stir up, allow to bettle, and pout off again. The residue is silver chloride. To use it, clean the metal with fins emery-cloth, wash it in cold water, and rub its surface with salt brine. Then rub it over with a rag on which is a paste composed of equal quantities each of silver chloride, cream of tartar, and water. Continue rubbing until it is evenly silvered all over, then wash in plenty of water and dry with a soft clean cloth. Any silver chloride not used can be dried in the dark and kept in a bottle away from the light for future use. It is best to silver by gaslight or weak daylight.
Duresco and Petrifylng Liquid. The nature of Duresco and petrifying liquid, and the proper way to use them on damp walls has been explained as follows:Duresco is a water paint consisting of pigments ground up in a medinm containing water; petrifying liquid, as made by the Silicate Paint Co., is a solution containing certain chemicals which combine with stone conc., to form a hard, impervions coating; the same result is obtained when Duresco is thinned with the petrifying liquid and applied to walls. For application to damp walls, the Duresco body colour must be thinned with petrifying liquid or Duresco liquid in the proportion of Ito 4. Duresco is very often effectual on interior damp walls, but the benefit cannot be considered permanent, as continual dampness entering the walls from the out. side rots the plaster. Duresco is no good in cases of dampness arising from foundations. The cause of the dampness must first be removed. Three coats of Duresco should then be applied thinned down with the petrifying liquid. Petrifying liquid alone will prevent moisture penetrating, but is not so effectual as Duresco, and is only used where a painted effect is not required. Three coate of this should also be given. Duresco and petrifying liquid are both patents. For porous bricks, Duresco ingould be applied outside the house.
Camera View Finder.--A view finder is an apparatua in which can be seeu a miniature representation of the picture that is thrown on the ground-glass screen of the camera. It is fixed outside the camera in buch a position, that when the image is focussed sharply on the ground-glass screen, the finder shows the same image just as sharply focursed. When a finder is used, therefore, it is unnecessary to focus the picture on the screen, the finder being used instead, and the convenience of such a procedure is obvipus. A finder is absolutely necessary with a hand camera, and a very valuable adjunct to a stand camera. Care should be taken to see that the finder includes no more of the view than is shown on the screen of the camera. If the finder includes too much, reduce it to the proper dimensions by pasting strips of dark-coloured paper ou the screen of the finder.
Tuning a Piano.-A wedge, a tuning hammer, a piece of ivory, and a tuning-fork are necessary. Ahout 7s. 6d. should be paid for the hammer, for unless the temper is good the continual strain will soon cause it to wobble on the pins. Care shonld also be taken to ensure its adaptability for the instrument in hand; thus, some instruments are fitted with square heads, others with oblong ones to the tuning-pegs. The wedge is used to top the vibration of one string of a note whilst the other is tuned. Wedges are usually made of lancewood cosewood, or whalebone about 8 in . long, $\frac{8}{3}$ in. wide, and ${ }_{5}^{3}$ in. thick, each end being covered with varying thicknebses of doeskin; they cost about ls. each. The piece of ivory is generally a portion of an old key covering, and is used for the purpose of plucking the wires in the first stage. A O tuning-fork costs about 1s. 3d. Tuning. forks should never be struck on any hard substance such practices have a tendency to flatten them. Tuning
may be said to embrace four stages-chipping up, rough uniug, tuning aud fine tming: space will not permit of each stage being fully deait with. Briefiy, after the instrument leaves the stringer's hands it is chipped upthat is, the action is left out, the wires being merely plucked with the piece of ivory referred to above. When all the wires have been somewhat pulled into tune the action is put in and the tuning is followed through various stages by means of the hammer and wedge. As the tuning-pegs are merely held in position by being turned into a wood plank, care should be taken to prevent any unnecessary wriggling about; especially aroid straining the pegs upwards or downwards, instead of turning them. It requires a firm grip and strong wrist.
Yellow Stain for Oak, - A suitable stain is gamboge, steeped in methylated spirit; this yields a powerful yellow tone. If this, or turmeric, does not suffice, try lemon chrome mixed in 1 part French polish and 3 parts spirits; or a yellow aniline dye, mixed with parts water and l part vinegar.
Stain for Edges of Brown Boots.-To make this, get a pennyworth of burnt sienna in water, and mix it with water; shake well before applying to the edges of the boots so as to get an even stain. Put it into two small botties, say two-thirds in one bottle and the remainder, in the other, with equal parts of water; this will give two shades of brown.
Hoisting the Materials for a Tall Chimney. The usual method of hoisting the materials for a tall chimney in course of construction is to have outside the foot oi the chimney a steam crab or winch, proFided with a wire rope of bufficient length to reach to the top of the chimnes and down again-about 400 ft . in length for a chimney 160 ft . high. In the base of the fue, a suatch-block is attached to a rail, or a rolled joist is built in. As the chimney is carrued up, a couplo of rolled steal joists are laid across the flue, on which is aid a plank floor, with a square opening in the centre for hoisting through, and three shear-legs with pulleyblock are erected. The brickwork is carried up about 9 ft ., and two other steel joists are laid across, the shearlegs being dismantled and refixed at the higher level, as is also the plank floor. When the next stage is reached, the first two joists are taken out and refixed at the higher level, and the shear-legs arain moved, the operation being repeated every 9 ft . or so until the top of the chimney is reached.
Producing Squeak for Punch and Judy Performances. - A penny squeaker is used to produce the peculiar squeak by professioual Punch and Judy men are too large and roughly made. Pronounce the word "cow" or "come," and notice where the hinder part of the tongue touches the roof of the mouth. This is where the instrument must be placed, and held in position by the tongue pressing it against the palate, while the front portion of the tongue, the lips, and cheeks are left free to modulate into words the sounds produced by blowing through the squeaker. A serviceable one may be made of two pieces of tin, 1 in . $\mathrm{by} \frac{7}{3} \mathrm{in}$, slightly curved, with a silk ribbon, sin. broad, stretched tightly between and wrapped round once or twice. The whole is tied round with thread, The corners should be cut off the pieces of tin, or they will injure the roof of the mouth. The silk produces a clean, smooth voice, although for open-air performances, where a very loud voice is requisite, ordinary tape in a larger squeaker is preferable.
Heating Cucumber House,-To heat a glass house, size about 10 ft . square, for growing early cucumbers, a boiler to burn coke, with 3 -in. or 4-in. cast-iron hot-water pipes, is recommended. A gas boiler would not prove so economical and requires careful fixing to shelter it from the wind and weather, which may cause it to light bsck or be extinguished. The Loughborough type of boiler, which is supplied with piper, etc., complete, is generally found to be suitable. The pipes have expansion joints, and the whole is expressly made for amateurs' requirements, no skill being needed in putting up the apparatus. The boiler is fixed in the thickness of the wall and requires no pit or special provision of this kind. If the height of the house averages 7 ft ., then 35 ft . of 4 -in., or 46 ft , of 3 -in., pipe will be required. The pipe can be carried along two or three sides, below the glass, where the house is expected to be coldest.
Removing Stain and Varnish from Furniture.To each bucketful of freshly slaked hot lime add about 2lb. of common washing soda. Apply liberally by means of old brushes. Caryed portions may be cleansed by making the mixture into a paste by adding more lime or sawdust. Spread this over by means of a palette knife. Several applications may be necessary. Swill off with clean water, and finally wipe over with common vinegar to neutralise any trace of acid left in the wood.

Solntions for Etohing on Brass.-A reliable solution may be made by dissolving nitric acid in abont five times the quantity of water. Auother solution is made by mixing a solution of nitric acid and water (1 to 10 parts lespectively) with about an equal quantity of potassium chloride dissolved in 16 of water. A mixture of nitric acid 20 parts with 1 of muriatic acid, may he used, or a solution containing equal quantities of nitric acid and water and a few small pleces of copper may be tried.
Jewel Case with Secret Drawers.-The following instructions for making a jewel case with secret drawers instructions for making a jewel case with secret drawers refer to one ahont 12 in. by 10 in . by 8 in . Fig. i is at together with secret dovetail and mitred joints. The front or flap is mitre clamped and veneered on the face; the four drawers which the case contains are all hidden. The front AB (Fig. 1) is made in two parts, and represents the fronts of five drawers, A being made the height of drawers $0, D$ and E, whilst B is the height of drawer F and tray G. The bottom of G is a fixture, as are also the divisions between drawers $F \mathrm{E}, \mathrm{ED}$, as are also the divisions between drawers F L, ED, beads at equal distances. The bead M, which divides the front, is loose; to it are fixed two steel forks, which fit into the square mortises (Fig. 3); the two drawer knobs KK (Fig. 2) have a small square spindle attached, over which the steel fork passes, and fixed on the end of the
is not exactly correct; for instance, suppose we have an absolutely correct standard acid, and we then make a standard soda solution which is rather too strong, inotead of diluting it to the correct strength, we may use it as it is, and multiply the results by a "factor." Suppose 10 c.c. of the standard acid requires 9 c.c. of the soda solution, then the latter is $\frac{10}{9}=1^{\prime} 11$ times too strong; the figures 1 'll constitute the "factor."
Laying Concrete Floor. - Although some experts recommend that, for stability, a concrete fioor should be laid in thres layers, the upper and lower of strong material, having the bulk of rougher material between them, this plan is not followed to any great extent, and the utility of the intermediate course is doubticil. In order to make a strong homogeneous concrete, the voids in the aggregate must be filled with some finer material; it would be an improvement if the material intended to form the flrst two layers were ocorporated and laid as one. The finishing coat may, if desired, follow closely upon the laying of the may, ip desired, follow closely upon the laying of the rougher material, but it will be better if the bulk is very suitable time to finish off the floor, provided there is no need of hurrying the work forward. After the fine stuff has been ruled off, as soon as the

Jewel Case with Secret Drawers.
spindle is an Iron tougue and nut forming a turn-buckle. When the knob is turned so that the front is fixed, the fork K is dropped and fixes the front A, and, untll lifted, the latter cannot be moved. NN are dowels fitted into the bottom of the case; the front B is made to work on pivots JJ and is fixed by springs $H H$ (Fig. 2). These springe are hidden by the silk lining of the tray, and, until released, the front a will not move; when the eprings are released the front will fiall on the bottom of tray G, giving access to the bead M. In a shallow case it will be necessary to form the movable kuob at 00 , or the forks $L \mathrm{~L}$ will not draw out sufficiently to release the front A.

Glazing Tobacco Pipes,-For a glaze, dissolve 1 part of acetate of lead (sugar of lead) in 5 parts of water, and dip the pipes into the solution or apply with a brush; then, after drying, fire at a low red heat. Another glaze is made by melting together in a crucible l part of carbonate of potash and five parts of borax; pour the melted mass into an iron plate, powder it very fine, and mix with turpentine. Apply the wash with a brush and fire as above.
Standard Acid and Allsali Solutions. - Standard acid and alkali are solutions of an acid or alkali the exact strengthe of which are known. The usual standard solutions are the "normal" and the "decinormal." The normal solution of hydrochloric acid contains $36^{.5}$ gram. hydrochloric acid in litre; the decinormal contains one-tenth of this amount. The strength of a solution of an acid or an alkali is determined by measuring, say, 10 c.c., and titrating with either ajkali or acid, as the case may be, and using some indicator such as litmus, which changes colour wheu the point of such as litmus, which changes colour wheu the point of in from a burette, and when the titration is finished, the amount of standard bolution used is read off, and from thle it is easy to calculate the amount of acid or alkali present in solution. A "factor"is sometimes used for calculation when the strength of the standard solution
surface begins to get firm, is the proper time to commence finishing-oft; if this is commenced too soon, an unequal surface will result, whilst it the stuff is left to get too firm, the surface will be rough and patchy. A hand fioat should be used at flrst, and with this the work should be beaten lightly, or patted until the "fat" appears; then trowel off with light strokes until the desired face is obtained.
Preparation Used by Fire-eaters.-The preparation used by so-called fire-eaters to make the skin resist ths action of fire is strong solution of calcium chloride which would remain moist on the skin and protect it to some extent. The fire is obtained by burning a small quantity of the lightest naphtha. This rapidly dies out, and produces but little warmoth. This naphtha is often poured on tow and ignited, but the flame at once dies out when placed inside the mouth.

Boiled Oil as a Damp Preventer for Brick Walls, -Boiled oil has been highly recommended as a cure for dampness caused by absorptive bricks. Its efficacy is due to the fact that it fills the pores of the bricks. It should be applied boiling hot, and rather lavishly, with a large paint brush or even a Turk's head brush. A dry summer day should be chosen, and if possible, a time when the wall is warmed by the eun. The coating should be renewed every two years. It may rather discolour the brickwork if the facing is uew stock or terracotta bricks, but will hardly be perceptihle with old or common work. A small area should be tried at first, so as to afford some idea as to the ultimate appearance of the whole.

Re-enamelling Bath,-To re-enamel a hot aud cold water bath, specially prepared enamel paints are used. Thoroughly clean the surfaces of the bath with petroleum and well scour rusty places with emery cloth; when clean and dry, rub in a paste of lime and petroleum; wipe this off before painting. Apply two thin coats of paint ; allow the first coat to dry hard before applying the second. Pale green or eau-de-nll are good tints.

Printing Photographs on Fabrics. - There are several methods of printing photographs on fabrics. The simplest is the platinotype, as the material-silk, satin, linen, calico, etc. - is supplied sensitised and ready for use by the Platinotype Co. It is treated in the same way as paper, being printed to the required depth and developed by immersion in a saturated solution of oxalate of potash or in the D salts supplied by the company. It is fixed by immersion in one or two baths of hydrochloric acid-streugth 1 in 60 -and merely requires half an hour's washing in running water. A very permanent image which will stand washing may thus be produced. The prepared material is somewhat costly, therefore the following plan may be preferred. Procure some pure silk-not treated with acetate of lead-and immerse for two or three minutes in a salting solution prepared as follows: Boil 2 dr . of arrowroot in a little water and dissolve and add 75 gr . of chloride of ammonium and make up to 32 oz of water and fllter. When the silk is dry, a sensitising solution of silver nitrate 40 gr ., citric acid ${ }^{\prime \prime}$ gr., water loz. is brushed over it, the fabric being pinned flat on a board. Print as usual, but very deeply, and tone with water 5 oz, sodium acetate 7 gr., chloride of gold 3 gr. Allow this bath to mature for twenty-iour hours before nsing it. Very pleasing results are obtained by merely fixing without toning. Well wash before toning, and place in a bath of common salt and water before fixing in hyposulphite of soda 2 oz ., water 1 pt . The pictures may be coloured with crayons and a very beautiful effect produced. The crayons may be fixed by spraying with a solution of rubber in benzole. The picture, if not colloured, may, hs washed in cold running water. By the "Primuling" process priuts on a yellow ground may easily be obtained in red, scarlet, crimson, maroon, orange, brown, stc., by sensitising with primuling and treating after exposure with a developer. In :printing fabrics, great care must be taken when examining the print lest the material should bestretched, when a blurred and distorted image will result. Gauge the exposure by sxperience, or use an actinometer, when the material may be stretched on a light frame. Absolute contact must, however, be assured. The grain of the material must not be too marked or a coarse effect will result.
Sinking a Tube Well through Chalk. - A deep stratum of chalk would be penetrated by boring, for which purpose a tube of large diameter is necessary. A frame, which holds the first length of tube in position vartically, is set oves the selected spot. The lower edgs is not sharp, but rough jagged, and the work is performed by revolving, the tube by means of a portable engine and horizontal pulley wheel on the frame through which the tube passes and to which it is wedged; a bag of sand placed on the top of the tube adds weight when required. When one length is nearly down, the boriug is stopped and dredging commenced.
 enough to go inside the well tube, has its lower end edges slightly sharpened and is fitted with a valve; a small bar is riveted across the upper end, and filed off flush outside. To this bar is attached a piece of strong cord-that known as "cod line" is suitable. By repeatedly dropping this down the well tubeand pulling it up and emptying, etc., the borings are withdrawn ; when advantageous, water is poured in. Lengths of tube are added as the horing proceeds.
Welding Cast Steel. -In welding cast steel, the flux may consist of borax $\& \mathrm{lb}$., washing potash flux may consist of borax ${ }^{\text {t }}$ lb., wand washing potash Thess should bs melted together and pounded. Oast steel should be kept from the air when heating over breeze-not coal-and should not be raised to too high a temperature, as it is liable to burn. The blows should be light at first. The flux mentioned above should bs thrown over the surface to be worked before the materia is put into the fire, more being added afterwards as required.
Cutting Steel Type and Dies.-For steel type and die-cutting a considerable plant of tools is required, consisting of, for steel-type work, a strong bench, consisting of, for steel - type work, a strong bench, and small fine files, giavers, hammer and chisels, spring dividers, rule, square and straightedge, pump drill grindstone, oilstone, ecriber, long pliers or tongs, hand shears, sheet-tin, and cast steel in rod ; and for die-sinking work, a die-sinker's vice and hollow pad, chisels, punches and matts, curved and straight rifflers, and hard-vice. To cut type, first soften a suitable piece of cast-steel rod, flle up the sides with f slight nndercut, and dress the face; then scribe in the type, or, better still, mark it from a tin template. Any round holes in the face are drilled with the pump-drill; the inside work is chipped out with lozenge and round-nose chisels; the outside edges are filed in a series of vee-shaped notches to form the outline of the type. Finishing is done with gravers, holding the work (if long enough to be handled) in the
left land, or in a hand-vice against a filing slip of wood projecting from the edge of the board, and lightly cutting and skimming with lozenge aud roundnose gravers. Try the work from time to time on soft lead or wet clay; when perfect, put it into a clear coke fire, heat to a cherry red, and quench in clsan cold water. Then temper to a middle brown. Should any further dressing be required, procure some boxwood splints and dress ofll with fine emery and oul. Dies are made with a backing of iron faced with steel, the better to withstand the blows of the stamp. Most dies are either planed level top and bottom, or turned in a lathe. In this state the blank is screwed up in the die-sinker's vice, and the face dressed up with a dead smooth file. A template is face dressed up with a dead smooth file. A template is deeply scored wlth a scriber. The line may then be cut round, using hammer and lozenge chisel. If no pattern is supplied, a model must be made in modelling wax, clay, or plaster-of-Paris ; and to get the depth of the die, use a sectional tinplate template. After rough chiselling, use hand-gravers to remove the chisel marks, and follow by rifflers of various curves and contours. The die can be finished dull smooth with emery and oil, using a light or heavy stick for dressing, according to the size of the work. These dies are hardened and tempered by the blacksmith who forged them, and then further dressed, using a stick, finer emery, and oil. Other dies, in addition, require to be burnished with small curved steel buruishers, lubricated with ordinary soap and water. The various plain and ornamental punches and matting tools used by the die-sinker are generally made by himself, and it is seldom that the branches of typecutting and die-sinking are carried on by the same persou.
Photographing Coloured Piotures. - Coloursd pictures, or any coloured object, can only be photographed successfully by the help of a screen or interceptor, which gives the true tone values of the colours. In addition, the emulsion with which the plate is coated must be specially sensitive to red and orange. Such plates (termed chromatic, isochromatic, or ortho chromatic, or colour-correct) may be had of all dealers in photographio materials, those of Edwards belng in photographic materials, those of Edy food. These plates must be developed only in a dull ruby light. Pyro-soda is the most suitable developer. The ccreen may be fixed either before or behind the lens, and may either be made by staining a sheet of gelatine in a weak solution of picric acid, or purchased ready for use. Generally, the screen should be a very pale lemon yellow, but the more the two colours named above predominate, the deeper should be the tint.
Making Taps for Watchwork.-Taps for tapping screw-holes in watchwork should be made of good steel wire. First soften it by heating to a red, and allow to cool. Then file to a slow taper and thread it cautiously, using plenty of oil. When a full thread has been cut, file it triangular, and smooth the flats with a pivot file. Harden it by heating to a bright red and plunging in oil or water. Brighten the flats with a smooth emery stick, and lay the tap on a brass plate held over a lamp flame until the brightened flats show a pale straw colour.

Red Terra-cotta and Blue Bricks.-The varieties of clay used in the manufacture of terra-cotta are the blue, buff, and red clays of Cornwall, Devon, and Dorset, red London clay, and many others. Some varieties of Leeds clays are also employed. These are plastic clays, containing a moderate but variable quantity of oxide of iron-from $1 \frac{1}{2}$ to more than 11 per cent. Ihs clay is treated in several ways. In some cent. The clay is treated in several ways. In some mixed in phe mills in others it is ground wet to a "slip" which is dried to the proper consistency for working on the "slip" kiln. It is usual, especially for large objects, to mix the clay with a moderate propor tion of ground-baked clay, old pots, ground fint, sand or Cornish stone, in order to prevent excessive shrinking and warping, and it is essential to allow the tempered clay to stand for some time before working. The ordinary terra-cotta bricks, facing blocks, orna mental tiles, etc., are machine-pressed, but fine objects are pressed in plaster moulds, and the larger objects are ofton built up and modelled by hand. Blue bricks are usually made by incorporating "mill cinder" or "iron scales" with the clay, the bricks being burnt at a very high temperature.
Lacquering Copper and Brass Candlestichs. Take them to pieces and boil in a strong solution of soda to remove old lacquer and dirt. Dip in a weak solution of nitric acid and re-polish them. Then make them hot in an oven or on a hot plate and brush over. with pale gold or gold lacquer. Candlesticks may be freshened up by brushing them over with a coating of zapon or brassoline, which may be procured through a chemist or oil and colour stores.

Wiping a Plumber's Underhand Joint. - The pipes having been dressed out straight, square the pipes having been The hurr should he cleaned out of ends with a rasp. the end of one pipe, and the onter arris cleaned off (ses Fig. 1). Open the other pipe-end (Fig. 2) hy means of a turnpin, so that the first pipe will enter as tar as it is rasped off. Clean up with classpaper and smear the pipes with a little whiting or chalk. Now mark the pipes at 6 in . from their ends by means of a gauge (Fig. 3). Paint the ond of the pipe as far as the gauge mark with Paint the end of the pipe as far as the gauge mark with warm soil or smudge, and then With a shave-hook shave (Fig. 1), and lifin. from the end of the second (Fig. 2). Shave also the rasped parts of both pipes. They must now be rigidly secured in position by laying each pipe upon two hricks set on edge or upon two lengths of quartering and then holding them down by string as shown in Fig. 4. On the bench immediately beneath the pipes place a sheet of brown paper to catch the solder which falle in the process of wiping the joint. Smear the shaved parts of the pipes with tallow, which acts as a flux. Have conveniently near a pot of solder of the proper temperature, and then, with a ladle in one hand and a wiping-cloth in the other, commence to make the joint. The first stage is to pour on the metal and "tin" the joint, the second is to shape the joint, and the third
there will he a further decrease in bulk hy abont 20 per cent., thus reducing the hulk to about 4 cub. yd.
Painters' Fililngs.-The fillings used for stopping the suction of wood, plaster, etc., previous to painting may vary according to the nature of the work. A very commonly used filler is made from starch by incorporating with it some linseed oil and varnieh, adding a drier, and then thinning with petroleum adding a drier, and then thinning with petroleum naphtha. Theterials, such as ground silica, steatite, china clay, or barytes, and these are ground with raw linseed oil, grinding japan, and turpentine or liquid driers. These fillers set extremely hard. They are coloured when necessary with the usual pigments. A yery common filler for plastered walls is made by dissolving good jelly size in hot water, and thoroughly mixing with it sufficient whiting to give it body.
Wash for Stained Stuoco Work.-There is a wide range of choice in the many washable distempers now on the market; but whether any of them would cover defects so as to prevent their re-appearance depends entirely upon what causes the stains. If they are lichenous growthe, an application of dilute sulphuric acid will have a heneficial effect in the matter of destroying the vegetation, but a deleterious

-FIG. $\mathbf{l}^{\text {: }}$

Wiping a Plumber's Underhand Joint.
and final stage to wipe it smooth. Pour the metal on to the shaved part and on ahout 2in. of the soiled portions. Hold the cloth under the joint to catch the surplus solder. As the solder runs down the sides of the pipes it is caught by the cloth and pressed up against the bottom, thus helping to get up the heat and to tin the bottom, thus helping to get up the heat and to tin thes with the cloth, which should he kept at the same curve all ronnd the pipe, and pressing the edges so as to get them clean. Fig. 5 illustrates the finished joint.

Quantities for Concrete. - Approximately, the voids in gravel, if free from sand, may be estimated at from 25 to 30 per cent. of the bulk, and in broken brick or stone at from 40 to 50 per cent, but if it is desired to obtain an accurate estimate of the voids in any sample of aggregate, fill some known measure with the material, then add water until the measure is filled; the quantity of water necessary for the purpose will be the amount of the voids. Sary ior the purpose will be the amount or the voids. be measured beforehand, and added to the aggregate quickly; subtracting the remainder from the original measurement of water will then indlcate the extent of the voids. But in calculating the amount of sand and cement necessary to ill the voids, it must be borne in mind that Portland cement and sand both lose bulk when water is added to them, the former by about 10 per cent. and the latter by about double this percentage. It will thas be seen that the resultant cubical measurement of the materials indicated in the question will he only about that of the rough aggregate, namely, 5 yd . and it the concrete is consolidated by ramming,
effect apon the stucco, the surface of which will he more or less disintegrated, according to the strength of the acid. Try the effect of a good brushing with a stiff bass dandy; then, for a che $七$ wash, and one that will look better than a white preparation, add Portland cement to water in which white copperas has been dissolved at the rate of 11 h . to 3 gal . Apply the mixture, with frequent stirring, in the same manner as distemper. A second coat may, if considered necessary, follow as soon as the first is dry.
Papier-mâché Mouldinge.-For making papler-mAché mouldings as used for theatrical purposes, ohtain some thick, coarse brown paper; tear it into suall pieces 3 in . or 4 in . square, and soak them in cold water. Now make come good flour paste, and while hot, to half a gallou of paste add about half a pint of linseed oil and about half a pound of melted glue. Well mix these together. Now squeeze the water frow the paper and paste each piece thickly on both sides, placing them one on the other to keep them moist. These pleces are taken up separately and pressed into the mould, which need not be filled level, hutleit hollow so long as the whole of the desigu is well carried out. Plaster-of-Paris le used Por making the moulds. The deslgn is firet made in olay or cut in wood. Make a strong box a little larger than the model; pour into this hox the wet plaster, and prees in the model, having previously brushed the model over with a little sweet oil so that it whll not adhere to the with a little sweet oil so that it wlll not adhere to the
plaster. When the mould is hard set, line It wlth oiled tissue paper before pressing in the papler-miche: allow this to well set and get partially dry before turning out. The mouldings may be fixed with needle-points and glue.

Vanadium.-This is one of the metals of the antimony group, and may be obtained as a greyish-white powder. It will decompose water at a temperature of about $90^{\circ} \mathrm{C}$., and does not talnish in the air. It is insoluble in hydrochlorie acid, but dissolves rapidly in nitric acid and slowly in hydrofluoric acid. It burns readily and, in a current of chlorine, takes fire. It has been found in some iron ores, in copper bearing beds in Uheshire, in some in iron slag in Staffordshire. Its symbol is V , and its atomic weight $51 \cdot 4$.

Heating Greenhonse by a Flue.-In heating a small span roof greenhouse, 12 ft . by 8 ft . by 5 ft , to gaves, by a flue, the chief points to remember are that the horizontal portion of the flus must have a rise of 1 ft . in 10 ft ., and the vertical part of the flue at the end of the rise must not be lese in height than the length of the horizontal part. At the base of the vertical part there must be a soot door for Bweeping, and also to admit of some burning shavinge being inserted to start the draught, as will very likely be necessary whenever the fire is freshly lighted. A emall finrnace will do, and the flue, built of ordinary stock bricks, can be 7 in. by 7 in . inside. If the flue is carried across the $8-\mathrm{ft}$. end it will do, as close to the floor as possible. This will give a slightly different temperature at the two ends of the house, so that both half-hardy and very delicate plants can with care be accommodated.

Curing Goat's Skin.-Trim it on the flesh side Fith a sharp knife, and then well brush with a solution of $2 \frac{1}{2} \mathrm{Ib}$. of alum and 1 lb . of common salt in 1 gal. of warm water; the skin should be treated two or three times with thie solution on successive days. Now sprinkle bran all over the skin, brush out, and nail the skin to a board and dryit. As a preservative againet insects, the flesh side of the skin may be treated with a mixturs of arsenic and black pepper previous to drying on the board.

Inlaying Raised Frets in Finger-board of Guitar. -Get a small piecs of a broken keyhole-saw, and insert it, teeth outwards, in a block of wood; this will cut a groove of uniform depth. The projection of the teeth must be correctly determined beforehand. The frets may be mads of stont brass wire hammered carefully so as to partiy flatten it.

Reeds of Organ Pipes.-These consist of a piece of hard-rolled brase, fixed by a wedge upon the flattened segment of a short cylindrical tubs alosed at one end, as This is inserted in a solid block resting in an inverted cone of sheet metal (termed a boot) and supperte a tube which reinforces the tone required.

Heating Schoolroom.-A schoolroom 66 ft . by 35 ft . by 22 ft high has nearly 51,000 cuh. ft. of space in it, which, with an ordinary area of window glass and good walls, can be hsated by 9 ft . of 4-in. pipe per $1,000 \mathrm{cub}$. $\mathrm{ft}_{\text {. }}$ of space. This will give 55° F. in very severe weather, and $60^{\circ} \mathrm{F}$, at any other time. If $60^{\circ} \mathrm{F}$. is required iu severe weather, then 10 ft . of 4 -in. pipe per $1,000 \mathrm{cub}$. ft. must be allowed. lf 2 -in. pipe is used, then double the length will be required. The advantage of 2 in . pipe is that 2 ft . of this only holds half the water that 1 ft . of 4 -in. does, and this meaus getting the heat upin half the time after lighting the flre. If radiators are used, the heat can be got up still more quickly, as they hold the least practical quantity of water tor a given radiating surface.
Putting Geneva Wateh in Beat.-To see roughly where to put the hairspring on a balance so that the watch is in beat, after putting in a new hairspring, look at the opening in the cylinder; this should face the 'scape wheel. Usually there is a small dot on the balance rim against which the hairspring stud should be placed. To try finally, see that, when the watch is wound up, the balance when stopped by the finger has no more tendency to stop on one side than the other, and always etarts off immediately it is releaeed.
Repairing Fols in Boat.-Cut out the plank at the part and replace it with a well-seasoned piece, butting the remaining parts of the plank over a rib. If thought necessary, put in an extra, rib or two, if the hole is above water-line. An easier method is to push the edge of a piece of sheet copper under the plank, double it over the hole, hammer it close, and tack down with plenty of copper tacks; the part shoald previously be plenty of copper tacks; the part should previously be lead, white lead, and copal viurnish.
Soldering Spout on a Copper Kettle.-To re-solder a opout on a copper kettle, filst thoroughly clean the copper where the spout is to be inserted with a piece of emery cloth, and also clean the spout around its large end. Then tin the copper inside the kettle where the spout is to be soldered, and also the spout, using killed spirits as a flux. Pass the small end of the spout through the hole from the inside of the kettle, and press it up so that the small flange on the large ond of the epont butts against the side of the kettle;
then solder round the spont on the inside of the kettle, and leave a thin body of solder fionted smoothly round where the join occurs, the same Hux being used as for the tinning. Solder composed of $1 \frac{1}{2} \mathrm{lb}$. of tin and 1 lb . of lead would be suitable for this purpose.
Clarifying Glue or Gelatine Syrup. - Decant it into a tall tank and let it rest for several hours, when most of the impurities will settie to the bottom, and, after decanting the gine, the bottoms may beadded to the next boiling. If a large quantity of glue solution is to be treated, the heat, contained in it will be sufficient to keep it fluid; but for a small quantity a jacketed pan must be used for clarifying. The addition of a very small quantity of alum to the glue solution is beneflcial, as it coagulates the flocculent matter and renders it heavier, For gelatine, moist alumina would be suitable as a clarifying agent, or inert white powders, euch is china clay or French chalk; these substances should be stirred into the gelatine solution and allowed to settle out. Experiments on the lines indicated should be tried on a small scale first.
Repairing Damaged Stonework.-It is presumed that the stone from phich a piece has been accidentally broken is one of the Yorkshire "grit" stones, similar to that obtained from the Howley Park or Idle quarries. For mending this kind of stone, mix resin and beeswax in about equal parts over a fire, or preferably over a hot plate, till both are thoroughly incorporated. over a tho mixture into water, and, after it has been well manipulated and allowed to cool, make it up into sticks. To unite the broken pieces, warm the stone, by means ol hot irons, sufficientip to just melt the cement. Apply the cement to the fracture, then press tightly and firmly till set. This cement, however, has no lasting properties when exposed to the weather, but will answer for internal work. If the piece broken off is not too large, use Portiand cement mixed with some of the pounded duct of the stone, and a little mineral oxide to give it the necessary colouring. This will make a far more satisfactory and lasting job.
Proportions of Sand and Lime for Mortar. In mixing lime and sand by bulk, and not by weight, it is necessary first to ascertain the cubic feet contained in the lime, a cubic foot of which weigh $39 \mathrm{lb} ;$ hence 5 tens $\times 2240 \mathrm{lb} . \div 391 \mathrm{~b} .=287 \mathrm{cub} . \mathrm{ft}_{\mathrm{o}}$. multiplying this by 3, it is found that 861 cub . ft. of sand will be required, the weight of which can only be obtained by experiment, pit sand being given variously as from 90 lb , to 100 lb . per cub. ft. ; river Thames sand, from 91 lb . to 102 lb . river sand, 117 lb . to 118 lb ., etc. Thus, with sand at 901 lb . per cub. ft., $34 \frac{1}{2}$ tons will be required; with sand at $1001 \mathrm{~h} ., 38 \frac{1}{2}$ tons; with eand at $112 \mathrm{lb} ., 43$ tons; and with sand at $1171 \mathrm{~b}, \mathrm{i} 45$ tons. About 8 tons of water will be required for slaking and mixing; there will result from 45 tons to 55 tons of mortar, varying both according to the weight of the sand used and the consistency to which the mertar is mixed. The exact weight can only be aecertained by experiment.
Enlarging Photographs without a Camera, The best enlargements are made by utilising a room as a camera. The window should be blocked up with a screen in which should be cut an opening just large enough to be covered by the reversing back of the camera; outside the window, fix, at an angle of 45°, a white board or other reflector, which should be about three times the diameter of the reversing frame, but if the window has a clear view of the sky, the reflector may be dispensed with. Adjust the camera against the opening, with the lens pointing into the room, and insert the clide containing the negative, both shutters being drawn ont. The picture should be focussed on a sheet of white paper or board placed on an upright easel or other support, the easel being moved and the lens racked out until the proper focus is obtained. Then cap the lens, place the bromide paper in position, and axpose.

Autograph Moulds for Rubber Stamps.-To get a

 satisfactory mould, great care in all the processes is essential. Coat a piece of flat metal plate evenly with melted beeswax to a depth of about $\frac{1}{2}$ in. Before this has got quite hard write slowly what is required; make the pencil or stylus penetrate to the metal, quits throngh the wax, from end to end of the autograph. Clear out any shavinge ol chips of wax that may clog the writing. Sift some plaster-of-Paris through fine muslin ; dry the powder in an oven, making it hotter than the hand can comfortably bear. Grind it up with a pestle and mortar to remove all traces of lumps, then sift again. Replacs in the mortax and add enough water to make a thick cream, using the pestle to get thorough mixture and to leave no unwetted powder. Pour the cream upon the wax autograph and pat it with a light stick, so as to force the cream into the grooves of the writing. When the cream has set quite hard there should be a perfect facsimile. A similar procedure will obtain the true mould from the plaster facsimile.Ink Eraser.-One kind is made by dissolving 1 part of oxalic acid in 10 parts of water. Another kind can be made by adding 1 part of chloride of lime and tis part of strong acetie acid to 10 parts of water. Oxalic acid is a powerful poison, and should therefore be handled carefully. Chloride of lime solution should be kept in small closely stoppered bottles.
Thermo-electric Piles.-The simplest form is shown in Fig. 1. It consists of a number of strips, say of bismuth and antimony. These are joined, and alternate jnnctions, as 1,3, and 5, heated as shown, while the other junctions are cooled. The action is very weak; for instance, for a single pair of these metals the electromotive force is only about 120 microvolts $\left(\frac{120}{1,000,000}\right.$ volt $)$ per degree centigrade difference of temperature between the junctions. Even this electro-motive force is lo wered

FiG. 2
antimony and lead the potential difference is the difference between ${ }^{0} 000068$ and 0 , or 000068 volts. The physical conditions of the metals have much effect on the voltage; thus, hard platinum is thermo-electrically negative to sol't platinum. A section ol' Clamond's thermopile is shown in Fig. 2. The elements consist of block A, of an alloy (two parts tin and one part zinc), and arms of sheet iron F. The latter project and offer considerable surface to the air, so that the joints numbered 2, 4, 6 , etc., to 20 are cooled. The inner junctions 1,3 , 5 , etc., to 19 are heated, an earthenware cylinder with holes across it allowiur coal-gas jets to play on the joints. Five such layers were used. Another form of Clamond pile is shown by Fig. 3. In this the hot gases from a coke furnace F pass up through the flues $T, 0$, and P, and out at the chimney at A. The elements are shown at c; while copper radiators D attached to the outer junctions, but insulated from them, serve to increase the difference of temperature. It is said that from a battery with 3,000 couples the total slectro-motive force obtained was 109 volts, the internal resistance being 15.5 ohms. The temperatures of the junctions were not stated, but 11 lb . of coke was burned per hour.
Pendulum and Rod for Dutch Clock, - The pendulums of Dutch clocks only weigh an ounce or two, and the bobs are ursnally made of turned wood about 2 in . diameter and $\frac{1}{2}$ in. thick. The rod is of

Fig. 3

Thermo-electric Piles.
by the "Peltier" effect, and the piles are racked by stresses due to expansion and contraction. The following table gives particulars of the thermo-electric properties of some metals, the electro-motive forces given being those obtained by junctions of the particular metal with lead, the difference of temperature being $1^{\circ} \mathrm{C}$.

Mrituls.	Electro-motive Force.	Metals.	Electro-motive Force.
Bismuth ...	+ ${ }^{\text {c }} 000068$ volts	Lead	
Nickel ...	+ 000024	Copper	- 00000017 volts
German!	+ ${ }^{+000015}$	Silver	- 00000029 "
silver ${ }_{\text {a }}$	+ +00000006	Zine	- '0000035
Tin ${ }^{\text {Aluminm }}$	+0000006 +0000001	Antimony	- 0000015 "

The current flows from the metal that is higher on the list; thus, comparing bismuth and antimony, from the first to the second. The value of the electro-motive force for any pair of metals is the algehraic difference of the numbers given in the table; thus, of bismnth and antimony it is the difference between +000068 and $-\cdot 000046^{\circ}=\cdot 000068+\cdot 000046=\cdot 000114$ volt, and between
iron wire, hammered flat at the top end and turned over into a hook. This is hung on a wire loop at the back of the clock for a suspension. The usual length.is from 24 in . to $28 \mathrm{in}$. One shonld be made full length, and then shortened until correct. There noed be no regulating nut, the wooden bob merely sliding on the wire rod friction tight.
Colouring Matter Used for Gelatine Photographic Films, - The colouring matters used depend on the purpose for which the plates are required. Eosine, alizarine blue, ceruline, etc., are employed. Eosine is generally used for isochromatic plates. This colour generally used for isochromatic plates. do in direct sunlight, but would not do so in the fraction of time required for exposure.
Dry-cleaning Valencia Waistcoat. - To dry-clean a striped Valencia waistcont aud lining, cut 2 oz . of Sunlight soap into shavings, and pour over it $1 \frac{1}{2}$ pints of boiling water in which is placed a small piecs of alum. Beat this into a lather and leave to cool. When cool it wlll be the substance of a jelly. Apply this to the waistcoat with a close sponge; do a few squar's inches at a time. With another sponge, wash off the substance with a vel'y little tepld water. Then squeeze the water from the sponge and dry the matierial. Repeat this process till the vest is finished. Then hang it up until thoronghly dry, and dry-press.

Lining Out Cart Wheels.- When lining out a cart wheel oue of the best ways is to tilt the horse back, by putting a block underneath the front part, to any angle required (heing careful not to overdo it, or wheel and horse will overbalance), then gently revolve the wheel, gauging the lines on in the usual manner. By this method thers is not so much chance of getting jumps in the lines as when done on a box. The fronts of the gpokes can also be done when in this position; the stock should be done with the wheel on the horse in its ordinary position. If, after lining the surface, it is uneven, take bome glasspaper and cut down the ridges caused by the lines, and give another coat of paint. 'the prices of colours vary according to quality, but for experimenting a green ls, best; this can be mixed to so many shades, and various colours in lines blend well with it.
Making Opaque Coloured Glass.-Opaque glass or enamel may he made by adding white insoluble substances to the ordinary flint or soda glass while it is in a melted condition. Bone phosphate or bons ash and barytes are most commonly used, but cryolite, white arsenic, and oxide of antimony are also employed. To render the glass dull, add to it' as much as possihle of either bone ash or barytes consistent with proper working and to keep the temperature high while it is stirred into the glass. The colours used are the same as for transparent glass, but more colouring matter is required to give intensity on the white base. For blues, cobalt oxide, smalt, or black oxide of copper are employed; for violet, oxide of manganese; for ruby, oxide of gold, suboxide of copper; for emerald green, copper oxide and oxide of iron, chromium oxide (chrome green) ; for yellow, uranium oxide, oxide of antimony, etc.

Ink-pad for Rubber Stamp.-To make a pad, cut from the lid of a cigar-box a piece of wood of the desired size. Upon this place several thicknesses of bheet-cotton cut to size. A stretch of fine woollen cloth and a top or surface of linen (a piece of au old handkerchief is excellent) is now put on. The two latter coats must be long enough to come well over the wood round the edges. Finally, tack on a hinding of leather or tin. If a lid of a tin is handy, it is a good plan to make the pad to fit into it.
Making Painters' Knotting.-To make a gallon of knotting, as nsed for painting knots in new wood mork, z lh. of powdered shellac is dissolved in $1 \frac{1}{2}$ gal. of methylated spirit; to do this, place it in a warm place, and frequently agitate it. Made this way, it will require shaking up before being used. This is the patent knotting of commerce, to which, however, something is added to keep the shellac in solution. It will not pay to make it, patent knotting being much superior. Where patent knotting is not available, French polish will answer the purpose of stopping-out the knots.
Length and Weight of Clock Pendnlums.-Thers is no rule as to the weight of a clock pendulum; it is regulated according to the quality of clock. The best clocks carry the heaviest pendulums. Weight doss not affect the time of vibration; that depends solely on the length. There is no formula for determining the friction or resistance to the air of a pendulum. To find the length of a pendulum for any given clock, first find the number of vibrations it is reqnired to make in one minute, and then find the length of a pendulum making that number either from a table or by calculation. To find the required number of vibrations per minute, multiply together the numbers of the teeth in the centre wheel, third wheel, and 'scape wheel. Divide this by the numbers of the third pinion and scape pinion and 30 . Thus, suppose the centre wheel is 64 , third wheel 60 , pinion 8 , 'scape wheel 30 , pinion 8 , then $\frac{64 \times 60 \times 30}{8 \times 8 \times 30}=60=$ number of vibrations per minute. To flnd the length of the pendulum making this number of vibrations per minute, divide $375 \cdot 4$ by the nunber and square the result. Thus $\frac{375^{\circ} 4}{60}=6 \cdot 26$; this squared $=39^{\circ} 18$, which is approximately the length of the seconds pendulum in England.
Pipes Required to Heat Drying-room by Steam.The quantity of pipe required depends on the pressure of steam availahle. With a low pressure, say 10 lb . per square inch, to obtain 150° Fah. 150 sq. It. surface of steam pipe per 1,000 cub, ft^{2}. of space will be wanted. The room has just over $10,000 \mathrm{cub}$. ft. of space in it, and therefore requires $1,500 \mathrm{sg}$. ft . of heating surface, or, say, $2,850 \mathrm{ft}$. of 2 -in. pipe. This is supposing the ventilation to be free. With high-pressure steam, considerably less pipe will suffice. A single 2-in. pips all round would scarcely suffice to heat the room 55° without the full degres of ventilation that is needed in drying-rooms. Wrought-iron pipe should be used.

Dyeing Light Cloth Black.-Put 10 lb . of logmood and 31b. of bruised galls in 3gal. of water; boil for two hours, and atrain. Place the coat in the dye, and allow it to remain for half an hour. Taks it out, and add about 2lb. of copperas. Replace the garment, and boil till the dys has thoroughly impregrated it: the tims this will take depends on, among other things, the quality and original colour of the coat. Remove it, and hang up for an hour ; then rinse it twice, or three times, in cold or slightly warmed water, and dry. sometimes a garment requires a second or a third dipping. Finish by pressing into shape. Common or old cloth wlll not etand much boiling, and pure woollen goods have to be treated with extreme care.

How to Preserve Blown Eggs. - To prevent birds' eggs cracking or crumbling after they are blown, well rinse them out with corrosive sublimate dissolved in spirit of wine (a few grains to the ounce); this is a deadly poison. Insert a small quantity into the egg by means of a glass egg-blower with a bulb, then shake the egg so that the solution comes into contact with all the inside skiu. Now draw the solution out of the egg by the blower, and return it. to the bottle. Now place the egg with the hole resting upon blotting-paper, so that the last drop or two may be drawn out, and finally cover the hole with a small piece of gummed paper. Water containing a few drops of oll of cloves may be used in place of the sublimato if desired.

Concrete to Cover a Brick-paved Floor.-The materials ussd should be broken bricks, clean sharp sand, and Portland cement, in the proportions of 6 parts aggregate to 1 part cement. An area 16 ft . by 14 ft . by 2 in . contains 34 cub . ft., or about $l^{\frac{1}{4}} \mathrm{cub}$. yd. The quantities required will be about 1 cub. Jd. of broken bricks of the slze of a walnut. 1 cub. Jd. of sand, and ss cnb. yd. of cement, or say about 7 cwt . Thege materials should be well mixed together in a dry state, a minimuin quantity of water applied from a water-can with a rose nozzle, and carefully laid to the desired level, being worked with a trowel until the cement creams on the, surface and the whole is even. Only a small quantity shonld be wetted at one time, and befors a start is made the existing brick floor should bo well brushed with a stiff brush, nntil all dirt, moss, etc., is entirely removed and the bricks are clean.
Cream-coloured Paint for Tablo Ollcloths. - For a paint for table oilcloths, try white lead or zinc white ground in oil, with 4 oz. of patent driers to the pound, and enough boiled linseed oil to make it flow. This paint should be applied in a warm room and dried rapialy while bung in a room beated by flues running along the floor. The cloth ehould previously be coated either with a, thick boiled starch or with glus siza.
How to Maka Sarsaparilla Beer.-Dissolve lioz. of compound extract of sarcaparilla in 1 gal. of hot water, and when the solution is complete stir in 2 lb . of moist sugar. When the liquid is lukewarm, stir in a wineglassful of brewer's yeast and keep in a warm place overnight. Next day, skim off the yeast, strain the liquid, and bottle ; tie down the corks, and leave for a week to become brisli. Instead of the extract, flb. of sliced sarsaparilla root may be used, but this will have to be boiled with the water; 1 oz . of liquorice root and $\frac{1}{2} \mathrm{oz}$. of aniseed added to the beer are considered by some an improvement.
Ebomising Pine.-To ebonise pine, take 1 gal. of water, 1 lb . of logwood chips, $\frac{1}{3} \mathrm{lb}$. of copperas, $\frac{1}{3} 1 \mathrm{lb}$. of extract of logwood, 2 oz . of indigo blue, and 2 oz . of lampblack. Put into an old iron pot and boil slowly. When cold, strain through canvas, then add $\frac{5}{2}$ oz. of powdered nut galls. Or take 1 gal. of vinegar, 2 lb . of extract of logwood $\frac{1}{2} \mathrm{lb}$. of green copperas, 2 oz. of China hlue, and 2 oz. of nut galls. Boil over a slow fire. Give at least two coats with. an old brush. When dry, intensify the black by brushing over with iron solution, mads by steeping a good hand ful of iron filings or rusty nails in $\frac{3}{3}$ pt. of vinegar; smooth down with glasspaper, then fill in the grain with a filler made of finely crushed whiting, lampblack and turps made into a stiff paste; finish with polish-to make which add to 1 pt . of methylated spirit 4 oz . to 6 oz . of best orange shellac and $\frac{1}{2}$ oz. of black aniline spirit dye.
White Ground for Drawing Beards.-To obtain a white ground on drawing hoards so that drawings made with charcoal and coloured chalks may be easily rubbed out, mix dry white lead to a stiff paste with gum arabic dissolved in water; add water till it works easily, like paint. When applying it, either stipple it with a hoghair brush or cross and re-cross it till no brush marks are seen. A little of the white should first ba tried on the corner of the board. Let it dry, then rub the fingers over it. If it rubs off on the fingers, add more gum; if it shines, there is too much gum. To dissolve the gum, saturate it with water and stand in a warm place.

Matt Surface on Photographic Prints. - To obtain a matt surtace on photographic prints, matt P.O.P. should be used, thig giving the finest lesults. But a matt surface can be given to an ordinary glazed print by squeegeeing it on to the rough side of a plece of ground glass, the moda of procedure being the sameas thet for producing a highly glazed eurface on ordinary glazed P.O.P., substituting ground glass for the ordinary glass or other pollshed surface.
Determining Power of Engine from Indicator Diagrams. - To calculate the horse-power of an engine from diagrams, each diagram should be marked off, as shown, by ten lines perpendicular to the atmospheric line $A x$, The extremities of the diagiam are marked on the line al and the distance between divided into twenty equal parts, perpendicular lines being erected at the first division, third division, fifth division, and so on. The diagram cuts each of these lines in two points, and the distance between these points should be measured to obtain the effective pressure shown by the card at that line. This, however, is not the effective pressure on the piston at that point in the stroke; to ohtain this the two cards, front and back, the stroke; to ohtain this the two cards, front and back, deducted from the forwand pressure shown on the other. This, however, has no effect in the mean pressure as obtained below. The pressurg as obtained from the diagram depends on the spring used. On cards with which a spring is used a length of lin. shows a pressure of ${ }^{*}$ ' 401 b . per square inch; so that a length of

Determining Power of Engine from Indicator Diagrams.

15in. on tha diagram would indicate a pressure of $15 \times 40=65 \mathrm{lb}$. per square inch. Owing to reduction, the actual scale of the illustrations is $\frac{1}{\text { An }}$, or $1 \mathrm{in} .=80 \mathrm{lb}$, per square inch. Meassured in this way, the pressures are, commencing from the left in Fig. 1, $68,80,60,50,40,32 \frac{1}{2}, 25$, 182, 15, and 101 b . per square inch, and, in Fig. 2, 105, 15, 20 , $25,30,35,45,55 \frac{1}{2}, 77 \frac{1}{2}$ and $72 \frac{1}{2}$. The mean of each of these is their sum divided by ten. Thus the mean pressure ehown by Fig. 1 is $\frac{399}{10}=39.9 \mathrm{lb}$. per square inch, and by Fig. 2 is $\frac{386}{10}=38.6 \mathrm{lb}$. per square inch. The mean pressure during the two strokes may therefore be taken at $\frac{39^{\circ} 9+38^{\circ} 6}{2}=39 \cdot 25 \mathrm{lb}$. per square inch. The horse-power may now he determined,
Flat-flame and Bunsen Gas Burners Compared.Comparing the heat given off by gas burnt in anordinary ga*burner and that burnt in a Buasen burner, Professor Lewesstatesthat aluminous flat-flame burner gives a temperatire of $2.462^{\circ} \mathrm{F}$., and an ordinary Bunsen flame a temperature of 2,732; F., while by increasing the quantity of air until the flame is on the point of flashing down the tube the temperature rises to $9,966^{\circ} \mathrm{F}$.; in teu experiments the amount of gas consumed is not' stated. A Bunsen burner consuming 4 cub. ft. per hour wili require about 36 cub. It. of air per hour, while the air would be contaminated to the same extent by both descriptions of burner, since the total amonnt of gas burnt and consequently the products of combustion given off would be the same in both cases. When the gas is mixed with too much air it forms an explosive
mixture. With regard to the proportioning of the gas and air bupplies of Bunsen burners, the information on this point is mainly due to the labours of Mr. T. Fletcher, F.C.S., the well-known gas-stove maker of Warrington, In a paper read before a meeting. of the Gas Institute in 1883, Mr. Fletcher states "that the mixing-tube [of a Bunsen burner] if horizontal should not be less in length than four and a half times or more than six times its diameter." With regard to the diameter of the mixing-tube, " with large fames, given a certain size of gas jet, the diameter of the mixing-tabe should not bg less than ten times as great." "Given a certain area of tube deliverlng a combustible mixture, the outlet for this mixtura must be neither more nor less than the size of the tube." "The variation from the rule, however, must be a matter of experience with each form of burner. There is also the fact that with small divided flames it is not necessary to mix so large a proportion of air, as each flame will take up air on its external surface. but in this case the flames are longer, hollow, and of lower temperature. As a matter of actual practics, where a burner is used which givesa number of separate flames or jets the diameter of the mixing-tube does not need to exceed eight times the diameter of the gas jet, the remainder of the air required being taken up by the surfaces of the flames." It will be seen from the foregoing that it is advisable to regulate the air openings according to the quantity of gas passing.

Cateh for Fastening Door of Street Lamp, The diagrams show a catch suitable for a large lamp. Fig. I is a front elevation of the angle iron

Catch for Fastening Door of Street Lamp.
forming the bottom of the door, with a small rectangular box riveted upon it, in which a flat bolt is arranged, so as to slide up or down. Fig. 2 is a plan of the T and angle iron, box with slot in top and opening at bottom, and also an iron plate liveted on the underneath side of T-iron, a slot being cut in this for the bolt to slip into to fasten the door: Fig. 3 is a section on the line A B, showing the position of bolt in box, and projecting plate on T-iron with slot for bolt to enter.
Use of the Box Saxtant in Surveyiog.-The box sextant is an instrumeut about 3 in. in diameter, to be held in the hand, for ascertaining approximate angles between any given stations. It is made with or without a telescope, and is in geueral appearance like Fig. 1. An enlarged diagrammatic plan is shown in Fig. 2, where A is the sight hole of the telescope: B is a fixed glass, the lower half silvered and the upper half plain; C is a milror attached to the same pivot as the Vernier arm D. The side of the case is open at \mathbf{E} and F to admit the lays of light from the observed objects. The required angles may be between station poles, church spires, or any other deflnite lines or points, Suppose a single pole be looked at, the angle indicated should be 0° or zero; whether it will actually be so or not depends upon circumstances which the follow ing remarks will explain, Suppose a pole to be fxed at G, which, bearing in mind the scale, would be abnormally close, it can be seen through the clear part of the glass at B on applying the eye to the sight hole at A. At the same time the rays of light from the pole G will be streaming in all directious, and some of them will pass along the dotted line direct to the mirror 0 , and, when the vernier arm is placed in the position ehown by the dotted llne, the rays of light will be reflected to the silvered part of the glass B, and from thence to the eye at A, the appearance being as of one continuous pole
down the two parts of the glass. If the vernier be now examined, it will he seen that the broad arrow falls short of the zero of the scale owing to what may be called the width of hase line of the instrument. If the pole be placed farther off as at H, the rays of light following the stroke-and-dot line will require the vernier arm to be shifted rather nearer the zero of the scale; hut until the pole is at a distance of two chains from the observer there wlll be a similar error of less and less

How to Use the Box Sextant.
amount. Between two ohains distance and an infinite distance the rays of light from the pole to B and C are now so nearly parallel that the error is under one minute of are, so that the instrument can be used without difficulty under those conditions. It is usually adjusted hy sighting it to the aun, which should appear through the smoked glass as a perfect aphere in whatever way the sextant may be held when the vernier is at zero. When an angle is to he taken at one station and between two others, the nearer station should be viewed through the plain glass, so that the sextant may need to be held upside down. When the angle to be read exceeds 90°, an intermediate pole should be set up and the
angles taken in two portions, as in viewing large angles the mirror o is moved so far round that its reflection, and that of the image it carries, is viewed almost edgeways in the mirror at 5 . The vernier arm is moved by means of a milled head screw on the top of the case. It should be noted that the box sextant only gives angles in the plane of the instrument, so that if the stations ohserved are not on the same level, the angle given will be the direct angle between them, and not the hori, zontal angle such as would be given by a theodolite.
How to Make an Everset Photographio Shutter,A shutter suitahle for use with a single lens at the diaphragm (as employed in the bull's-eye kodak, and shown complete at Fig. l) may be made as follows:-Cut thin hrass or zine to the shape shown by Fig. 2. The centre part A is punched in, and upon it the shutter or circle turns. The projectionsare tuined up, and the part B, after heing pierced and cutround, is turned up on the dotted line. Now cut the releasing arm (Fig. B) in the metal, bending in the dotted lines to the form J. Note the slot L. Around the screw or pin fitting the ecrew hole M

How to Make an Everset Photographic Shutter.
goes one end of the steel wire shown in Fig. 1, which passes from it through 0 across L, and very loosely through the large hole in B. The fixing of the shutter is shown in Fig. 1 , and when attached to the camera front by a broad-headed screw through D and another at Z, the catch \mathbf{P} is fixed in the correct position. Through the arm the wire pulls the shutter round when out of the way of projection Q or G. As the shutter stands away from the front, space is left for the diaphragms hetween it and the lens. These consist of three holes formed in the triangular plate R worked by the arm S and guided by the semicircular piece T . The position of the first and last diaphragm is governed by the slot 0 , but the middle one is centred with the lens by having a dent η^{12} in R , which receires a similar projection (the under part of the dent) in T. For time exposures the arra V (Fig. 1), also shown at Fig. 4 , is lifted, the slot W passing around the serew X, and when raised it meets the projection F, and, on pressing the release in the opposite direction, it returns. Projections H and I then come into use. The method of bending the arm may be gathered from Fig. 1, which shows the shutter set for an instantaneous exposure, it having travelled halfway.

Method of Hinging Screen Frames,-It is often difficult to decide which is the beet and cheapest way of hanging screen frames. A screen should be hinged so that it will close both ways, but the expense of the double folding joints made specially for that purpose is too great to admit of their frequent use. The following describes a cheap, simple, and efficient substitute. Assuming that the irames are ready for hanging, and that the screen consiste of four frames, there will be three separate hanginge, which will require six laths laced together in paire, as shown. The laths should be sawn out of a $\frac{1}{3} \cdot i n$. board the full height of the frames, and if the thickness of them is $\begin{gathered}\text { Enn., the laths ghould }\end{gathered}$ be it in. Wider, to allow the screen to close flat together without any strain. Gauge and plane up the laths both in width and thicknese, neatly finieh off the ends so thatall of themare exactly the same length, and, to prevent the sharp edges cutting the tapes, rub them well off with sandpaper. They are now ready for painting, staining, varnishing, or polishing, as may be preferred. When they are dry, proceed to put on the tape, which may be got in various colours from ${ }^{3}$ in. to 1 in. wide ; about 3 yd. will be required for each pair of laths. Mattrese hinding is good; being made of linen it does not
hot water till the print blistere bady, when the paper may be etripped away. If the water is too hot, the gelatine will melt. Great care must be taken not to move the print, which abould be laid flat; and when dry a coat of copal varnish should be applied, and the article baked. It will then etand careful washing.
Boring a Railway Tunnel from Both Rinds.-In the construction of railway tunnels it is usual to work from both ende, and sometimes from intermediate points also. The line of route ie laid out on the surface to facilitate observations undergrouud; but if this is impossíble the extreme points have to be connected by accurate trigonometrical eurveys and exact levels, so that their relative positions are precieely known. The centre line at formation level is then accurately set out by theodolites and standard chains, a smaller heading being driven in advance of the main tunnel, so that (apart from facilities of construction) in the event of a clight error in meeting the heading from the other ead, the direc. tions may be adjusted.
Garden Tripod Stand for Telescope.-A cheap equatorial etand that does not require much lathe work in its construction must have an axis on which to

Garaen Tripod Stand for Telescope.
rotate, to provide the horizontal motion; the vertical motion being provided by a metal clasp having two trunnions, which rotate on wooden uprighte provided with V-bhaped bearing6. This mounting is supported hy a wooden tripod stand similar to the ordinary camera stand, though, of course, more substantial and rigid It can therefore be used either indoors at an open window or in the garden. In the tripod shown in Fig. 1 the three legs are boltcd to a wooden base and provided with three cheeks for the purpose Under the base, about halfway down and connecting the three legs together, is a cort of a double joint, which iolds upward when the etand is not in use. When open, this drops and keeps the legs stationary. Above the base, and glued and screwed to it, is a circular, cyliudrically shaped block having a hole through its centre to receive a female cone ol' metal. A recess in the block receives the shoulder at the top, which is then screwed down to the block. This cone is chown in section at A (Fig. 2). A cone, shown at B, ie similarly screwed to the oblong etage of wood above the block, to which the uprightis are screwed. The two centres are ground together, and, when fitted accurately, are held together by a screw and washer at the ends. The uprights, shaped as in the illustration, carry the clasp by ite trunnions, the clasp being screwed around the body tube of the telescope. The clasp is a metal casting about 2hin. deep, with two circular trunnione and two rectangular wings. This is shown in elevation and plan at Fig. 3. When the hole has been turned to fit the tube, and the trunuione turned exactly equal to each other in diameter and fltted between the uprights and to the V'e on them, the rectangular winge are drilled for four screwe, two at each wing. The ring is then eevered into two halves, the saw cutting through the winge, some blotting paper is then pasted in the curvee of each hall, to prevent the distigurement of the lacquer worl on the body tube, and, when dry, the clasy is acrewod together around the tube. In this way the two horizontal and the vertical motions are supplied.

Time for Photographic Exposures.-All photographic exposures being somewhat in the nature of an experiment, because of the ever-varying conditions of the atmosphere, it is possible only to give approximate times. Over-exposed plates may be corrected hy careful development; but a very much underexposed plate is past remedy, and a slow plate is more easily dealt with than a fast one. As a rough guide to a beginner, exposure meters may be of service, but, if followed too slavishly, they may provs worse than useless. The following is the minimum exposure for June, $11 \mathrm{a} . \mathrm{m}$. to 1 p.m.:-Clouds, $\frac{2}{6} \mathrm{sec}$; sea and sky, open landscape (distant objects only), $\frac{1}{8}$ sec.; buildings (well illuminated), $\frac{1}{2}$ sec.; groups (light dresses), $\frac{1}{3}$ sec.; groups (dark and heavy contrast), 1 sec. It is impossibls to classify interiors as light and dark to be of any use. The only pructical plan is to make a trial exposure and develop the plate. If it is impossible to develop a trial plate, make several exposures of different lengtis. In all exposures the colour of the light and the degree of contrast iu the subject and that required in the picture must be taken into account. It may here be mentioned that one would hardly attempt clouds, sea, or sky in the middle of the day. Bear in mind the old rule, "Expose for the shadows, and let the lights take care of themselves."

Clockworl Metronome. - To make a clockwork metronome, a pendulum must be employed. The usual arrangement is to have a short lead boh pendulum, about 3 iz. long, pivoted upon an arbor. The rod is extended ipwards, and this upper portion is fitted

with a sliding weight to adjust the speed. The higher the top weight is raised the slower the pendulum goes. The escapement is shown in ths accompanyiug sketch. The scape wheel teeth are straight pins, and they rest upon two flat steel discs fixed on the pendulum arbor. These discs are cut, and the edges bevelled off, to give the impulse alternately in each direction. Thus, one of the pins of the 'scape wheel falls upon the face of disc a and, passing the bevelled edge, gives the pendulum an impulse to the right and falls upon the second disc B. As the pendulum returns, this tooth gives impulse, by means of the bevel on B, in the opposite direction to A, and the next'scape tooth falls upon A, and so on. An American drum-clock train will do. The 'scape wheel must be taken away, and the next wheel before it converted into a'scape wheel by breaking out some of the teeth, leaving one in every three, and bending them forward a little.
Protecting Isposed Water Mains from Frost.There are incorrect ideas as to how a bad heat-conducting material protects pipes from frost. Water absorbs and holds heat, but the heat is readily dissipated, or radiated, or becomes absorbed by cold air or substances with which it comes in contact the consequence being that its temperature is reduced below 32° aud the water thatits temperature is reduced below heat-conducting material is to form a barrier to this heat transference, so that should the water be, say, 50°, the air and gensral surroundings can be much lower in temperature without reducing the heat of the water in any marked degree. The covering, therefore, does not afford any heat whatever, but prevents heat passing throughit. Coverings however, to be as effective as this would require to be of materials which are perfect non-conductors of heat, and this is not as yet possible. There are some very effective bad conductors, almost non-conductors, and the two best are undoubtedly hair felt and silicate cotton (slag wool). Both vary in effectiveness according to the thickness of the covering. If hair felt is used it can be in., but $\frac{3}{3}$ in. is better for good work. It should be cut
in strips and be wound on the pipes soundly; but it is best not to bind it on too tightly afterwards. It should be secure, but not compressed. The silicate cotton is usually a loose material, and requires to be placed in a casing. It can, however, be obtained sewn on to canvas. Probably any one of the patent compositions used for jacketing steam hoilers would answer the purpose. The coating should afterwards be lagged with narrow boards secured with iron belts or hands, or be covered with canvas and painted, tarred, or otherwise protected from decay through damp or by atmospheric corrosion.
Simple Method of Copying Negatives for Lantern Slides. - The following is a simple way to make lantern slides by reduction, the ordinary camera and lens being used, supported preferably on a table:-First make a carrier to hold the lanteru plate in the dark slide by tongueing together, to form a frame, two pieces of $\frac{1}{6}$-in. wood 4 in. by $1 \frac{1}{4}$ in., and two similar pieces $6 \frac{1}{2} i n$. by $\frac{3}{4}$ in. Rebate the inner and outer edges on opposite sides 1 in. Thoroughly clean a window pane and place the negative for reduction (A) film towards the camera iu one corner. Fasten in position safely with two drawing pins. Outside the window D suspend at an angle of 45°, to act as a reflector (c), a sheet of white cardboard at least four times the aize of the negative. Fasten at the hottom and attach string to the two top corners. In a large sheet of hrown paper B cut a hole A just large enough to expose the whole or the desired portion of the negative. Pin this up and fasten curtains across the top of the window. Build the camera up level with the bores, focus very sharp, and

Apparatus for Making Lantern Slides.

expose as usual. The centre of the plate must exactly coincide with the centre of ths negative, and the corners should all he equidistant, otherwise the lines will be distorted. No special lens is required. When a clear view of the sky is obtainable, a lidless box, having an opening in the bottom capable of receiving the negative and corner pieces to prevent it falling through, may bs attached to one end of a board; at the other end is the camera. The board at the box end is fastened to the window sash with eyes; the other end is suspended with string so that the negative points to the clear sky and even illumination is ensured.
Making Wax Candles.-Wax candles are made in machines cach capable of moulding fifty or one hundred candles at one time. The machine is simply a framework holding a large tray having a number of circular holes. Under each of these holes hangs a candle mould with the point downwards. The wicks are wound upon bohbins below, drawn through the points of the moulds, and then stretched tight by fixing to a frame above so that they pass up the centres of the moulds. Surrounding the moulds is a trough. The molten wax is poured into the tray, from which it falls into the moulds. Cold water is then run into the trough, and the wax immediately solidifies. The excess of wax in the tray is removed by a scraper, and the frame carrying the wicks is raised so that all the candles are drawn out of the moulds. The wicks are then cut and the process repeated. The waxes used are paraffin wax, composite (paraffin wax with 5 to 15 per cent. stearic acid), cerasin, etc.
Colouring a Molacca Cane.-To colour a malacea cane, mix soms spirit aniline dye in thin spirit varnish. Bismarck brown yields a rich red; yellow may he obtained in various shades, but must be very strong in order to gain a good colour, unless the upper surface of the cane is removed by the aid of No. 1 glasspaper. The cane may be finished with clear spirit varnish, though better wearing results would be gained by a thin, even coat of best quality coach varnish.

Properties and Use of Ploric Aold. - Plcric acid ls formed by the qutiou of vitric acid upon phenol (carholic acid). Picric acid is a pale yellow cryatalline substance sometimes used in dyeing, as it ylelds a fine pale yellow upou silk. It is principally used in the preparation of soms of the "high" explosives. It does not explode by applying a light or by friction, but when a strong detonating cap is exploded in a cart ridge of picric acid, the latter is caused to explode with terrific violencs. The combinations of picric acid with soda and potash are amonget the most powerfnl explosives, but as they sometimes explode spontaneously, they are rarely used.
Small Cart for Pony.-A cart suitable for a pony from 11 to 12 hands high is shown below. The length of the body is $4 \mathrm{ft}^{2}$. at the bottom and 2 ft .6 in . on the seat. The bottom panel sides are $10 \frac{1}{2}$ in. deep under the seat and 7 in . at the front. The front board is 8 in . deep. The top sides are $1 \mathrm{f}^{\prime} t$. deep, and are bent over sharp at the top, each being fastened with two halfround irons in addition to being screwed from outside to pieces that the seat slides on, which, with a cross-bar, are of birch or oak lin. thick and 3 and wide before being
with a bright negative in the printing frame, and expose fully to a good light. Immerse for from firteen minutes to half an hour in a Bolution containing 25 gr . of Rochelle salt and 25 gr . of borax to 1 oz . of water. This gives a black image. By decreasing the borax to 9 gr . and adding three drope of hydrochloric acid, a sepia picture is obtained. Transfer for ten minutes to a l-per cent. solution of ammonia, then wash for half an hour, and the print is finishad. Ferric oxalate may bs made as followe: Add to 2 oz . of ammonia iron alum, in a 20 oz . measure, 1 oz . of strongest liquor ammonia with 1 oz . of distilled water. Stir well and allow the precipitate to fall. Wash by decantation till alkalinity disappears ; then add 1 oz . of crystalliged oxalic acid, and make up to the desired strength with dietilled water. Feritc oxalats purchased of a chemist should be tested Feric oxalats purchased of a chemist should solution of potassium ferricyanide, when, if it has changed to the ferrous state, it will throw down a dense precipitate of Prussian blte.
Waterproofing Canvas.-To make "chemical "canvas prepare two batis, one containing 11 b , of yellow soap in a gallon of warm water, the other containing llb.

Small Cart for Pony.
dressed. These bent sides can be made of sin. walnut finished in plain varnish, and give a nice contrast to the black japan on the bottom pauels; a piece of wide wood bead, having a strip of plated bead fastened along the centre, going over all. The bottom of the body is 3 ft . wide, and may be made either quite square or if preferred, spread out each side $1 \mathrm{in} .$, when 2 ft . 10 in . will be wids enough for the bottom. The bottom boards are l-in. deal. The simplest way of putting the cart together is to screw a batten along inside either cart together is to screw a batien along inside elther of 1 hind ash at back and front, and underneath all is nailed a couple of pieces of hoop-iron. The elliptic springs are 3 ft. long, with four plates $1 \frac{3}{3}$ in. wide. They are fastened to the body with angle-irons and blocks lin. deep by $4 \frac{1}{2}$ in long. The likin. axle is cranked 4 in. deep. The dash is 22 in . long and 15 in . high; winge, 6 in . wide, $\frac{3}{3}$ in. thick, and 2 ft .6 in . long; wheels, 3 ft. 6 in. high; ctocks, 7 in. by $5 \frac{1}{2}$ in. long; wheels, rit. diameter. There are twelve $\frac{1}{8}-i n$. spokes; felloes finish diameter. There are twelve live spokes; 10 linoes finish lan. wide by lit in. deep; tyres, li in. Wide. The shafts
are 4 ft .10 in . long in front of splinter-bar, and lit. 8 in . wide at tugs, which are 14 in. from points; they go inside the body, and are fastened in rubber bearings at the ront and with a long cross bpring at the back. II required rather stronger for rougher usage, have the ctock 6 in. or $6 \frac{1}{2}$ in, diameter, and spokes $\frac{1}{8}$ in. and felloes in, larger than the measures given. In this cass the springe might have another plate added with the epringe

Kallitype Procegs in Photography.-The Kallitype process of printing is the subject of a patent. It consists of first coating any fairly pure paper with a mixture of silver nitrate and ferric oxalate. The ferric oxalate is reduced to the ferrous state by the action of light, and thereby reduces the silver in contact with it, thus forming a visible image, which is simultaneously developed and toned, and afterwards fixed. Dissolve 70 gr . of ferric oxalate in 10 . of distilled water, and add 15 gr . of silvel nitrate. Brush this solution with a aponge or tuft or cotton wool well and evenly over the surface of the paper, and allow to dry; then place the paper in contact
of alum in a gallon of warm water. Pase the canvas through the warm eoap solution, and then through ths through solution. To obtain o very thick coat, put the canvas several times alternately through the two baths. Old canvas may be treated in the same way as new.
Advantages of Copper Range Boilers,-The lastIng quality of a copper rangs boiler an compared with an iron one, when used to heat hard water, is not worth the extra cost. The incrusted deposit that is the usual cause of boilers becoming destroyed in hard-water districts will make the copper plate fracture pearly as soon as it will the irco. An idea is preva. lent that by using a copper boiler the accumulation of deposit from hard water, and subsequent fracture of the boiler, are prevented or avoided, but this supposition is groundless: a copper boiler is at no leal advantage in haating hard water. In soft-water districts copper is largely used because iron will not long withstand the active rusting process that the soft water sets up. In such places copper boilers, copper cylinders, and lead, copper,' ol tin-lingd pipes have to bs used. The thickngss of the plate of copper boilers variss, for copper belng such an excellent wearing material (when water is in close contact on one side of it), the plate need not be thick, and tin. plate would bs ample if it were not that copper is soft and cannot withstand heavy water pressure, nor the blowe that the cook delivers against the boiler front with the poker: Therefore the usual thickness is $\frac{{ }^{1}}{}-\mathrm{in}$. body, with $f_{5}^{7}-i n$. or $\frac{1}{2}$-in. front-plate. If the boiler is large, and the water pressure exceeds, say, 40 ft ., then either thicker body-plate must be used, or brass atay-bolts must be placed across the body-plates. Brass or copper bosses must be brazed around the pipe holss, to allow of a sound joint being made; and, in hard-water distrlcte, it is important to remember to order a manhole large enough to insert the hand for cleaning. A Sin, hole and a 3-in. pligg are usually sent to make the manhole and lid, but this is too small. The cost varies with the market price of copper, but the boilers are usually something under le. per lb. Copper boilere, before they get beyond repair, should have a piece dovetalled in and soundly brazed.

Mounting Photographs.-Fill a large band basin or dlsh with water, and immerse the photographs in it for a. few minutes, allowing them to drain slightly after removal, and then place them with the image downwards on a sheet of glass. Lay over them a few thicknesses of blotting paper and roll out excess of moisture. Now brush over the top one with some Higgins' photo mountant or fresh starch paste, lift it carefully by the corners and lay in position, cover with fluffess blotting paper, and with a squeegee roll gently twice. If the photographs are to be mounted in an album, wet mounting may cause cockling, and in such case an alcoholic solution of gelatine should be used: Nelson's No. 1 gelatine, 1 oz ; water, 3 oz .: glycerine, 2 dr .; methylated alcohol, 10 dr . Dissolve the gelatine in the methylated alcohol, 10 dr . Dissolve the gelatine in the this case the position the print is to occupy is marked on the leaf; and, the print having been dried in contact with glass, a thin coating of solution is run rapidly round the edge of the print or within the line on the leaf with a small brush and the print rolled into contact. It is always advisable for a beginner to gain slinil and experience by practising on wasters or spoilt prints.

Crate for Carrying a Pig. - The accompanying drawing is almost self-explanatory. The size of the crate would depend upon the size of the pig, but about 4 ft .6 in . long by 2 ft . 6 in . Wide and 2 ft . 6 in . high will be large enough for any ordinary

Crate for Carrying a Pig.
3 in . square, and the lathe $2 \frac{1}{2} \mathrm{in}$. by $1 \frac{1}{2} \mathrm{in}$. The latter can be either mortised into the framing as shown, or the rails can be kept hack from the face and the laths nailed on. The roof should be of $1-i n$. tongued and grooved boarding, and the floor should be formed of 1 l -in. hoards laid with spaces of about 1 in . hetween them. One end of the crate should be made to open to form a door for the entrance and egress of the pig. Two emall iron wheels, say about 8 in. diameter, can be fixed, one at each side of the crate; a 4 -in. Wheel should also be mounted in the middle of each end. The crate would thus have four wheels, but would run on the two side ones only; the other wheels would prevent the crate from ploughing into the earth when the pig shifted its position.
Covering a Pulley with Leather.-A cement made au follows may be used with great success, both for covering pulleys with leather and on belt joints before riveting. The leather will tear before coming off, if carefully done. Make an extract by digesting 1 part of coarsely crushed nut-galls with 8 parts of rainwater, let stand for several hours, and filter through linen. Then pour 1 part of cold water over 1 part of best glue, let it stand for twenty-four hours, and heat to make a concentrated glue solntion. To use the above, warm the nut-gall extract, and coat the leather with it. Warm the pulley, which should be roughened, and coat with the plue., way the leather on the warm pulley, press firmly together, binding it tightly with cord.
White Coating for Model Boats.-Most makers of model boats have found that it is practically impossible to give a model a pure white surface by painting it in the ordinary way with zinc or white-lead. After standing a day or two it takes a Jellow or maybe a dirty white tinge. If the following directions are carried out in a careful and cleanly way, a pure white surface which will stand the teat of time and sunlight will result:-After the model has heen thoroughly glasspapered down, give it one coat of paint, made by mixing ordinary white French polish with flake white powder until it has the consistency of Ekimmed milk.

When this first coat bas dried quite hard, rub it down with No. 0 glasspaper ; dust the model and give it another coat of the same paint; repeat this process at least six times. Then give it another coat, but, instead of smoothing it with glasspaper, rub it down with powdered emery and water, neing a piece of hair-felt. Repeat this, and a heautiful white will be the resnlt. Do not varnieh it.

Air Vessels on Pumps.-The bottle-shaped air vessels are used to produce an even, uniform discharge from the pump, the action of the pump plangers being intermittent. Air is stored inside the vessel, and the water, after having passed through the delivery valve when the vessel is on the delivery pipe, compresses the air. When the planger makes the suction stroke, the air cushion acts as a spring and delivers the water. A suction air vessel should be nsed where the length of the suction pipe is great in comparison with the diameter and for high-speed pumps. The contents of the air vessels vary in different makes from three times to ten times the capacity of the pumps.

Grotesque Target for Shooting Gallery.-The illustration shows a front elevation of a novel shooting gallery target with the front removed. Make a square box, say 2 ft . square and from 4 in . to 6 in . deep; have a circular bole about 9 in . diameter in the centre of the box. Out a grotesque head of zinc from 4 in. to 6 in. in diameter; extend the shoulder and neck

Grotesque Target for Shooting Gallery.
downwards a few inches, having a pivot A of wood or iron through the neck, the bearing being at each side of the hox, so that the head will be in the centre of the box. Attach a piece of stout wire to the bottom of the neck piece, and, so that it owings as a pendulum in a slot in the bottom 0 , fasten a piece of lead B to the bottom. A bird or any animal may be made to worls the same as the head.
Making Angle Zinc.-To make angle zinc to be used for constructing an aquarium, after cutting the sheet zinc to the required width, mark it deeply with the scriber or cutter along the bending line on the underside. Then place the zinc along the flat side of a beck-iron or the edge of a hatchet-stake, and, keeping the bending line upon the tool edge, press hoth long edges downwards, commencing at one end and working along the zincuntil the opposite end is reached; then smooth down to the angle required with a mallet or dresser.
Pickie for Gun-metal Castinge.-The percentage of water to sulphuric acid to be used as a pickle for gun-metal castings depends on the counposition of the metal. Try by experiment. A pickle for the outer skin would be 10 of water to 1 of acid; leave in a few hours to remove eand, and finish hy dipping in aquafortis and swilling quickly in plenty of water. Dry out in hot sawdust; or dip in hot water and use cold sawdust. In the trade, old dilute aquafortis is used as a pickle for castinge, which are left in it overnight and dipped in strong acid afterwards.
Recharging Ints Pad of Typewriter.-A suitable ink may be made by dissolving 1 part of aniline black (soluble in oils) in 6 or 8 parts of oil of clover $b y a$ gentle heat; while still warm, apply it to the pad wiun w camel-hair hrush. Another ink mas be prevareá juy grinding together very carefully 1 part of gas black and 5 parts of oil of cloves; but to make the latter properly, a grinding plant is necessary. If the pad is worm. it is useless trying to treat it.

How to Start a Dynamo.-Before etarting a dynamo, examine it carefully to see that the brushes, Iubricators, etc., are in order. The machine may then be run at full speed for a short time, with the brusher off, to see that the bearings are in order. It should then be stopped and the brushes adjusted to their places on the commutator. The main switch may then be closed and the dynamo set running, the speed belng increased until the voltmeter or a pllot lamp shows that the correct voltage has been reached. Then, \&s the load comer on, the brushes may be shifted backwards or forwards, as may be necessary, for sparikless commutation.
Retouching Medinm for Photographic Negatives, - The simplest retouching medium is made by dissolving about half a teaspoonful of powdered resin in Ioz. of tarpencine. Add the resin a little at a time, shaking well. It will probably take about two daye to dissolve, but it should be shaken occaslonally. Apply with the ball of the finger, rubbing well with a circular motion until it resists. Take the supply from the top of the cork and not direct from the bottle. Avoid streakiness cork and not direct from the bottie. Avoid streakiness be bought ready made of all dealers in photographic requisites.
"Pavodilos" Joint in Flooring.-A sketch of the "Pavodilos" rebated joint as used in floor" boarde prepared for secret nailing is shown by Fig. l. It is patented, and the name is registered as a trade majk by the manufacturer of the joint. "Pavodilos" jointed flooring and matching is, however, turued out by other

"Pavodilos" Joint in Flooring.

firms who work under licence; and some specimens are worked as ohown by Fig. 2, which, although the Becond key is lost. may possibly be preferred on account of the danger, when nailing down the flooring jointed as in Fig. 1, of damaging the feather-edge of the board that is being fixed.
Securing Dowelled Work Together.-The holes for dowels should be made exactly opposite each other in each piece forming the joint. Then the dowel chould be accurately fitted in. When the work is ready for gluing up, the dowels should be glued in one part of each joint first, then the other part of the joints, dovels, etc., should be glued; the whole should then be quickly eramped up-that is, the jointe forced up close. Frequently it will be found advisable to leave the cramps on until the glue has eet or become hard.
Composition of Muntz Metal.-Muntz metal consists of 57 parts of copper and 43 of zille, or 60 of copper and 40 of zinc, or 66 of copper and 34 of zinc.

Determining Contents of Circular Tank.-A rule for finding the contents, in gallons, of circular tanks Is as follows: First find the contents in cubic inches and multiply by "0036, or in cubic feet and inultiply' by 6"23. The cubic capacity of a circular tank in cabic inches equals the diameter in inches squared (that is, multiplied by itself) multiplied by $\cdot 7854$ and by the length in inches. For the capacity in cubic feet, take all dimensions in feet. As an example, the contents of a circular tank 4 ft . diameter by 5 ft . high equals $4 \times 4 \times 7854$ tank $4 \mathrm{ft}^{2}$ dameter by 5 ft .
$\times 392 \mathrm{gal}$ (roughly).

Froportioning Rooms for Sound.-Wyborn's "Notes for Architects and Draughtsmen" gives the following rules for the proper proportions for a building in order that speaking from platform or pulpit may be distlnetly heard all over the room. For concert roome, etc., height 2, width 3, length 4 or 5. Example:-Free Trade Hall, Manchester; height $52 \mathrm{ft} .$, width 78 ft ., length 135 ft . For lecture rooms, etc., height 2 , width 4 , length 3 . Example :-Theatre of Royal Institution; helght 30 ft ., width 60 ft., length 45 ft . The hearers should not be at a
greater distance fiom the spealker, for convenient hearing, than 50 ft . in front, 30 ft . on each side, and 20 ft behind. No person should be farther than 70 ft . from the epeaker. The greatest number that can bear a speaker convenientiy is 2,000, arranged in two tlers. The end opposite the orohestra, or speaker should be semi circular, or have the angles rounded. The celling should be elliptical or coved, and there should be a bollow space beneath the floor.
Conerete for Foundations.- In gauging up concrete, burnt ballast, with or without clean brick rubbish, will make fair common lime concrete, but for good concrete there should be no burnt ballast, and the brick cubbish should be clean and hard. For cement concrete, stone ballast and hard briciss, broken to pass a 2 in. ling, would be euitahle. One of lime to five of the other materials, or one of cement to seven of the other materials, is an economical proportion. Burnt hallast, like a common place-brick, crumblen on exposure to the weather, and in damp foundations will in course of time go the same way; even in dry foundations it will not bear a heavy load.
Fitting Windsor Chair as Barber's Chair.-The following is a sketch that shows how to convert a windsor chair into a barber's chair. Make two brackets, as in Fig. 1, out of elm or other hard, tough wood, and bore a hole through the centre of one, as indicated by the dotted circle. Screw the colid one to the seat of the chair at the back, and the one with the hole bored in to the back of the top piece of the chair. The plain sides of the brackets must be sc fitted that when fixer the two mortisee are in a straight line with each other. Now fita piece of wood about 3 ft . Iong into the

Fitting Windsor Chair as Barber's Chair.
mortises in the brackets, so that it will slide easily up and down. Fix a cross-piece to the top of this, as shown in Fig. 2, and also bore holes up the middie at intervals of lin. To flx the sliding piece at the height required, an ilon pin is used; this should be connected with the top bracket by a $日$ hort length of chain. The cross-piece should be covered and padded.
Jonval Turbine.-This works by pressure, and may be drowned or connected to a suction tube. It is an axial or parallel-flow turbine, the water passing through the motor in directions parallel with the central shaft. The water enters a fixed wheel, and is guided into the movable wheel keyed to the shait, which rotates on a pivot bearing. To regulate the power of the turbine, a number of the guide passages are closed by a special casting, carrying a segmental rack worked by a worm. The efficiency of the Jonval turbine increases with the load.
Worling Cellulold,-To work thin sheet transparent celluloid into different shapes, it is pressed with heat in a hydraulic or other press or mould, and allowed to cool gradually. A French recipe ior non-inflammable celluloid concists in diesolving ordinary celluloid in acetone in about the proportion of 25 grammes of celluloid to 250 grammes of acetone, and diesolving pulverised magnesium chloride In alcohol in the proportion of 150 grammes of alcohol to 50 grammer of magesium chloride. Then mix the two colutions 80 as to obtain finally a pacty mass, coutaining, \quad ay, 20 grammes of the magnesium chloride for each 100 grammes of the celluloid. An uninflammable material, bimilar to celluloid, was invented in 1896 by Cadoret, of Paris, which be claims to be a substitute for indiarubber, celluloid, leather, oilcloth, linoleum, mother-of-pearl, tortoise-shell, amber, ivory, etc., and which is capable of being moulded, drawn, or madé into threads, audin the form of plates, tubes, and cylinders, or soft and silky threads resembling silk in appear'ance, and can be dyed in varioue colours. It has another peculiarity-that while the dies or lolle are cold, there is no polich on the surface of the rolled sheet or moulded article, but with heat and pressure the polish of the mould le giren to the pressed article. Thie materia, to which the name of "textiloid" has been given, can be made as transparent as glass.

Diminished Twisted Column.-In setting out and working a diminished twisted column for masoury, first set out the column to the extreme diameter of outslde of wreath or roll, with the diminish and entasis as in an ordinary column. Having decided how mauy times the wreath is to encircle the column, set out the spiral to a developed line. If a piece of paper is cut the spiral to a developed line. If a piece of paper is cut the pendicular being equal to the height of the cylinder, the hypothenuse (or long side of the triangle) will generate \approx curve winding round the crlinder in the form of a spiral. This curve is called the helix, and is the developed line of centre of wreath or roll required. In order to illustrate this more clearly, take two long order to ibons of paper cut parallel, one piece being white and the other piece black; wind first, say, the white round the cylinder, leaving a parallel space just sufficient for the black piece, which now wind round the vacant space, touching perfectly each of the edges of the white band. This being dons, let the white band represent the roll and the black band the hollow, or vice versa. This example applies to a cylindrical shaft whose ends form equal parallel circles. In the case of the tapering column the developing of the spiral line will require great nicety in the settine out; and although the band will not be quite parallel, the principle is the same. The shalt is first worked as a plain column to the extreme or outer diameter. The spiral line is then traced round the shaft, and the hollow worked out. Lastly the roll is rounded off, each process being guided by reverses or templates.
Construction of Double-contact Electric Push.The essential parts are shown in the adjoining Illustration. A push A is connected to a spring B. Under-

Construction of Double-contact Push.
neath the push is a smaller spring contact C, aud at the side opposite B is another contact D. B, C, and D each have terminals, not necessarily in the form sketched. By these terminals the connections required may be made. In the standing position B and D make contact, but by pressing A the circuit is made by war of B and 0 .
Separating Lead from Zinc.-The mixture can be raised above a red heat, when the zinc will burn away; or it can be granulated, and then placed in acid to diosolve the zinc. Or stir into the molten mixture a quautity of ground sulphur, which will combine with the zinc and rise to the surface, and form a crust or cake, which can be taken off.
Taking Apart and Cleaning English Lever Watch.-Before attempting to clean a watch, it is advisable to become thoroughly acquainted with its mechanism. First remove the hands and dial, then unscrew the balance cock and take out the balance, unpinning the hairspring if necessary, and notice how far through the stud it comes, so that it may be how far through the stud it comes, so that it may be let down the mainspring by lowsring the click screw under the pillar plate and putting a \&ey on the square of the barrel arbor. Take out the barrel and bar, also the pillar pins, raise the plate gently, and with a pair of tweezers remove the lever ; then take off the top plate and remove all wheels, eto. Place all the parts, except the barrel and fusee, in benziug, Take out and brush clean with a soft watch brush and a trace of dry chaik. Brush clean the fusee, take off the barrel cover, and oil the mainspring. With a watch peg sharpened to a fine point, clean out the pivot holes. "To put together, place all wheels in position on the pillar plate, but not the lever ; put on the top plate, and then introduce the lever between the plates and get it into position; then get the top plate down properly and insert the pillar pins.

Put in the barrel and bar, put on the chain by dropping it through the watch in position, and hook the barrel hook in the barrel. With a key on the barrel arbor, wind it all npou the barrel and place the fusee hook in the fusee. Then set up the mainspriug half a turn, and wind the chain up on the fusee, being very careful to see that it goes straight. Oil the pivots in the top plate and the balance pivot holes. Put in the balance and repin the hairspring, beincs careful to get it in beat. To test this, wedge the fourth wheel with tissue paper, and when the balance is at rest the ruby pin should be in the lever notch and the lever should stand midwas between the banking pins. See that the hairspring lies fiat and beats evenly between the curb pins in the regulator ; also see that it does not touch the balance arms or the plate. See that the balance has a little "endshake" in its pivot holes. Oil the bottom pivot holes, and put a little oil on the points of the 'scape-wheel teeth. Do not oil the other wheel teeth or the ruby pin. Use only the best watch oil.
Girard Turbine, - This is a parallel fow impulse motor, the power being due almost entirely to the velocity of the water. The guide blades, in the ver. tical form of motor, may be closed hy special vertical shutters worked by special gear, and the passages through the wheel are widened towards the outlet of the water. The efficiency of the Girard turbine may be highest on low powers. A suction tube cannot be used, as the wheel must be close to the level of the tail race.
Power Transmitted by Leather Belts.-In the diagram given below, the curve a refers to single belts, best oak tanned, curve B to similar light double

Power Transmitted by Leather Belts.
belts, and the, remaining curve 0 to heavy double belts. Each curve shows the horse-power that may be transmitted by a belt for each inch in width. I'hus a single belt 1 in. wide will transmit about 3 horse-power when running at a speed of $2,000 \mathrm{ft}$. per minute. Similarly, at that speed, a 'light double belt will transmit rather more than $4^{\prime} 2$ horse-power per inch of width, while a heavy double belt would transmit about $5^{\circ}+$ horse-power. It will be noticed that the liues curve upward at the higher speeds, the decreased power thus shown being accounted for by the centrifugal force set up. To keep the belt central with the face of the pulley, the latter should be slightly rounded, say $\frac{8}{8}$ in. or $\frac{1}{2}$ in. per foot.
Making Sheraton Easy Chair. -The frames of these chairs are made of deal, and the legs of hard wood such as birch. The inside only of the chair is upholstered, the outside being covered with the same-material as secured to the frame. The following dimensions are suitable:-Total height of back, 4 ft .; width of seat from front to back, 2 ft . ; width of seat, 2 ft .; height of legs from floor to bottom of seat frame, 10 in . without castors; height of arms from seat frame, 1 ft . The back legs should be $1 \frac{1}{2} i n$. square; these can bs bought ready sawn, with the required sweep of 2 in . at the bottom. The front legs are made from 2 in . square stuff., Ths seat frame should be 2 in . by $1 \lambda i n .$, raised with a stuffing-rail 2 in . high. The back will have three cross-rails 2 in . by $\frac{7}{8}$ in., stump-tenoned into the back legs. Web the insides of the back and arms, and cover with hessian as a foundation for stuffing. Stuff all the inside with hessian before putting on the outside covering, which is usually a cotton imitation tapestry. The edges can be corded or finished with brass or copper nails.

Sizes of Whitworth Nuts and Bolt－heads．－ The following table gives the thickness of the bolt－ heads and the widthe of hexagon nuts in the Whitworth standard．The third，fifth，and seventh columns are to the nearest sixty－fourth of an inch：－

Diameter of Bolt and Thickness of Nut in In．	Thickness of Head in In．		Wtdth of Nut across Flats in In．		Width of Nut across Corners in $1 n$ ．	
$\frac{1}{2}$	－4375	$\frac{7}{17}$	－9191	$\frac{80}{80}$	1×06	$1 \frac{1}{13}$
${ }^{0}$	－4921	3.3	1.011	$1{ }^{10}$	I．16	$1{ }^{3}$
${ }^{\text {＋}}$	－ 5468	\％	$1 \cdot 101$	$1{ }^{3}$	$1 \cdot 27$	$1{ }^{1 \frac{17}{4}}$
${ }^{11}$	－6015	量要	1.2011	$1{ }_{1}^{13}$	1．38	$1{ }^{18}$
5	－6562	咅	$1 \cdot 3012$	$1{ }^{19}$	15	1.
新	$\cdot 7109$	$\frac{68}{94}$	1.39	$1{ }^{3}$	1.6	
7	$\cdot 7656$	$\frac{48}{9}$	1.4788	$\frac{1}{1 \frac{31}{4}}$	17	$1{ }^{\frac{165}{65}}$
$1^{\frac{1}{16}}$	． 8203	碇	1.5745	1 ${ }^{\frac{37}{97}}$	1.82	$1{ }^{1}$
1	－875	亲	1.6701	$1{ }^{\frac{48}{613}}$	1.95	${ }^{\frac{1025}{6}}$
17	$\cdot 9843$ 1.0937	${ }^{\frac{83}{93}}$	1．8605	${ }^{134}$	$2 \cdot 15$ $2 \cdot 36$	${ }^{2} 2^{\frac{5}{5}}$
17	1.0937 1.2031	${ }^{1} \frac{13}{13}$	2.0483 $2 \cdot 2146$		2．36	$2{ }^{2318}$
13	$1 \cdot 3125$	${ }^{1} \frac{1}{18}$	$2 \cdot 4134$	$2 \frac{3}{3}$	278	$2{ }^{\frac{1}{3}}$
$1{ }^{1}$	1.421	$1{ }^{\frac{23}{97}}$	$2 \cdot 5763$	$2{ }^{3}$	$2 \cdot 97$	$2 \frac{3}{3} \frac{1}{2}$
$1{ }^{1}$	1．5312	$1{ }^{17}$	2.7578	$2{ }^{3}$	$3 \cdot 18$	$3{ }^{\frac{5}{3}}$
${ }^{17}$	1.6406	111	3.0183	$3 \frac{1}{81}$	348	$3 \frac{31}{21}$
2	1＇75	$1{ }^{\frac{3}{4}}$	$3 \cdot 1492$	$3{ }^{\frac{5}{75}}$	$3 \cdot 63$	3缶

The odd $\frac{1}{1}$ in - sizes given above are seldom used．
Imexpensive Filter for Oll．－To make a cheap filter for light machine oil，obtain a large ribbed glass funnel about 6 in．diameter ；taks a clean sheet of thick

FIG： 2

Inexpensive Oil Filter．

White blotting paper，and cut from it a circle 10 in ．dia－ meter，then fold the paper twice to the shape shown in Fig．1，and open it out like Fig．2，so that itfits the funnel． Now place the paper in the funnel and the latter into a clean can，and pour the oil into the paper， taking care that it does not flow over．The oil will filter through slowly，and will be perfectly clear and bright． When the paper becomes，clogged，it must bs replaced by a new piece．

Brazing Bandsaws．－Ordinary bandsaws may be brazed as follows ：－Taper the ends of the saw hy fling so as to form two wedge－shaped ends for about the length of three testh．Jap the onds，and place a small quantity of the flux on them ；cut off a narrow piece of tha brazing metal（about lin．by in．Will do for an inch saw）， place it between the ends of the saw，and cover the joint with flux．The saw，being clamped and held in position in a suitable holder，is now ready for brazing．Heat to a bright red heat a pair of heavy tongs，fres from scale between the jaws，and hold them tightly on the saw cntil the braziug metal melts；then slip off the heavy tongs，and grip the braze with a lighter pair that has been madeblack hot．When the joint is well set，remove the tongs and fle the braze to uniform thickness．The saw is ready for use when the teeth where the joint is made have been sharpened and set．For hrazing heavy bandsaws，a small machine may be used，by which the saws are kept in position over the fire by means of a hinged clamp having set－screws on each side of the joint． The brazing is done with two pairs of tongs．Brass spelter and borax as a flux makes very strong joints in band－ saws of ordinary widths．Equal parts of copper and coin－silver，melted well together，rolled out thin and cut in strips，is saild to make good brazing metal．One ounce is gufficient to noake over thirty joints，in bandsaws lin， wide．Two ounces of tlux will be sufficient for 1 oz ．of brazing metal．

Strength of Springs for Vehieles．－The following list has been furnished by a leading axle maker：－
Mail and Collings axles suitable for a vehicle bearing the load shown ：－

Drabble and cart arms suitable for a vehicle bearing the load shown ：－

Springs．－A comprehensive list cannot be given，as there are so many variations in size；the quality of steal also has a great influence．The following are a few customary sizes of trap and cart springs，with the welghts they are supposed to be suitable for ：－

Size of Spring．	Load Borne by Vehicle．
$44 \mathrm{in} . \times 1 \frac{1}{\text { in }} \times 5 \mathrm{in}$ ．	6 cwt ．
$46 \mathrm{in} . \times 14 \mathrm{in} . \times 5 \mathrm{in}$ ．	8 cwt ．
$48 \mathrm{in}, \times 2 \mathrm{in} . \times 5$ in．	10 cwt ．
$48 \mathrm{in}, \times 2 \mathrm{in}, \times 6 \mathrm{in}$ ．	12 cwt ．
$48 \mathrm{in} . \times 2 \mathrm{in} . \times 7 \mathrm{in}$ ．	14 cwt．
$48 \mathrm{in} . \times 2 \frac{1}{4} \mathrm{in} . \times 7 \mathrm{in}$ ．	17 cwt ．
$48 \mathrm{in} . \times 2 \mathrm{in}$ ．$\times 8$ in．	20 cwt ．

Ordinary merchant quality springs are made of steel of unguaranteed temper，hence the temper is variable， often resulting in weak，unsatisfactory springs．Buyers of springs should require a guarantee that they are made of guarauteed material with a temper，for heary cart and waggon work，of not less than 0.40 per cent．of carbon；for light trap and carriage work not less than 0.45 per cent．

Wire Rests in Wet－plate Photography．－In wst－ plate photography，the silver wires on which the plate

Wire Rests in Wet－plate Photography．
rests are fixed in the carrier，as shown in the recom－ panying illustration．This special device is used because the drippings from the wet plate exercise a destructive influence on the woodwork of the slide，but an ordinary slide may be used if blotting paper is placed along the bottom to gibsorb the drippings；or the slide may be coated with shellac，asphaltum，or paraffin wax．
Lead of Slide Valve of Steam Tngine．－The lead of a slide valve is the amount by which the steam port is open when the piston is just going to commence its stroke．The supply of steam to the cylinder then commences before the stroke，and the moving piston is brought to rest against a cushion of steam．The amount of lead varies from $\frac{1}{10}$ in．to $\frac{5}{2 \pi}$ in．，according to the type of engine．

Damp－prcof Stiffening Solutions．－For stiffening materials that will be exposed to damp，a solution similar to that used for stiffening hats is suitable． This is composed of 5 parts shellac and 1 part borax， with sufficient water．A useful water－proofing material may be mads by dissolving shellac in ammonia， A good stiffening waterproofing material is boiled linseed oil，which stiffens by exposure to ail and is very pliable．Another waterproofing substance may be applied by passing the materials through a soap bath and afterwards through alum solution；this produces an alumina soap in the fibres and stiffons tho fabrics．
Pollshing Fbony Walking－stick．－To polish an ebony walking－stick a jet black，mix Frankfort black or black aniling snirit dye with the polish；the latter may be made by dissolving 6 oz ．of garnet shellac in 1 pt ．of methylated spirit．Apply with a camsl－barir brush．Best results are gained if pollshing pads made of wadding enclosed in flne rag are used．
Ink for Rubher Stamps．－To make a good rubber stamp ink，pulverise 180 gr ．of aniline violet and dissolve in 2 oz ．of boiling distilled water；add one teaspoonful of glycerine and half a teaspoonful of treacle．

Fern Case Construetion.-Flg. 1 shows a section through a part of a case for rearing ferns. The bottom is of deal, with a polished mahogany edging ol rim which forms a base, the bottom being tongued to it on each side and fixed, The bottom stands $\frac{1}{2}$ in. below the rim, to receive the tray A. The latter is $2 \frac{1}{2}$ in, deep, with a hole in the centre to convey superfluous moisture to the zinc safe B underneath, and is covered with a thin layer of broken brick, or other similar material, and with 2 in, of mould, in which the ferms are planted. The cafe slides bet ween the feet c , on which the case rests. The zine tray should be first fitted into the bottom and secured with screws, the heads soldered over, the channel edging D bent to flt the domical glass at each end, and also mitred at the angles to fit the rails on the base, composed of the same section material. Well solder the angles together, then put sorews along the inside of the channel into the base, as shown, and run a little fine solder along the edge to fix it to the tray. Then put the glass into position by slightly extending the framework at the ends, and bring the frame tight to it. Take a

Constructing a Fern Case.
piece of bell tube the same length as the out to out of frame and colder at each end, keeping the joint in the tube at the top. A piece of ornamental cresting, slipped into this joint and soldered to the tube, will give a good finish to the case. Make the dools at each end out of angle pieces to fit the frame as shown, and hinge on the side. The glass in these doore must be left short from the top for the admission of air, otherwise the plants will be stifled.

Steam Consumption in Engines.-The most economical steam consumptions in simple, compound, and triple engines per indicated horse-power hour have been found on trials. A simple Corliss engine has used $17 \frac{1}{2}$ lb., and a simple Schmidt engine, with superheated steam, $17 \frac{1}{5}$ lb. Of compound engines, several American, French, and German engines have used more than 12 lb . and less than 14lb., while a triple-expansion Willans engine may use 123 lb , and a similar Sulzer engine less than 12 lb .

Removabie Vestibule Screen.-The sketch shows how a frame may be fixed, without injury to the premisee, as a tenant's fixture, removable at the expiration of the lease. No plugs are allowed to be put into walls, and where fixing is required it must be done by means of screws-nails are not permissible. Take the exact width between walls, and allow lin, narrower in the outside width of the frame. The skirting projects, say, $\frac{7}{8}$ in. on each side; the frame must be scribed over this equally on each side. as shown. Get four brass angle-plates C,
chamfered on face for preference; let one silde into the edgs of the frame in each case, the other screw on to the face of the skirting. This will securely fix the lower part: an additional fixing is obtained by screw D into floor. The upper part must be secured by means of folding wedges $\mathrm{B}, 4 \mathrm{in}$. wide, between the frame and plaster. These should be driven tightly home, and should be placed as nearly as possible over the jamb at the top and at the level of the transom at the side. When the frame is firm, drive some fine brads through the edge of the frame into the wedges, to keep them from

Vestibule Screen as Tenant's Fixture.
moving if the frame is jarred by the banging of the door at any time. The fillets A shown on the edge may now be fixed; they must be scribed over the skirting and to the plaster, and fixed to the frame with panel pins. These fillets completely hide all fixing with the exception of the end of the braes bracket on the skirting, and this is not unsightly. The job, if carried out properly, will be a good one, and the screen, while equal in stability and appearance to a permanent fixture, can be quickly and easily removed.

Resin used in Spirlt Varnish.-Shellac dissolved in spirit forms the hasis of most spirit varnishes; the addition of resin is often advised on the score of cheap nees. It also assists the varnish to flow level, gives it more body, and imparte a brightness not obtainable by the use of shellac alone. As excess of resin yields a var nish easily scratched. benzoin is added to make it harder, in addition to increasing its brilliancy, shellac and spirit alone will suit for some purposes as a varnish but will generally need more shellac in than when for use as French polish to be applied by means of pade.

Renovating Patent Leather Shoes.-To renovate the cnamel of pateut leather shoes, tree them up tight, and with a sharp knife skive off all the ragged parts of the enamcl. Now rub over the whole with very fine sandpaper. This will make the shoes look dull, but they oan be revived with leather varmish, patent varuish, ordlnary black cream, Nubian, ehonite, or even a thin coat of black polish as used by French polisher'.
Putting Spring Seat to Cushion-seat Couch.-To convert a cushion-seat couch into a spring-seat couch, take off the conch back; this will be nailed to the hody along the bottom and into the head. If the hottom is hoarded, remove the boards, and put a stuffing rail on the front 2 in. high; this will loave a rehate for tacking, handing, etc. If a very soft seat is desired, cross-weh the hottom with best spring webhing. If spring rails are required, let five in at equal distances apart in the front and back rails. Ten 8 -in. splral springs will he wanted; secure two to each spring rail with wire staples, or, if a webhed bottom, tie faet with strong twine through the web. Cover the bottom over the springs with coarse canvas, tack on the front side securely, and pull down the other till the springs are compressed ahout a quarter their length; then tack the other side. Put Jour arm under the ends, ind place the springe in an upright position, then stitch fast to the cover with needle and twine. Put on a layer of flocks about 2 in. thick, cover the top with another piece of canvas, and tack fast all round; stitch up the front edge to a fine point with four rows of gtitches. The couch will now be ready for outside covering.
Tnrning a Crank-shaft. -The adjoining sketches show one method of turning the crank-pin of a small crank-shaft of an engine, Fig. 1 being a front eleva-
the surface is rubhed with a very hard brush of couchgrass, and then with the lightest and finest-quality charcoal, the flat portlons with stick or cake charcoal, the carved or incieed portions with powder, using linseed and turpentine to keep the suriace cool and moist. This process yields best resulta when employed on woods of a hard, close grain.

How to Make Collodion.-Take 1 oz. of pyroxylin or collodion cotton, 36 oz . of ether, and 12 oz . of alcohol of 90 per cent. strength; place in a dry, stoppered hottle, and shake from time to time till dissolved. 'I'he hest liquid for diluting the collodion is a mixture of ether and alcohol in the above proportions.
Drying a Mop.-As a means of twisting a mop for the purposes of drying, other than hy the ordinary method of using one hand and a wrist, a hole is some. times bored through the handie about 15 in . from the npper end, and through this is rove a short line, say 30 in., a knot tied close to the hole on either side keeping the line in place. By starting the mop swisting in a vertical position and pulling hoth ends of the line and releasing them together, the mop is rotated quickly in alternate directions.
Red Filling for Letters on Engraved Door-plate. - When filling an engraved door-plate with wax, the utmost cleanliness must be ohserved, as any forelgn matter rises to the surface, and the wax should be rubhed down till a clean and brilliant colour is established. The hest vermilion wax should be ohtained, and it should then be powdered. To do this, break the wax into convenient pieces, and place between two clean pieces of brass or iron plate ; wrap the whole in several thicknesses of brown paper, tie with twine,

Turning a Crank-shaft for Engine.
tlon and Fig. 2 a side view. Iron slabs, lettered A, are fastened, one at each turned end of the shaft 13, hy set-screws, c. The clab is centred at E, so that D in Figs. 1 and 2 represents the throw of the orank. Sometimes the hole in the slah is lavger than the turned end of the shaft: the hole ie then packed eo the the distance D between the centree can be adjusted. that the distance D between the centree can be adjusted. heing jambed tight by nuti at the ends. The slabs are often to the shapes shown by the dotted lines in Fig. 2. The centres of the slabs and of the crank-pin must be in line, the positions heing set by the aid of vee-blocks, plumb-hob, and seribing hlock.
Proportions of Square Nuts and Bolts.-The fol. lowing are the usual prowortions of square nuts and bolt-heads:-The width across the flate of black nute may be one and a half times the diameter of the bolt, plus from 18 in. to 44 in. ; or of bright nuts, one and a halp times the diameter, plus from 06in. to 18 in. Across the angles, rough nuts may measure $2 \cdot 12$ times the diameter, plus from " 25 in . to ${ }^{\circ} 6 \mathrm{in}$. and bright nuts, 2 . 12 times the diameter, plus from 08 In . to 25 in . The height of the bolt-head may be from two-thirds of the diameter of the holt to equal to this diameter.
Dull Black Finish for Furniture.-To make a black stain that will give a dull flnish, as seen on Ohlppendale furniture, it is usual first to stain the wood with extract of logwood and copperas followed by solutions of acetate or sulphate of iron. This, in turn, is French. polished, an intense hlack heingobtained by addlng black anlline spirit dye to the polish. When perfectly hard, this is dulled by well bruehing with fluest-grade emery or pumice powder. Staining alone is rarely gufficient for any but the very cheapest class of work. The following is the French method of obtalning a dull finish on high. class goods: The articles are first coated with camphor water, and almost immediately afterwards with a coat of sulphate of Iron and nutgalls. When quite diy,
and hammer the package well. This will make the wax quite small enough. Another plan of filling the lines is to heat the plate, and rub in the wax from the slan or stick; another is to grind up the powdered wax with gold size, set in with a palette knife, and put aside to harden. Clean off with alcohol. Or dissolve wax in pure alcohol to an oreamy mixture, so that it will pour freely and fill to a creamy mixture, so that it will pour freely and fill
the letters; leave to set hard, then clean up with spirlt.

Hardness of Water. - The hardness of water depends to a very large extent upon the nature of the rock through which it percolates, and the extent to which it penetrates. Deep well water ohtained from a shaft sunk to a great depth into waterbearing etrata is usually more or less hard. Water issuing from springs may be either soft or hard; from granite and the older rocks the water is soft, because it penetrates hut little; but in the newer formations, especially magnesian limestone, oolite, lias, chalk, etc., the spring waters are very hard. Water from the surface fowing over pure clay or gravel wll be, as a rule, soft, because there is little soluble matter contained therein; but from a shell gravel the water will he hard. Water collected in ghallow wells is often very hard, the water percolatiug readily through the soil and subsoil, and dissolving out the salts contained therein. The salts not precipitated by hoiling are removed every time the kettle is emptied; the ecale will removed every time the kettie is emptied; the ecale will case is different, a the concentration of the water hy evaporation causes the precipitation of both carbonates and sulphates; but an analysis of the water is better, because there may he present chlorides of caloium and magnesium, which also render the water hard, and may cause trouble in other whys. These calte are extremely soluble in water, and would not precipitate however loug the water was boiled. The deposit lnside a kettle would he white if only lime and magnesia were present; but if iron were also present, the deposit would Le yellowish or cream-coloured.

Soldering a Silver Watch Case. - Ordinary sasy running silver solder, which melts at a lower heat than silver, will do. But to make sure, shred the solder into very thin strips, and apply plenty of borax to them as well as to the joint to be united. Use the blowpips gently at first so as ta bake the borax, then heat the case all ovar almost to the melting point of solder, and dirsct the flame to the part to be soldered until the solder runs and glistens. Cease blowing instantly, and ivenge the case inta a solution of sulphuric acid 1 part and water 10 parts, to whiten it: then wash in hot water and dry in sawdust. Be careful to remove all steel springs before soldering a case.
Size of Corliss Valves for Steam Engines.-The diameter of Corliss valves used for the admission of steam to sngine cylinders when the diameters of the oylindere are known may equal one-eighth the diameter of the steam cylinder plus 2 in, while the diameter of similar exhaust valves may equal one-sixth the diameter of the cylinder plus 2 in . Thus, for a cylinder 24 in. diameter, the steam valve should be $\frac{24}{8}+2=5 \mathrm{in}$. diameter, and the exhaust valve $\frac{24}{6}+2=6 \mathrm{mn}$. diameter.
Dressing Up Spokes of Carriage Wheels. - An easily made apparatus that will hold the spokes of wheels whilst dressing them up is illustrated by Fig. 1 , which is a side view showing a spoke in position. The bottom rail A is ly in deep by lt in. thick, shouldsred in at B to 1 in. thick. On this part the block 0 works along by the mortise shown in Fig. 2, being kept in position by the wedge at the back D (Fig. 1). To this block is fixed an iron plate (see Fig. 3),

Having molted a sufficient quantity of tin in the bath, pass the copper sheet throngh it, and as it is withdrawn, quickly wipe the super fluous tin from each side with a pad of tow. The surface of the copper should be first prepared as describsd above.
Green Stain for Wood.-A clear dark green stain may be made by mixing aniline dyee as sold at most druggists' with plenty of hot vinegar. Green and blue yield a usefnl tone. Or apply bot 2 oz of verdigris. yoz. of China blue, and lpt. of vinegar; several coats will be required. These water stains have a tendency to raise the grain. The subsequent rubbing down with glasspaper will give the white flecks often seen on frames. If this is objected ta, colour must be used in the polish or varnish. Another simple plan is to use emerald and brouzs green mixed in hot beer.
Maling Photographic Prints by Gas and Dull Light.-Any gelatino-chloride paper may be slightly printed and afterwards developed. The great drawback to the process is the liability of obtaining degraded high lights with a consequent flattening and fogging of the image; because if the faint image trom a briep exposure under a negative can be developed into a dark print, any chance exposure of the paper to daylight will show by fog and degradation. If the paper has been properly protected from extraneous light and is otherwise suitable, development has a tendency to intensify the contrasts, therefore a little fog is sometimes an advantage unless allowance has been made in the negative. Eastmans', Paget, and Otto gelatino-chloride paper can be recommended for this process. Print a faint imags in diffused lightthatis, expose for about five minutes to daylight or one hour at 6 in. from an incandescent gaslight. Make up

Apparatus for Holding Spokes of Wheels.
the lower part being 1 in. wide by $z_{\text {in }}$. thick, the projecting centre-point being $\frac{5}{5}$ in. round, welded into it. A pillar l $\frac{1}{2}$ in. square is mortised on the front end, being firmly fixed by a corner plate, as Fis. 4. This is made with a boss at the top to the full width of plate, $1 \frac{1}{2}$ in., through which the $\frac{8}{8}-\mathrm{in}$. screw E is fitted. This has a handle fitted at the end, and when in use the frame is held in the vice, or may be cramped to the bench, and the block is slid along to about the length of the spoke. The latter is placed between the two centre-points, a turn or two of the screw holding the spoke firm, whilst it can also be turned round in any position for working.
Cleaning and Relacquering Brass.-To clean ant relacquer brass fittinge, take all the parts to pieces and place them in a boiling solution of carbonate of soda or potash, 1 lh . to a gallon of water. To remove the old lacquer, swill in clean water. Then dip in commercial aquafortis quickly several times till of a golden colour, swill each time in clean water, and add a pinch of cream of tartar to the last swilling. Dry out in hot sawdust. Burnish the bright parts with th steel burnisher, using a little oxgall to lubricate. Dry out in sawdust as before. Heat on a hot plate, and out in sawd ust as before. Heal
Tinning Sheet Copper.-If to be tinned on one side only, first smear with salt and water the opposite sids; then, with a pad of tow, wash the other side with killed spirits (chloride of zinc), and also sprinkle a little powdered sal-ammoniac over the surface. Place the sheet over the fire, and when hot enough, rub the end of a strip of tin on it until a small partion of the tin melts; then, with a pad of tow or wadding; on which some pcwdered sal-ammoniac has been sprinkled, wub the molten tin over the hot surface, and continue this operation until the whole surface is covered. If the copper is to be tinned on both sides, an iron bath of semicircular section, built up over a firegrate, should be used.
the following solutions:-No. l. Hydroquinone 25 er. metol 10 gr ., sulphite of soda 25 gr. , potassinm bromide 50 gr., ammonium bromide 100 gr., water 8 oz . No. 2. Sodium hydrate 15 gr., water 2 oz . No. 3. Tannic acid 8 gr, water 1 oz . Take thirty-two parts of No. l, eight parts of No. 2, and one part of No. 3. lmmerse the print without washing. It rapidly bleaches to a light yellow, then slowly increases in density. When nearly dark enough, remove the printand place it in a 1 in 60 solution of acetic acid, and thoroughly wash for ten minutes. Great care must be taken to wash out all the acid, or uneven tones will result. The print may then be toned in the ordinary sulpho-cyanide bath and fixed as usual. Avoid handling the paper or stains will result. Another method by which prints of a fairly satisfactury colour may be obtained without toning consists of pouring over the dry print a solution of pyro l gr., bichromate of potash solution (1 gr . in 2 oz .) 10 minims, water 1 oz ; a print of a sepia tone results. But it is difficult to avoid degraded high lights; it is, in fact, practically impossible if a larger proportion of bichromate solution than that given above is used. An acid fixing bath has been recommended.
Cleaning Buff Leather Gaiters.-To clean gaiters made of sun tanned sheepskin, with the Hesh side outside, wash them thoroughly and scrub out all the dirt. When quite dry, scrape them all over very lightly, paying special attention to the parts that were dirtiest, with a dull knife, a buff knife, or the edge of a blunt shoemaker's knife; if the knife is taa sharp the leather will be worn away. When the gaiters are rough all over, apply some Propert's brown ball, or a mixture of brown ochre and chalk mixed to the shade required, and rub in well with fine smndpaper, then with a piece of old cloth. If the gaiters are then brushed out lightly with a soft brush, they will have the appearance of new goods.

Secret or Invisible Inls. - The usual invisible or sympathetic inks are mado from cobalt nitrate or chloride, which in the hydrated condition (that is, containing water) are a pale pink, but become deep green by loss of water on heating. Wrlting upon paper with these inks is invisible at the ordianry temperature, but by warming the paper the marks appear very distinct, but fade away again after a short time. In hot climates the writing would not be invisible. Invisible writing may be done with a solution of tannic acid, and developed at any time by soaking in a dilute solution of ferric chloride. A true ink is then formed. Another method is to write with a solution of boiled Atarch, and develop the writing by damping the paper starch, and develop the writing by damping the paper iodine; the blue iodide of starch is then formed, and the writing becomes quite distinct for a time. It fades away again as the paper dries, but may be developed in the sampe manner several times. Another process is to write with a solution of lead acetate, and develop by moistening the paper and holding it over a bottle containing sulphuretted hydrogen; the writing then becomes permanently black, sulphide of lead being formed.
How to Put a Bristle on a Wared Thread.-To put a bristla on a waxed thread, as used in shoemaking. D shows the bristle split, and the end of the taper of the thread in the crutch of it at E. Hold this point between the thumb and finger of the left hand, so that it does not pull out at the bottom F while the two are being twisted together with the thumb and finger of the right hand. When twisted, still hold them firmly at E, and put the bottom

How to Put a Bristle on a Waxed Thread.
F-between the little finger and the next finger. With the right hand twist the other portion of the bristlethat is, the top F. Then put the two F^{\prime} s together, hold them with the right hand and lat go with the left, and D and E will twist of their own accord. Then fasten the ends at F so that they cannot untwist, as in the adjoining sketch. Take G as the thread or waxed end, and through this make a hole between $F F$ and E, but very near to $F F$; then take D and pass it through this hole. By pulling D, E will also pass through the hole-in fact, all the bristle except the two euds $F{ }^{\prime} F$; that portion of the thread will also pass through that has been twisted in with the bristle.
Sticking Artists' Canvas to Millboard. - Having rubbed the back of the canvas with coarse glass papser, coat the material with some strong glue, rub down thoroughly, and press until dry. Failure often occurs through not properly removing the air from between the picture and the millboard. The correct method is to place a square of thick paper over the face of the painting and then expel the air by rubbing, with closed fist, over the whole surface, commencing from the middle and rubbing towards the outside edges. If air gathers under the middle, and it cannot be forced out ronnd the edges on account of the glue having set, prick the blister with a fine needle, and, having let the air escape; rub down well and puta weight on the spot for an hour or two.
Photographic Lens for Portraits and Enlarging. -Any lens may be used for enlarging quarter-plate plctures to about 12 in . by 10 in . Theoretically, the best lens to use for the purpose is the one that has been employed to take the picture. Practically, the best lens is a portrait or rectilinear lens having a flat field and a large aperture. The focus should not be long, w the camera will require great extension. If a bin. tocus portrait lens is used, the camera must be extended $24 i n$. and the lens be placed 8 in. from the small negative. It is only uecessary that the lens should sharply cover the small negative. Only quarter. plate portralts could be taken with a 6 -in. lens. In some cases it may be best to fit the cularging samera with a 6-in. rectilinear lens hy a good maker (such as Ross, Dallmeyer, or Taylor), working at f/6. This could be used as It stood for ordinary work and enlarging; whlist an occasional half-plate portrait could ilso be taken by using the front combination only,
provided the extension of the camera is sufficlent. If not, a conical front could he made to accommodate it. Every lens is supplied with a flange, which only lleeds scrowiug to the opening in the camera front. As daylight enlargemente are best, it is unnecessary to have a cameria for enlarging. Place the smatil negative in a carrier in slide in the camera, and place it close against the window frame, with the lens, covered with a cap of ruby glass, pointing into the room. The whole of the window, except a small opening to admit light to the slide, musi be blocked out and the room rendered thoroughly dark. Outside the window must be a white reflector, at least four times the size of the negative, fixed at an angle of 45° with the negative, and receiving light from the sky. On placing a sheet of white paper on an upright easel and moving gradually from the lens, a position will be found (viz. 24in.) where a sharp enlarged image of the small negative is shown on the paper. It is merely necessary then to pin a sheet of bromide paper on the easel and expose. Daylight exposures are constantly varying, and call for some experience, but better gradation is obtained.

Fitting Swing Curtain Rails to Iron Bedstead.To fasten rails on the two posts of a half tester iron bedstead to carry curtains so that they will swing, Fig. I shows the arrangement as fixed on the pillar Fig. I shows the arrangement as fixed on the pillar by in. should be made as shown in Fig. 1, the upper

Fitting Swing Curtain Rails to Iron Bedstead.
part swelled out and drilled so as to flt over the top of pillar on the screw. The brass knob screwed down on it with a washer between, will keep it in place. Fig. 2 shows the bottom fixing. This is a solid forging drilled through the centre to take the pin of the bracket, and with a clip for the pole fastenad to it with a tightening screw. The bracket (Fig. 1) is turned up at the end, swelled out and drilled for a braes tubing to pass through; a emall eye eimilarly made is fixed at the back end of the bracket (see Fig. 3). The brass rod should have eyes fixed into it sbout 4 in. apart, as shown in Fig. 4. To these eyes the curtains hang from brass hooks. The brass knob at the under side of the solid bracket rest will keep the bracket tight in its position.

Distance of Stop from Lens in Camera.-There is no arbitrary rule for finding the distance of the stop from the lens. It is best discovered by experiment; the point chosen is where the maximum of sharpness is given with a mainimum of distortion. If distortion is of little consequence, the stop may be brought forward until its circle of illumination just covers the plate and no more. The experiment may be made in the following manner :-Mount the lens sqnare in a tube and then choose another tube, 2 in. long, sliding into the first easily. (The second or inner tuhe may be made by rolling and pasting paper round a rod built up to the right size with paper:) At the end of the inner tube, which must be cut stralght and true, fix a black card having cut in it an opening about one-third the diameter of tha lens or about one-sixteenth the focus. This hole represents the stop, and by sliding one tube within the other the distance hetwean the stop and the lens may be adjusted. Placa the camera parallel with a number of straight, clear lines drawn on paper about $6 i n . ~ a p a r t ~ a n d ~ f o c u s ~ t h e m ~ w i t h o u t ~ t h e ~ i n n e r ~ t u b e ~ t i l l ~$ they are about 1 in. apart. None of the lines will be really sharp. Insert the inner tuhe and push the stop close against the lens and the definition in the centre will at once be improved, but the definition at the margins will be as bad as ever. Now slowly withdraw the stop and the definition will he seen to "spread to wards the marging of the screen. As this is done, however another evil is lntroduced; the lines at the margins of the paper are hent inwards at the ends and outwards in the centre. This bendlng of the lines is known ap distortion, and is the result of using a stop.

Staining Wood in Imitation of Mahogany. - If the article is unpolished, it may be stained with one pennyworth of burnt sienna ground in water. Mix with stale beer, and brush well over, wiping off the surplus with rag; two coats may he given. When quite dry, rub smooth and coat with several applications of spirit varnish. The colour may be enriched by ths addition of a pennyworth of Bismarck brown to 1 pt. of varnieh applied with a camel-hair brush.

How to Malce a Cheap Writing Table.-The accompanying illustrations show how to make a mall writing table. The timber used may be common deal, in boards $4 \frac{1}{3} \mathrm{in}$. wide and $\frac{3}{4} \mathrm{in}$. thick; 56 ft . will be sufficient. Saw seven lengthe for the back, 3 ft .6 in . long, and twelve lengths, six for each side, 2 ft . long. The sides and back may now be either nailed or dovetailed together. Dovetailing is best, but it is the more difficult to do. If nailing is resorted to, four uprights should be oftained, $1 \frac{1}{2} \mathrm{in} . \mathrm{by} 1_{\frac{1}{3}} \mathrm{in}$. by 2 ft . $l_{1} \mathrm{in}$., and one placed in each corner, so that the boards may be nailed to them. When this has been done, fix the board in front (D, Fig. 1). and then naill ledges, level with the bottom of this board,

The following has been given as best for soft stones:Take, say, $\frac{1}{2} 1 \mathrm{~b}$. of putty powder, put it in a jar, cover it with nitric aeid, and place it in the open air, as the fumes are noxious; let it stand for a day, then pour off acid and water repeatedly until ths water ceases to bs acid. Polish with the residue.
Curing Rabbit Skins.-To cure rabbit sking, mix bran and thres or four times (by measure) as much boiling water, and add 1 lb . of alum and $\frac{1}{4} \mathrm{lb}$. of salt to every gallon of water. Stir to dissolve the salts, and then cover with a cloth until about new milk warm. Placs the skins in this, and leave for about twonty-four hours; then dry them in the shade, stretching and rubbing them well. Stlr up the mixture, and replace the skins for twenty-four hours; then dry again, repeating the ftretching and rubbing. For large skine, the rubbing is supplemented by scraping the flesb side with a knife to loosen the fibres. Many now make a mixture of oatmeal and hot water, and before this is quite cold immerse the skins in it for twenty-four hours, and then dry and hand rub as before. If the rubbing has been thorough, the ekins should be as soft as chamois leather.

How to Make a Cheap Writing Table.
each side and along the back to support the bottom of the desk. The bottom may then be put on, but the wood for this need he only $\frac{3}{3}$ in. thick (an old egg case will do). Then the sloping pieces (Fig. 2) Ghould be cut; thess should be cut out of one piece. When these huve been fixed on to the back and sides, the lid should be got ready; it should measure 2 ft . $7 \frac{1}{2}$ in. by 1 ft . $7 \frac{1}{3}$ in., so that it will leave in. projection each side and $\frac{2}{2}$ in. in front. Put the catch of the lock on the lid, and fasten the lid with hinges to the 5 -in. board, then secure it to the sides and back. The supports for the shelf C (Fig. 1) should be cut as shown. When the shelf has been cut to the required length, 2 ft . $6 \frac{1}{4}$ in., it should be let into the shaped sides 1 in., and nailed. This may now be fixed on to the top of the desk as shown in Fig. 1, and as there is fin. projection at each end, the nails or screws should be driven upward. The top part of the shelf can be used for books, etc., and underneath pigeon-holes an be made, if desirable. Now fit in the lock, cut out the keyhole, fill up all joints, etc., with putty, and rub all over the table with glasspaper, and it is ready for staining.
Self-poltshing Blacking.-To make blacking that requires no polishing, take 4 oz . of treacle, $\frac{1}{2}$ oz, of lampblack, a tablespoonful of yeast, two eggs, a teaspoonful of olive oil, and a teaspoonful of oil of turpentine; mix well, and apply with a sponge.
Polishing Stalactites.-The principal thing in polish. lug stalactites and small stones after they are cut is to grade the hardness of the polishing material with the stone to be polished. For cutting a surface level, use various grades of emery on lead laps, with a separate lap for each grade of emery. See that all scratches are removed. For the polishing; on hard wood that will not warp glue a piece of buff leather. On this place a little putfy powder, which, like the emery, must be used wet.

Rule for Velocity of Steam.-It has been found that the discharge of steam through an opening into a pressure less than three-fifths the initial is about 900 ft . per second. The following rule has been given 900 determine the velocity in feet per second when to determine the velocity in feet per second when steam flows into a vacuum :-To the Fahrenheit temperature of the steam add 460, and multiply the square root of the sum by 60. The area of pipes for steam engines should be arranged so that the velocity of the steam does not exceed 130 ft . per second; a lower velocity is better.
Stereoscopic Photography. - For most subjects, except instantaneous stereoscopic work, an ordinary quarter-plate camera, with one lens only, may be used if provision is made for shifting the camera or the lens from side to side for a distance of from $2 \frac{1}{2} \mathrm{in}$. to 2 in 2; or if the object itself can be moved the same relative distance the camera may remain stationary; or achromatic lenses, paired for stereoscopic work, could bs fitted to a half-plate camera. As to plates, in a half-plate camera double quarter-plates ($6 \frac{1}{2}$ in. by $4 t$ in.) are often preferred. There should bs a partition between the fenses, and this may easily be made in a square-bellows camera by pleating some flexihle black material over two slips of elastic and fastening it to hooks in the camera front and in the back frame.

- Distinguishing Worsted from Cotton Cloth.-The best way to distinguish a cotton cloth from a worsted cloth is to unravel the edge, and if of cotton it will have a wiry appearance; worsted is soft and woolly. But if there is any doubt, hold the threads over a lighted lamp beyond the flame; if of worsted, they will shrivel up and burn into a black cinder; if of cotton, they will remain stifi till they get red hot, when they will burn into a white ash.

Dead Black for Interior of Camera.-To make a dull black stain for the interior of a camera, mix powdered lamphlack and French polish, nsing of the latter only just enongh to make the black adhere. Too much will produce a polished appearance. Another recipe is: Aniline black, 100 gr ; gnm shellac, 200 gr .; methylated spirit, 50%. Dissolve thoronghly, and apply with a solt brush quickly. Negative varnish and powdered lampblack may also be used.
Difference between Limen, Cotton, Wool, and Silk.To distinguish the difference hetween linen, cotton, wool, and silk, examine the fibres under the microscope with a moderately low power. It will be found that the linen or flax fbres consist of transparent tubes, sometimes marked with lines and having very small central canals (see A in the illustration). The cotton fibres consist of straight or twisted flattened tuhes with very large ceutral canale and quite transparent (see B). The wool fibres are very variahle, but consist of a numher of plates or scales built no to form ia tube, and the inner tube is usnally more or less coloured in the natural wool (see (). The silk fibre is usually very small and perfectly smooth (sea D). The action of chemical agents upon the fibres depends upon their composition. Flax and cotton are nearly pure cellulose. By the nction of moderately strong acids, the tibre is somewhat attacked, and the

Magnifled Fibres of Linen, Cotton, Wool, and Silk.
result is a parchment-like product: by long-continued action of strong sulphuric acid, cellulose is converted into dextrine, and by dilution with water and hoiling it finally becomes glucose (a kind of sugar). Strong nitric acid converts cotton into nitro-cellulose or gun-cotton. Weak alkalies do not affect cotton or flax; strong alkalies toughen the fibre and shrinkit,forming mercerised cotton. Wool fibre has a composition similar to skin, horns, and feathers, and is composed of nitrogenous material called feathers, and is composed of nitrogenous material dalled affect wool; strong nitric acid and other acids destroy it, the former first rendering it yellow. Alkalies render wool very tender : strong alkalies nsed hot dissolve wool completely. Silk contains fibroin, gelatine, wax, albumin, etc. Concentrated acids destroy silk, but dilnte acide do not affect it much; simply hoiling with water removes the gelatine or sericin, which amounts to about 20 per cent. Weak alkalies impain the silk, and strong alkalies cent. Weak alkalies impair the
Drtling Holes in Glass.-To ent a l-in hole in a glass plate a couper tube may be used for drilling. Use a tube about $\frac{1}{6}$ in. diameter with the end spread to lin, diameter. Emery powder should he fed inside the tube to form the cutting material and turpentine used to dissipate the heat. The tube must, of course, be pressed on the glaes and rotated.
Flattening Buckled Copper. - To fiatten copper that is huckled, hammer the surface with a light planishing hammer on a bright timman's anvil, comforwards across the metal with going backwards and regular hlows, until the entire surface has been covered. Any hollow
places along the centre of the strip must be drawn down flat hy hammering from the edge of the hollow out to the edge of the strip. Should the strip be wavy or looes along the edge, hammer along jnst inside the edge and work back towards the centre of the strip until the edge is drawn flat.

Private Altar.-For a small private altar which cen he closed when not in use the accompanying figurs is suggested. The dimensions are as follows: Length, 24 in . projection from wall, 20 in ; height of altar, 21 in.; and height of reredos ahove altar, 18 in. The ends A A are of inch board shaped as shown, the hack length in each running up to the top of the reredos, as at B. The front is chiefly formed of a stout piece of 9 -in. hoard c, pierced with a medallion of tracery, which is let into the edges of the end pieces. The spandrels helow (D D) are separate pieces fixed to this hoard. A similar hoard, but plain, is at the back. The front of the super-altar E je ornamented with snnken medallions. This rises about 4 in. above the altar top F, and might have a projection of 5 in. or 6 in. The altar top is made to overhang at front and ends, and a hold moulding G, mitred at the corners, runs heneath it. The reredos has a piece H rumning along its top of the same width as its ends. Half-inch hoarding will do-

Private Altar
for its back, and in order to show up the cross, etc., the back might he lined with relvet, the Gothic arcade I being sawn out of thin hoard, worked up, and fixed upon the lining. A piece of thin hoard K, covered with similar velvet, should be fixed along the top of the super-altar above its true top, and will serve for the doors to fold against. The doors L l are hinged to the shout end pieces. On their inner sides the panel of each might be gilded in diaper and painted with the gold as a background; or it might be lined with velvet, on whinh a sacred monogram or emblem in brass could be flxed. The outer side of one of the doors is shown with its panel filled with tracery sawn from thin board, worked up with chisel and gouge, and fixed upon the wood.
Iiquid used for Gold Paint. - In the manufacture of gold paint pale copal varnish, thinned with turpentine, is often used. Some gold paints are made with a whito spirit varnish; others are mixed with a medium prepared hy dissolving collodion cotton in amyl acetate and diluting with petroleum ether. When the bronze powder has to be mixed with the medinm, pale copal varnish, thinned with turpentine, is very often employed.

Cements for Oil Lubricators. - There are two suitahle cements that will withstand oil and heat. The flrst is made by separating the white from the yolk of an egg, and mixing the former to astiff paste with powdered quicklime. The second cement is made by holling together 5 parts of water, 1 part of caustic soda, and 3 par'ts of resin. When the resin is dissolved, the liquid is mixed with half its weight of plaster-of-Paris, nnd et once used, as hoth cements set hard in a verys short time.

Making Cart Grease.-The materials employed are resin oils, resin, heavy petroleum, animal greases, soda, lime, etc. The following may be taken as examples:(a) Petroleum residue 40 gal., resin 601 b. , animal grease $50 \mathrm{lb} .$, canstic soda lye $2 t$ gal., salt $5 \mathrm{lb} .$, dissolved in a little water. The oils are heated together, and the soda lye and salt gradually stirred ln, when partial saponifica. tion takes place. (b) Resin oil 100 lb ., and slaked lime 90 lb . ; heat together, and stir thoroughly until a homogeneous mass is formed. (c) Heat together 1 lb, of palm oil, 1 lb . of palm oil soap, 55 lb . of resin oil, and then gradually add, While stirring, 10 lb . or 20 lb . of strong soda lye, until a uniform paste is formed. These greases are sometimes mixed with blacklead, or rendered thicker and more viscous by additions of inert weighting materials, such as barytes, china clay, gypsum, etc.

Oven for Case-hardening Cycle Parts.-The construction of an oven for case-hardening cycle parts is shown in siketch. Fig. I is a longitudinal elevation showing the air holes at the sides. These are simply spaces for half bricks. Fig. 2 is a longitudinal section showing the
brushed over with a varnish made of equal parts of Canada balsam and spirit of turpentine, and, when dry, mounted in the usual way. With care during the process these slides will almost equal photographic ones both in transparency and sharpness. The half-tone prints taken from photographs make excellent slides. Another simple method when hymns or diagrams for educational purposes arc to be thrown on the sheet, is as follows: First get some ground glass cut to the requlred size. Draw the diagram, or write the hymn in a circle 3 in. in diameter on paper. Lay the glass on the drawing, or writing, ground side upwards, trace over the lines with a sharp-pointed F pencil, or with Indian ink, using a small mapping pen. Float with the Canada balsam varnish by holding the glass at one corner, pour the varnish on the centre, spread it by rocking the glass backwards and forwards until the whole of the glass is covered, and drain off the surplus back into the bottle at one corner. When dry the slide is ready for mounting.
White Acid for Class Embossing.-Hydrofluoric acid, diluted with water, is principally used in glass etching,

| | | H\|l|l|lumind | (H6) il |
| :---: | :---: | :---: | :---: |
| | | | |
| | | | |
| | | "Wul(| - IM |
| | | | |
| W1] | | - ${ }_{\text {din }}$ | |
| "1: | | | |
| | | | , illill |

Fig. 1

FIg. 2

Oven for Case-bardening Cycle Parts.

brickwork construction, the outside being best red ordinary bricks with an inside lining of best quality frrebricks. The hardening box is shown in position in the centre of the fire. Fig. 3 is a cross-section, not, however, taken through the air-holes. The size of the oven must be regulated by the size of the articles to be hardened. A good size for ordinary work would be 3 ft . or 3 ft . 6 in . long by 2 ft wide.
Easily-made Lantern Slides.-To make these, some glass cut to the size of the lantern slide, and some prints about the size of the slide, must be selected. A series illustrating travels or mannfacture will be found a very suitable subject. The print is well covered with starch paste on the picture side, and laid on one of the pieces of glass, the surplus paste being worked from the centre to the edge with a piece of cloth wrapped over a cork. Great care must be taken that the paper adheres to the glass, no air bubbles being allowed to rennain between the glass and the paper. When dry, with a rubber made of a piece of cork covered with the finest glasspaper, work the back of the picture off until there is only a thin film of paper left, care being taken that the paper is not rubbed through to the glass. To get an even thickness, hold the slide up to the light, when the thickest parts will show dark; these spots must be worked carefnlly off until the whole surface is of an even transparency. If desired, the picture may now be tinted with transparent colours. The slide is now
but there are several fluorides used for the purpose. Fluoride of ammonia is formed by adding ammonia to hydrofluoric acid until it is nearly saturated; if a slight excess of ammonia is added so that the mixture smells of excess of then a little more acid be mixed with this, the fluoride will be suitable for glass etching. The fluoride of ammonia, is placed on the glass and allowed to dry, when the etching effect then becomes apparent. Another etching fluid is made by dissolving 25 parts of fluoride of potassium, 25 parts of hydrochloric acid, and 14 parts of sulphate of potash in 100 parts of water. Another solutiou is made by dissolving 10 parts of carbonate of soda and 10 parts of carbonate of potash in 40 parts of warm water, and the adding 20 parts of con centrated hydrofluoric acid and 10 parts of sulphate of potash previously dissolved in 10 parts of water.
Weight of Cast-iron Balls. - To calculate the weights, first determine the contents of the balls in cubic inches, and then multiply by 26 . To find the contents of a sphere or ball in cuhic inches, cube the diameter in inches (that is, multiply it by itself, and then the product by itself), and multiply by 526 . Thus, the contents of a 7 -in. ball eqnals $7 \times 7 \times 7 \times{ }^{\prime} 526=$ 179.6 cub. in., and the weight of the ball is $179.6 \times 26=$ 46.8 lb . The weight of cast iron per cnbic inch varies from 25 lb . to 27 lb . A simpler method of determining the weight in pounds is to cube the diameter in inches and then multiply by ${ }^{\prime} 136$.

Solutions for Silvoring Glass.-(a) Dissolve 60 graine of silver nitrate in loz. of water, and pour this solution quickly into a boiling solution of 48 grains of Rochelle salt in ahout loz. of water. On cooling, filter the liquid, and make πn to 12 ff . oz. with distilled water. (b) Dissolve 60 grains of silver nitrats in loz. of water, then add ammonia until the procipitate is nearly re-dissolved, and make up to 12 fl oz., as before. For silvering, equal volumes of these liquids are mixed just previous to using. Another formula is: (a) Dissolve 48 grains of silver nitrate in loz. of distilled water, and add ammonia till precipitate 1oz. or distiled water, and add ammonia till procipitate 12 fl. drachms with water. (b) Dissolve 12 grains of Rochelle salt in 1 oz. of distilled water, boil, and add while boiling 2 grains of nitrate of silver previously dissolved in 1 drachm of water, cool, filter, and make up to 12 fl . drachms. Mix equal proportions as stated above.

Covering Circnlar Frames with Plush.-Take a circular piece of plush, 2 in . to $1 \frac{1}{2} \mathrm{in}$. larger in diameter circular piece of plush, 2 in . to 1 in. larger in diameter plush that will overlap the frame; lay the plush right side down on the table without creasing it, apply round the front of the frame a touch of glue, which must be etrong and not watery. Then lay the frame on the plush, and strain it tight by pulling it with the hands; then by different stages apply the glue at the back and overlap the overhanging plush, taking 3 in . or 4 in . at a time (see A, fig. 1). Press the plush into contact with the wood with a bone paper-knife or piece of wood. When completed and nicely set, with tailor's chalk drawa circle in the centre of the plush, then cut it out with scissore; leave a margin of lin. or $\frac{3}{4}$ in., so as to overlap on the rebate of trame. To get the circle easily, a dinner plate may be employed as aguide. After cutting out the circle

Fig. 1

Fig 2

Covering Circular Frames with Plush.
with scissore, cut the inner edge all round to the required depth. It requires great cars not to cut too far, hut just so that it will overlap and fit snug (see B, Fig. 2). Press it well into the rebate, a little at a time.

Selecting Portland Stone. - The chlef points in the selection of Portland stone for building purposes depend upon the purpose for which the stone is required. There are four distinct kinds, of which three are usually sent into the market. The best is True koach, 2 ft . or 3 ft . thick, consisting of a mass of fossils united by a cement composed of carbonate of lime, $r^{\prime}=$ tinguished from Bastard Roach by its containing tue Portland screw fossil; it is much used in engineering works. The Whitbed is the most useful Portland stone, consisting of fine oolitic grains, well cemented together, with a small amount of shelly matter at intervals. It is a good weathering stone, will taks a fine surface and a sharp arris, and is used for the finest ashlar work. Basebed is very similar in appearance to Whitbed, but of a less roe-like texture when examined through a magnifying glass, and more free from shelly matter. Being more uniform in texture and softer to works it is prererred hy masons, hut does not weather so well. It is useful for internal work and carving, and is generally known as "best-bed." All stone should be lald on its natural bed, but in Portland stone it is not so eaey to detect this as in more laminated stones.
Making Marking Inks.-The only really reliable marking inks that will not wash out of linen, apart from stamping inks, are those that contain compounds of gilver, gold, or platinum. Silver inks are indelible as long as the fabrlc lasts, but they become paler as the fabric wears away. Chloride of lirne or eau-de-javelle bleaches silver marking ink, the action belng to conver't the black metallic silver into white silver chloride. The following recipes are for silver inks:- (a) Nitrate of silver 17 parts, ainmonia 42 parts, carbonate of sodal 22 parts, gum 20 parts, sulphatt of copper 33 parts, dietilled water 85 parts. Dissolve the carbonate of soda in 25 parts of
water, the gum in 50 parts of water, and the nitrate of silver in 10 parts of water. To the golution of nitrate of silver add the ammonia and shake thoroughly; mix the solutions of gum aud carbonate of soda and add to the silver solution ; fnally add the sulphate of copper and shake till dissolved. (b) Diesolve 2 dr, of nitrate of silver in 1a oz, of water and add strong ammonia gradually until the precipitate which first forms is'just re-diseolved, make up to 2 oz . with water, and colour with a little indigo extract, sap green, or any suitable aniline colour. It is usual to press a hotiron upon the marking so that the ink may decompose and the silver be reduced.
Making Gold Cardboard Mounts.-The openings or sinkings of cardboard mounts are cut from close-grained board made for the purpose. The surface of the cut-out mount is coated with gilders' thim matt size, which is made by mixing fairly strong size with the raw material. Generally two or three coatings will be necessary, each coat being allowed to dry thoroughly. The surfacs is next papered down with old emery-paper, washed, polished, and finally covered with English gold leaf. Much experience is required in this particular branch of gilding. The primary cause of failure is in getting the matt size and subsequent weak sizes too strong.

Apparatus for Distilling Water. - The still may be made from a large iron gettle and the condenser from a coil of tin pipe placed in a pail of cold water. In the kettle lid hore a l-in. hole and solder into it a bent piece of pure tin pipe. Bore a l-in. hole in the side of a wooden lard bucket and make a coil from three or four turns of the tin pipe; pass one end through

Apparatus for Distilling Water.
the hole in the bucket and cement it in with white lead. Stand the bucket on stool 60 that the tiu coil can he connected to the tube in the kettle by means of a emall piece of rubber tube. The water to be condensed may be conveyed to the bucket by means of a small rubber tube or a length of compo pipe, and may be syphoned away from the top of the bucket by a bent piece of away from the top of the bucket by a bent piece of filled with tap water through the epout, which is then corked, and the kettle is heated on the fire or gas stovs; the first small quantity of water which distils into the bottle should be thrown away and the distillation stopped before the residue is dry. For drinking purposes, the distilled water chould be passed through a charcoal filter to aërate it. The eketch shows the distilling and condensing arrangement.
Making Purse Nets for Catching Rabbits. Purse rabbit nets are square worked on a 2 -in, mesh, using ten or twelve rows of the same number of etitchee. Flax sewing twine, bought in skeins, is suitable. The draw line can be rove thitough all meshes round the net, and attached to a brass ring for pegging over the rabbit's hole, or a ring may be hitched to each corner and the line rove through the rings only, in which ease ths line is pegged over the hols and not a ring.
Removing Enamel from Mahogany.-To remove enamel from mabogany panels, take a bucketful of freshly made limewash and add 2 lh . of common washing soda. Apply to the panels with an old brush. Soveral applications may he necessary. As the enamel softens, scrape off with a wedge-shaped piecs of wood. Swill off with plenty of clean water. Should this treat ment turn the panels darker in tone than desired, the colour may be restored again by wiping over with oxalie acid, 立oz. to 1 pt . of water. Swill off again with clean water, then wipe over with common vlnegar to remove any trace of acid.

Transfer and Re-transfer Papers for Lithography. -To make yellow transfer paper, mix together equai quantities of hest flake white and isinglsss or gelatine, adding sufficient gamboge to give the required tint. Put the ingredients in water, and heat them over a slow fire until dissolved. Then strain the mixture through a piece of muslin to get rid of the coarser particles, and, while it is still quite warm, spreadit, hy means of a large flat camel-hair brush, on one side of smooth, thin paper cut to convenient sizes. The paper, when dry, should be passed through the press over a heated lithographic stone. To make re-transfer paper, mix in tepid water one part of best ground plaster-of-Paris with three parts of shoeniaker's' paste free from alnm, adding a small of shoeniakers paste free from ainm, adiang a sman double musliu into a jar, and Epread cool, with a flat camel-hair brush, on rather thick paper.
Replacing a Broken or Cracked Window Pane.Knock out the old glass and putty. This can be done with an old knife worn down to about 2 in . or 3 iu . from the handle. When the knife has made its way into the putty, keep it flat against the window frame and hit it with a hammer. Work all round the frame in this manner until all the old putty is removed, care being taken not to chip the window frame by driving in the knife too far: The putty being removed, get a little paint, and apply it all round the rebate of the frame, and after it has dried a little take some fresh putty in the right hand and press a thin layer round the frame with the thumb. Put in the pane of glass, press it evenly all round to bed it in the putty, and fix it on each side with two small tacks driven into the window frame with a light hamner, allowing the heads of the tacks to protrude about in. Putty the outside of the pane all round and bevel it with a sharp knife, resting against the edge of the

Replacing Broken Window.
window frame and on the glass in the manner illustrated, pressing the thumb against the side A. The figure also shows the cut putty at B, the uncut putty at c , a portion of the framing at D, and the window pane at E. The glaz. ing is completed when the surplus putty on the inside has been removed. When ordering glass to he cut to size, first take the exact measurements of the window frame, and deduct $\frac{1}{10}$ in. from each edge, or $\frac{2}{8}$ in. from two sides; thus: if the window frame is 12 in. by 9 in., the glass will he $11 \frac{1}{7}$ in. by $8 \frac{7}{\frac{7}{8}} \mathrm{in}$., so that if the glass or frame is not quite square the glass will still fit in, besides allowing the square the glass wil still int in, pesides allowing the putty to bed ardainst the edges. Putty can be sortened over with the oil.
Vignetting Apparatus for Photographs. - The covers and hottoms of old plate boxes in which a hole with scalloped edges has been cut answer very well. They will stand some $\frac{3}{4}$ in. away from the negative -an essential in securing a soft vignette. The opening should he smaller than the size of the desired vignette, because the light spreads under the box. For head and shoulders, a pear shape is about the best; where thin portions of the negative occur under the vignette, cover porthons a piece of cotton-wool, pulling the edge loose. If the negative is thin or the light very hright, the whole shonld be covered with tissue paper.
Polishing the Panels of a Brougham.-After the carriage has the full amount of varnish on, it must stand by for at leust four months for the varnish to get thoroughly hard; it may then he very lightly faced down with pumice-stone aud water, and polished up with rotten-stone and linseed onl, using a rubber of some soft material. Should it have a dull look when finished, owing perhaps to too much oil being used, rub over briskiy with a mixture of equal parts of vinegar and oil applied with a pad of cotton wadding.
Speeds for Turning and Boring Metals.-For turning cast iron the speed of the joh past the tool may be 150 in . to 190 in . per minute; for wrought iron, 260 in . to 280 in , per minute; for yellow brass, 300 in. per minute; and for chilled rolls, 3 ft . per minute. In boring, the following speeds are recommended:-For cast iron, 80 in . per
minnte, and for wronght iron, 140 in . per minute. For screw-cutting in steel a suitahle speed is $7 \frac{1}{2} \mathrm{ft}$. per minute; it, however, should depend on the nature of the material, Bessemer steel, for instance, heing turned or screw-cut at a higher speed than cast steel. To determine spproximately the peripheral speed of the job in inches per minute, multiply its diameter in inches by 3 , or by $3^{\prime} 1416$, and by the revolutions per minute.
Gilding Lines on a Boat.-To apply transfer gold leaf to gilt lines, rub the varnish down smooth and paint the lines to be gilded with equal parts of good oak varnish and japanners' gold size, into which has beeu worked a little powdered chrome or ochre. In about half an hour, when "tacky," apply the leaf; press in contact, sund dust off the surplus with a camel-hair brush when the wholeis finished.

Converting Oak Branches to Charcoal.-When oak branches are so small that useful wood cannot be got out of them, perhaps the best way to utilise them would be to convert them to charcoal. simall branches are, however, not the best for making charcoal; large branches that can be fawn into $3-\mathrm{p}$ t. or 4 -ft. lengtha are most suitable; they lie close, and there is not an excessive waste during burning. With small hranohes the lahour of cutting up will be found to be very heavy; but if they were not cut up the branches would occupy very much space and the loss during burning would be heavy. The hranches may he cut upand then stacked in a circular mound, as shown in the figure. First of all, three or four wood piles should be driven into the. ground close together, so as to form a rough chimney. A ring should be marked around these piles, and four to eight shallow iurrows should be ploughed in the ground from the edge of the ring to the central piles.

Corverting Oak Branches to Charcoal.
The wood may now be stacked around the piles and heaped closely till it forms a monnd nearly as high as the piles and nearly as large as the ring. As a protective covering, the whole mound will now have to be covered with earth, turf, or wet clay. When this is fimished, the central piles may be removed, and lighted brands placed in the mouths of the furrows, when the draught produced by the central chimney will soon cause the heap to ignite. The burning should be curried on slowly; when the heat hecomes excessive, it may be moderated by placing a piece of turf over the furrow and damping the earth. When smoke cesses to issue from the chimney, turf or earth should be placed over the lulrows, and the whole of the covering well damped. The pile should be ailowed to cool somewhat before it is pulled down.

Cooling Air.-A simple metnod of cooling ail which is drawn hy a fan from the outer atmosphere is to make a frame and cover it with coarse canvas or cloth having large interstices, and across the top of the frame carry a pipe with small holes bored in it so that water can he made to trickle slowly over the whole of the canvas. The water could be cooled with a little ice if necessary. There must he a trough or channel to receive the water at the bottom of the canvas, and the frame must be erected to fit an opening so that the whole of the incoming air will pass through the canvas, Have the frame of good size so that the air will not he forced through it too swiftly.

Brush Polish for American Organs.-For a dull finish almost any kind of soft gum varnish is generally considered good enough; for a bright finish the following formuls is recommended: Shellac $40 z$., sandarach 3 oz ., Venice turpentine 1 oz ., oil of turpentine ђoz., camphor 10 gi., methylated spirit 1 pt. Carefully strain before use ; apply with a camel-hair brush. The hest results are ohtained when the work is done in a hot room. When many coats are applied, sufficient time should be allowed for the undercoat to harden properly, otherwise "checking" or shrinking, causing a cobweh appearance, will be the result. This fault is not so apparent on dull as on bright finished goods.

Applying Gold Bronze to Picture Frames.-Mix the bronze with japanners' gold size and trurpentine, and use it with a good body. The paint will never look equal to gold leaf; its durability will be increased, however, by coating with varnish.

Door Curtain to Contain Autographs.-A suggestion is here given for carrying out a design of an antograph door cortain, to be worked with coloured sills on a cloth ground. The curtain is 8 ft . long by 4 ft in width. The border is arranged to have a scroll of leaves on a stem, the leaves being worked all over so as to give

Design for Door Curtain.
a mass of dark colour. If the leaves are shaded green and the stems a rich brown a good effect will be produced. Winding round this wreath is a ribbon on which the autograph might be sewn; this will give al pretty appearanre without detracting from the general artistic effect. The scroll across the upper section of the dado of the curtain is also arranged to take autographs. This dado should be filled in with dark masses of colour. The central portion of the curtain might contain the outlines and stems of the leaves worked in shaded silk, the hranches being in shaded browns, and a little more fully worked than the leaves. The fruit might be in silk of a brighter colour so as to add brilliance to the compositlon. The leaves and fruit may be used for the
antographs if required, that is to say if the spaces in the horder and the top of the dado are not sufficient ; but it is suggested that the autographs should be placed on the fruit first aud then on the leaves, as the artistic effect will be better. The colonring must be left to the taste of the worker, and will depend much on the colour of the cloth adopted for the curtain.
Projection of Spiral Curves.-Assuming a parallel spiral, the method to be adopted is the same as that for the projection of a helík or single spiral line on a geometrical cylinder. The points A, B, C, D, in the accompanying illustration, when projected, give the

Projection of Spiral Curves.
lines in the elevation, while points E and F give the diameter of the cylinder. The left-haud figure shows the geometrical outlines, and the right-hand figure the shaded result.
Gold-lining Picture Mounts.-To gold-line moints for pictures, prepare a solution of strong gum urubic, and add a small quantity of moist sugar ; strain throngh musim. Placing a ruler where the line is dequired, with t quill make a full line of gum. In a few minutes the gum will become "tacky," aud pold leaf, cut in very narrow strips, may be applied with a tip, dabbed down and skewed in in the usual wily. This process will give a clean, durable line. Gold lines made by applying gold paint turn black in a very short time.

Keeping Water in Gas-holder from Freezing. Mix the water with commercial giycerine, or use a solution of calcic chloride instead of water in the tank. The most practical way of getting over the difficulty, however, is to insert a steam pipe into the tank of the however, is to insert a steam pipe into the tank of the the pipe, taking care not to allow the temperature of the water to get too high.
Finlshing Piano Cases.-Most varnished surfaces can be got to a dead level and brilliant gloss by frrst rubbing level with hair cloth or felt and finest-grade pumice powder, and bringing up the gloss with tripoii, crocus, rouge, or putty powder. All inequalities being removed, rub carefully with tripoli and oil, working with a circular motion till the Gurface is perfectly smooth and inclines to brightness. Wipe off all greasiness and well rub with dry putty and silk, and finally finish with flour, still using silk or the paim of the hand, which should be perfectly clean. It will require practice to find the most suitable varnish and the knack of imparting a brilliant gloss over the large surface of a piano.

Forming Concrete Window Slls and Heads.Make wooden moulds, wrought inside, of the dimensions and shapes of the heads and sills, arranging one side to be removable, as shown in the shetch. Wedges driven through iron straps tighten up ths mould when it is to be used. For the concrete, take one part by measure of Portland cement, one part of clean sharp sand, and of Portland cement, oue part of clean sharp sand, and

Forming Concrete window sills and Heads.

brick of, say, l-in. gauge. Turn these over on a boarded platform while they are dry, then, while water is being sprinkled on from a watering-can, turn the whole over twice or thrice, taking care not to use more water than is necessary to bring the cement and sand to the conis necessary to bring the cement and sand to the conshould be coated inside with linseed oil or soft soap to prevent the concrete sticking. It is laid on a boarded floor, and the concrete is filled in and punned with a rammer to well fill the corners of the mould and to ensure solidity. Leave the concrete abont 1 in. below the top of the mould, and float up this portion with a mixture of squal parts cement and sand, so as to forma skin of finer squal parts cement and sand, so as to form a skin of finer mould must now be left undisturbed for two or three days, when the wedges may be knocked out and the window-head romoved. Before being used, the latter should be stacked away for ten or twelve weeks-the longer the better-to bring out the strength of the cement. Sills can ba made in the same way, but the cement. Sills can ba made in the

Yellow Finish on School Furniture,-To obtain the yellow or amber tone seen on chairs and stools used in schools and clubs, dark-coloured shellac is generally used if the articles are finished by French polish or used if the ar'ticles are fnished cy rrench polish or spirit varnish. A niore prominent colour may be gained deal goods, size with patent size strongly tinted with Jellow ochre or lemon chrome. For best-class goods the varnish may be tinted with grmboge or madder.
Testing Gasplpes and Fittings for Soundness.The most satisfactory method of testing the sound. ness of gacpipes and fittings is to subject them to air pressure in excess of the pressure of the gas which will fow through them. All cocks having been carefully shut off, an ordinary pressure gauge is attached, by means of a piece of judiarubber tubing, to the nozzle of a gas bracket or pendant, and the cock turned on. Air is then forced in to the main service pipe by means of an ordinary force pump provided with a stop-cock, until a pressure of about 4 in . or 5 in . of water is shown on the pressure gauge, when the cock in communication with the force
pump is shut off and the gauge carefully watched. If all the fittiugs are sound, the level of the water in the pressurs gauge will remain constant. If, on the contrary, plessure gauge win remaln constant. if, on the contrary, gauge will gradually sink until it attains the same level in both limbs of the gauge.

Waterproofing Grey Millboards.-Dissolve 1 1b. of yellow soap in a gallon of warm water; also dissolve 11 b . of alum in a gallon of warm water, Dip the millboard for a l'ew seconds in the soap solution, and directly afterwards into tha alum bath, and then allow to dry. Another method of applying the waterproof solution is to add the alum solution to the soap solution, collect the precipitate on a piece of muslin and dry it, then place it in a bottls and add a little benzoline; the alumina soap will gradually dissolve in this, and may be thinned with more benzoline so that it can be applied to the millboard with a brush.
Removing 0il-painted Letters from Glass. Brush over the letters a strong solution of caustic soda, or a mixture of 2 parts of pearlash, 1 part of quicklime, and sufficient water to make it into a cream. Allow the liquids to remain on the glass fora few minutes, and then wash off with water. A second application may be made if the first does not remove the whole of the paint.
Making Soap Box and Tumbler Rack,-Any odd pieces of sound wood ${ }^{\frac{B}{8} i n \text {. or } \frac{1}{2} \text { in. thick may be used to }}$ maks the article illustrated, and the several pieces when cut out are put together with round brass-headed

A. Sodp Box and Tumbler Rack.

screws. The back basard measures $14 \frac{1}{2} \mathrm{in}$. long by 5 in. wide, and the side pieces 12 in . long by $5 \frac{3}{4}$ in, at the widest pırt. The tumbler rack is cut from a pioce of wood 5 in, by $4 \frac{1}{2}$ in., and shaped as shown in lig. 4, a round hole being cut in the centre to receive the tumbler. After all the pieces ars cut to their proper shape, rub them well with sandpaper, and flx them together. Two or three coats of oil or varnish will help to preserve the wood from continual dampness.
Preparing End Grain Wood for French Pollshing. --Cabinet-makers finish the end grain of wood ready for polishing with a finely set iron-faced plane, and where this does not leave the wood sufficiently smooth the steel scraper may be used. Some cabinet-makers use glasspaper held tightly over a pad of cork, wiping over with glue water or polish to raise or swell the grain during the operation, As this dries out it binds the fibres together, thus producing a hard, dry, smooth surface.

Making Stereotyper's Flong.-Flong may be made with two sheets of soft but tough matrix paper and four sheets of strong tissue, put together with stereotyper's paste. The paste recommended by an American anthority upon stereotyping consists of $6 \frac{1}{2} l \mathrm{~b}$. of Oswego starch, $2 \frac{1}{2} \mathrm{lb}$. of wheat flour, mixed in 6 gal. of water until all'lumps are dissolved. Add 12 oz . of common glue dissolved in 2 qt . of water, and 2 oz . of powdered alum. Boil, stirriug constantly, until the mixture becomes sufficiently thick. Let it get cold; then take what is required for a day's, usc, and add one-half the bulk of powdered whiting. Incorporate thoroughly, and pass the mixture through a sieve laving about twenty meshes to the inch. Lay one sheet of the matrix paper (previously soaked in water) on a 6 mooth flat surface; cover with a thin layer of the piste, well rubbed in. Next lay on a sheet of tissue, and smooth it down with ths utmost care, using either the hand alone or an iron roller. Then add paste and paper alternately until four sheets of tissue have bean added to the two sheets of matrix paper. Backing paper may be added after the flong has been beaten into form. If placed under a wet blanket, the flong will keep good for several days.

Facing and Staining Picture Frame Mouldings. -Patent or glue size and best whiting mixed and opread on like paint is generally used; several coats may be given. Or plaster-of-Paris and whiting in equal parts could be used. When quite dry, smooth down with glasspaper or, better still, pieces of pumice-stone of various shapes to fit the hollows, rounds, eto., using a coat of thinned-out whiting and size as a libricant, wiping off the surplus with rag and clean water. To wiping off the surplus with rag and clean water. To black in 1 part French polish and 3 parts spirit. Then polish with ordinary polish stained an intense biack by adding as small quantity of aniline black spirit dye.

Pollshing Razors.-To remove from a hollow razor the marks caused by grinding, a glazer is required. the marks caused my be of wood only or wood covered with leather on the edge, which must be dressed with emery of the various grades. The razor must bo laid lengthways on the glazer. The polishing should bs effected with crocus powder. The emery powder and cfocus must be mixed with mutton suet to a thick paste.

Re-colouring Brenzes,-Imitation bronzes, made of spelter metal, may be restored by careful washing, polishing with soft chamois leather, and lacquering warm With best silver lacquer. Re-bronziug must be done by electro deposit. Real bronzes may be restored by completely covering them in the sand of a brass and copper foundry, taking them out from time to time at intervals of two or three days, and rubbing them with soft chamois leather. When the desired colomr is obtained they may be lacquered with colourless lacquer; or if not lacquered, they will, if lubbed from time to time, improve in colour.

Making Saucepan Covers. - Sancepan covers of copper and tin are made in two shapes, as shown in gaction by Fige, 1 and 2. To make a cover like Fig. 1 ,
with the hurring machine, throw off a flange along the top edge of the rim. Now with the same machiue take up on the covers an edge of such a size that the flange of the rim will fit into it. Pene down the odge of the cover upon the flange of the rim. Cut out a handle as shown in Fig. 4, wire it along both edges, bend it to the ohape shown by Fig. 5 , and rivet on,

Background for Photographie Portraiture.-For a background for full and three-quarter length portraits, a light bluish grey is the hest colour. It should not be a Hat tint, but graduated with sott clouds of various shades. To make such backgrounde requires considerable skill. As a makeshift for occasional work, the sheet may be stained with coffee to a light brown. If it is to receive a flood of light, it may be darker, and if in the shade, lighter. The exact tint is best found by experience. Or Maypole soap may be used, in which case an orange yellow should be chosen. In any case, the background should be stretched tight on a frame or suspended from a roller with a rod at the bottom. Creases are very objectionable.

Making a Plaster Rellef from a Photographic Negative.-To make a bas-reliof in plaster-of-Paris from a photographic negative, the process briefiy is as from a photographic negative, the process brieny is as bichromate of potash, made by dissolving l dr, of bichromate in 6 oz. of water; allow this to dry slowly (generally taking twenty-four hours) in contact with waxed or French-chaiked glaes. The glazed surface thue obtained is placed in contact with a suitable negative, that is, one containing considerable contrast combined with good gradation, and exposed to the light. In half an hour or in five or six hours, according to the strength of the light, a faint image will have been printed on the gelalight, When printed, the gelatine is firmaly cemented to a sheet of glass with isinglass or other powerful adhesive, and allomed to soak in oold water for about aix hours.

bend a thin strip of metal to the shape of the section this strip of metal when straightened out fiat will give the diameter of the circle for the cover in the flat. If a number of copers of one diameter are required, they are usually hollo wed in "tacks" of four or six, according to the strength of the material. A wood block containing a slight hollow and a bullet-faced hammer are required. Hold the edge of the covers over the hollow in the block, and, using the roundest face of the hammer, drive the metal down to the hollow, working round the edge with regular blows, and continue working round in a series of concentric circles towards the centre until the cover is hollowed to the desired height. Again commencing at the edge, with light, regular blows, go once mors over at the edge, with hollowhe, regurface until it is amooth, Now separate the covers, and, with a burring machine, throw off a flange proportionate to the size required (usually about量in. to sin.). The cover shown in Fig. 2 is begun in the Bame way as Fig. 1, but when hollowing it is pitched up in a deeper hollow with the heel of the hammer, or with a hammer specially made for the purpose, until the ridge a hammer specially made ior the illustration is formed and the outer edge is left all puckered. Asisuming that the cover is to be finished without the use of a swage, the edge ou the top of the cover should bs worked up sharp with a mallet upon a bright round head; then form the side of the ridge, worked round carefully, with a square-faced hammer (the front edge of which has been rounded off) upon a bevel stake. The outer flange may then be thrown off upon a bright anvll, using a mallet to remove the puckers, and a round-faced bright hammer to work it the puckers, and to the shape. The cover should then be planished emooth and true, and the top also planished to finish it. From this point the working of both covers is the same. Cut from an are of a circle, equal in length to the circumference of the body the cover is to fit, a rlm about lin. deep, with allowances for flanging and odging, fus shown by Fig. 3; then work over an edge along the dotted line on the inner curve, and flatten this edge down so as to atiffen the rim. Turn the rim round, fit it to the body, and solder it together at the ends. Then,
afterwards soaking for a further time in a 1 in 4 sorution of citric acid, and finally in water. When the utmost possible arnount of relief has been obtained, the supsrfluons moisture is carefully removed with the edge of a flotimg board, and oil is poured over the gelatine mould, and then drained off. The gelating relief is then placed in a dish, and the plaster ponred over it and allowed to get, after which the relief may be pulled off. The relief thus obtained is generally rather false owing to differences in colour-particularly if isochromatic plates are not used-being grossly exaggerated. Much may be done by gkilful retouching.
Gold Veins in Book Edge Marbling,-The gold velns in marbled paper, or on the marbled edges of books, may he produced as follows :-Let the rest of the marbling be thoroughly dry. Then beat well together 1 part white of egg, 1 part spirit of wing, 2 parts water. Let the mixture get clear then wet a small portiou of gold powder (shell gold will do), mixing well with the finger, and apply with a small carnel-hair pencil. Let it get thoroughly dry before burnishing, which should be done with a polisher made only moderately warta. The beginner should make several experiments beiore proceeding with the actual work.
Waterproof Dressing for Overalls. - Unbleached calico or drill sheeting is generally used for making overalls; all the seams should be double seam, For a dressing, really good boiled oil is perhaps the most durable, though some sailor's prefer raw oil, but hoth taks a loug time to dry and are apt to become sticky. Ihe following is safer for oilskins not in consthat use; boiled oil 8 parts, turps 2 parts, and melted beeswax 1 part. Warm the oil, add the wax, stir in the turps, and apply warm. The first coat must be well rubbed in. In an hour or so wipe olf any surplus that may have drained down to the lower' edge. When thoroughly dry, add equal parts of bolled oll to the former mixture, and lanuplack or ochre as deaired. With this paint give the material two more
coats, letting each dry thoroughly in a cool, shady place.

Remedy for Smoky Chimney.-Ths most prolific cause of smoking with open ranges is the large open space that exists over the range and forms the mouth of the chimney. The draught in these ranges is not vary keen at the best, and the large area allows quits cold air to rest there and to pass freely into the chimney, with the worst possible results on the up-draught of smoke and heated air. This is overcome by the use of a blower, which is a sheet of metal carried across the front of the range opening at the top, from jamb to jamb of the mantelpiece. This causes all air entering the chimney to come closer down to the fire and receive warmth, for while cold air impedes the up-draught, hot air accelerates it. A cranked metal pot will often prevent the down-draught, whilst a blower will stop the general smoking. The blower can be made temporarily of card. board or paper to find the depth required.
How to Malse a Metalworkers' Mandrel Dolly.A mandrel dolly is made by first fixing the mandrel securely to a strongly made bench, by means of iron clamps passing over the square and of the mandrel, and holding them in position by nuts and bolts, as shown. On the end of the hammer shaft an iron hinge is fixed,
fill it, so as to allow of frothing. The lyes are made by adding canstic soda to water. Two lyes are otten employed, and usually three, one at 10° Tw. (4 per cent.), ons at 16° Tw. ($6 \frac{1}{2}$ per cent.), and the other at $24^{\circ} T w$. (8 年 per cent.). The fat is run iuto the pan, and the weaker alkali is gradually added while bolling; the stronger alkali is then added, aud the mass boiled for several hours until clear. The pan is then allowed to cettle, salt added, and, after thorough stirring, the wasto lye may be run from the bottom of the pang. The strongest lye may now bs added gradually, boiling and stirring thoroughly until the soap boils clear; then allow to settle again, and run off the soap into frames, taking care that any waste lye at the bottom does not go along with it. The strength and amount of the different lyes vary, but on the average 15 lh . to 16 lb . of caustic sods. are employed for 100 lb . of fat.
Stitching a Square Edge to the Cushion of a Couch. -To stitch up the front edge of a couch seat so as to procure and retain a fine point, the tools required are a double-pointed 8 -in. mattiress needle, a regulator, which is something like a broad flat packing needle, and a ball of strong twine. Insert the regulator about 4 in. from the

How to Make a Metalworkere' Mandrel Dolly.
and when this ls done, the hammer should be held flat and trus in position upon the mandrel, and the position at which the vertical part of the hinge is to be fastened to the upright carefully marked. Then secure the hinge in the required position. Now fasten a stont lath of ash, to act as a spring, at the top of the upright beam to an iron bracket, as shown, and over the opposite end of the lath fasten a leather strap; then fasten the lower end of the strap round the hammer shart, so that the hammer is held suspended about 8 in. above the work. When using the hammer, grasp the shaft close to the hammer head, and swing it down against the resistance of the ash lath to produce a blow upon the mandrel.
Paste for Laying Linoleum and Oilcloth. - To make cheap fiour paste, suitable for laying lincleum and oilcloth, mix rye flour with a little cold water, then add boiling water, well stirring the paste while the water is being poured. Melt some glue size and add to the paste while both are hot. Stir well. The more size is added the greater the strength of the paste. As a rule, "Inlaid" linoleums require very strong paste. A little alnm dissolved in the paste is a preservative. If the paste is too thin, boil it; to evaporats eome of the water.

[^0]front edge of the seat, and work the flocks, or whatever the stuffing material is composed of, well up to the edge, pricking the regulator in about every 6 in. The first stitch is known as the blind stitch, as it cannot be seen on the top of the seat. Thread the needle with twine, pass it through the front a little below the stuffing rail, and out at the top of the seat about 4 in. from the front edge. Without pulling the needle right out, back it out again on the front 1 in. beyond the point at which it was first inserted. Repeat this operation along the whole of the front, puiling the stitches tight; that will drap all the fiocks within the stitch on to the front edge of the stuffing rail. Now insert the threaded needle again about $\frac{y}{2} i n$. higher than the last stitching; passít through the top of the seat, and re-insert it about lin. farther on, stitching through backwards and forwards, letting the needle come out midway between the last stitches; pull the stitches up tight, and repeat the process as often as necessary, every row of stitches coming nearer the edge, until a fine point has been obtained. The edge, when finished, is similar in appearance to two or three coils of rope. Should the edge be very soft, or give in the middle, the stitches will he found to be slack or the rolls not stuffed firm enough. Take particular care to use the regulator hefore every row of stitches.
Cement to withstand Paraffin Oil.-Glue is one of the best materials for withstanding parafin or any other oil. Another cement is made by dissolving 1 part of caustic soda in 5 parts of water, and boiling wath 3 parts of resin till dissolved. Afterwards stir into it about half its weight of plaster-of-Paris or chalk, and use at once, as it hardens rapidly. This cement would take the place of red lead or white lead. Common yellow soap is also recommended for withstanding paraffin.

A Table Baok-rest.-Prooure a board 13 in . wide and in. thick, planed smooth and as fres from knots as possible. A piece 15 in . long, shaped as shown in Fig. 1, forms the hoard A (Figs. land 3). The star at the top of the board may he cut with a fret-saw. Rub with glasspaper and make all the edges quite smooth. Cut two pieces 8 in . hy $2 \frac{1}{2} \mathrm{in}$. for the feet, and shape as shown in Fig. 2. When smoothed, serew them to the back of the board, in the position indicated hy the dotted lines, at B (Fig. 1); see also B (Fig. 3). Procure a piece of wood 11 in. long by lis in. square for the rest 0 (Figs. 1 and 3), bevel the edges as shown in Fig. 1, and secure it to the front of the board byscrews putin from the back. Procure two pieces of sheet brass 2 in . long hy $\frac{1}{2}$ in. wide, and about sin. or $\frac{z}{3}$. thiok. Drill a hole ahout $\frac{1}{2}$ in. from one end of each strip, file the strips to the shape shown in Fig. 1, and screw them to the rest with round hrass-headed screws. Cut one piece of wood 10 in . by 2 in , and screw it to the back of the board 3 in . from the top, as indicated by the dotted lines at D (Figs. 1 and 2). Out another piece of wood measuring $12 \frac{1}{3}$ in. hy 3 in. for the support E (Fig. 3), and secure it to the centre of the cross-piece \mathbf{D} with a 1H-in. hack-fold hinge, as shown in tho illustration. Procure a piece of fancy cord, secure one end to the board, insert the other end in a small hole bored through the support, and make a knot to keep it in place, as shown at F (Fig. 3). Make all the edges and corners quite smooth. The book-rest will look very well indeed
by drawing the sllde, which brings the spirit lamp in contact with the vapour from the oil cup; when flashing occurs the temperature is noted on the thermometer immersed in the oil. Water is used in the hath for oils which flash below $100^{\circ} \mathrm{C}$. ($212^{\circ} \mathrm{F}$.), butfor oils which flash above that temperature mercury must be employed.
Heating Cylinder from Two Fires, - A breakfast room grate and a kitchen range, if the two fres are hack to hack, can be utilised to heat a cylinder, There must be a boiler in each fire, the saddle boiler in the range heing connected to the cylinder in the usual way, and the boiler put in the grate flre will he connected either to the pipes from the range hoiler or independently into the cylinder. By this arrangement sither boiler will do all that it is capahle of doing towards heating the contents of the cylinder, and they will work separately or together without trouhle, and without the use of stopcocks or anything of this kind. No alteration is needed to the flues of either stove.
Use of the Optical Square.-This is an instrument 2 in . diameter by s in. thick, to he held in the hand and arranged as shown in the accompanying flgure, in which A is the sight hole where the eye is placed, B and 0 are openings in the rim through which rays of light can enter. from poles at D and E, only farther off ; Fis a glass half silvered and half plain, the junction line being in the plane of the instrument: G is a whole mirror. In using

How to Make a Book-rest.

If made of walnut and finished by French polishing. When in use, it is placed upon a table, and the support adjusted by means of the cord.
Regilding Soldered Joints of Plated Goode.An electrogilding solution made as follows is re. quired: Dissolve loz: of potassium cyanide in 1 pt . of distilled water made hot in an enamelled iron saucepan; suspend in this two strips of pure gold attached to copper wires and connect to a battery of two Bunsen or Daniell cells for an hour or more. Remove the strip of gold attached to the zinc element of the hattery, and substitute a strip of silver. If this takes a nice gold colour, the solution will be fit for gilding. If not satisfactory, pass the current through the hot solution until it will gild properly. The cost of cyanide and water will he only a lew pence.
Ascertaining Flash Point of Oils.-The flash point of oils is determined in two ways-by the "open test" and by the "close test." By the first method a small porcelain or metal dish is partly filled with the oil and placed on a sand bath heated by a burner; a thermometer suspended with tho bulb in the oil registers the temperature. As the temperature rises a lighted taper is quickly passed over the surface of the oil, and when a falnt vanishing flame is noticed, the temperature is read off; this is the flash point. For the close test method the apparatus devised by Prof. Ahel is employed; this is fully described in the Petroleum Aot of 1879. The apparatus is really a jacketed copper waterbath heated by a burner; the oil is contained in a smail cup fltting into the lid of tho hath, and there are thermometers in the hath aud oil cup. The oil cup is covered meters in lid and a slide, and hinged to it is a small spinit lamp. When the slideisdrawn out the spirlt lampistifted over the oil cup so that the flame is right over one of the holes in the lid, and on replacing the sllde the lamp assumes its vertical position again. The testing is done
the instrument for sighting poles as shown, it would b held in the left hand; wlth the eye at A, the pole D would be seen through the opening B and the plain part of the glase F; the observer being at the point where a right angle would he measured between DH, ©H. Rays of light from pole E will reach mirror G and be reflected from there to the silvered part of glass F and thence to from there to the silvered part of gilss F and thence to the piece of pole J seen hy direct vision being exactly over the piece of pole K seen hy reflection. If in using the instrament the poles do not coincide, the station of the observer must be shifted until they do, or as an alternative one of the poles must be shifted. If the poles appear to coincide at the junotion of the glasses but not to be in a straight line, it will he dne to one of the poles being at a higher level than the other.

Making Blowers for Regibter Stoves.-Commence hollowing the semicircular blower hy workiug round the circular part with a series of regular blows from a hullet-faced hammer, and holding the edge of the metal over a shallow hole in the hollowing blook This will curve the metal to a slight depth round the edge. Then hend the metal ahout lin. from the edge along the straight part, so that it makes a sharp angls this will keep the bottom stiff while the remainder of the hollowing is done. Now oommence on the circular part again, and work round from the odge in towards the centre, in a aeries of concentrio clrcles, working it in a deeper hole if necessary than that used for commenclag in. When the blower is hollowed to the depth necessary, go over the hollowed part again with a series of light regular hlows until it is rendered smooth. Knock out smooth the breas along the bottom, and then beud the ends round to the same curve as ths hollowed part. A few hlows from a flat-faced hammer, delivered upon the centre or flat part of the blower, may be necessary to get it so that it will be free from twist.

Value of Gold and Silver. - Gold has a fixed market valus per ounce which never alters. Pure gold (24 carat) is worth $£ 45 \mathrm{~s}$. per ounce troy ; 22 carat gold (guinea gold or wedding-ring gold) is worth S3 178. 1ld. per ounce troy; 18-carat gold is worth £3 38. 9d. per ounce; 15-carat gold, £2 $138.1 \frac{1}{2} d . ; 12$-carat gold (half gold, half alloy), £2 2a. 6d. per ounce; 9-carat gold (the lowest quality that is hall-marked in England) is worth $£ 1$ lla. 101d. per ounce. The value of ailver fluctuates according to the market; it has been worth 5a. per ounce troy, and it has fallen to 2s. The Liondon market valus of silver will be found in most daily papers under the heading "Market Reports," amongst the "Liondon Metals."
Cange of Clicking Noige in Hot-water Pipes.-The clicking noise that proceeda from hot-water pipes arter hot water has been drawn ia caused by the expanaion of a pipe (or pipes) when auddenly heated. If the pips ia cold, as is probably the case, before water is drawn off, it becomes suddenly hot when a tap is opened, and begins to expand lengthways. Wherever the pipe is ao tightly fixed that free expansion is impeded, the resistance is ovarcome with a little jerk that causea the clicking noise. Pipes laid under floora across joists, whers notches are never cut very deep, often give out the noise desoribed. The same thing sometimgs happena with circulating pipes as well as branches, though, in this case, it may ha the audden cooling and contraction of the pipea that cauae the noise.
Purple Stain for Wood.-To make a purple atain, obtain llb. of logwood chips or 1 lb of logwood extract, 1 lb . of pearlash, 2 oz . of powdered indigo, and 3 qt. of water. Boil the logwood till the full strength is obtained, then aud pearlash and indigo. The stain may be used hot or cold.
Fitting Worm Sorews and Raiged Frets to a Banjo.-To fit worm gerews and raiged Irets to a banjo, get a pair of plates with machines fitted, and adapt them to the head, of the banjo by aquaring the

Fitting Worm Screwa to a Banjo.
"bcalloped" gides and slotting the present holes quite through, aimilar to the gketch. Kaiged freta are fitted by making a "saw cast," putting in a little powdered ahellac, heating the fret-wire, and presging it into place. Specially prepared fret-wire can be obtained for the purpose.
Varnish for Cork Frames.-For a varnish auitable for cork frames intended for indoors, thers is nothing to equal apirit varniah, which consista of methylated epirit 1 pt., shellac $40 z_{0}$, and resin 2 oz.; it dries quickly and givea a glossy finish; a cheap quality will do. Apply in a warm room, and well stipple it in all crevices. Thin out with apirit for the first coating, but use it thicker for the second or finishing coat.
Rougheasting Walls.-The walls are firat plastered with lime and hair mortar, having, for the best clase of work, some cement added to improve it. After this has aet, a gecond coat of mortar, mixed so as to be fat, is spread as evenly as possible over the last coat, and while this is quite soft the atones to be used are dashed forcibly agginst the work, to which they adhere. Care should bs taken to see that the qand and stones or pebbles used are free from dirt, and if any clay is found mixed with the aand it will require warhing. The stones should be soreened oo that they will be of about the aame size. Sometimea a coat of lime-white and sometimes ochre is used for colouring the roughcast.
Felling a high Chimney Shaft. - To ensure that the atalk ahall fall in a narrow compase, it will bs deairable to fix three guy ropes from the top, equally divided round the circle, and mads fast at a distance from the baas of the shaft at least equal to half the height. Openinga ahould be cut in the brickwork of the base on opposits sides, and 9-in. by g-in. gtude inaerted, about 4 ft . long, between 9 -in. by 3 -in. plates running through the thickness. Before making the openings, 9 -in. by 3-in. raking ahorea both ways ahould be fixed at each corner of the baas. Two openings in each aide, with a brick pier left between, would, in the writer'a opinion, be required; and when this is done, if there la no sign of cracking or Bettlement, and the studa are taking a good bearing, the intervening pier in centre
of each aide may be cut away. Everything must be done Byatematically, working at opposite aides in turn. Wasts wood should then be piled round the base in gufficient quantity to ensure that the wood studs will be burnt through, and lighted at aeveral points. A couple of look-out men during the operations should be posted gufficiently far off to command a view of the chimuey from two directions at right angles, and near enough to warn the men if any signe of premature falling were to occur. Local circumstances and the construction and condition of the chimney stalk may render some variation ou the above method deairable. A cheaper method, end one that would probably be satisfactory in the hands of an expert in explosives, would be to explode a amall charge of dynamitg in the bottom of the ahaft, or to bors holes round the base and insert chargea of gunpowder, to be flred simultaneously.
Tuck Pointing Brickwork: Methods and Matsrials. The ordinary process of tuok-pointing ia as followa. The joints of the work to be pointed are raked out to the depth of ${ }^{3}$ in., then filled in with atopping. If the stopping is not coloured, all the work is rubbed over with a goft good-coloured brick, 80 that the jointe may look like the face of the bricka. A sruall groovs ia formed along the centre of the Aoint, and, the noortar having been allowed to aet a joint, and, the mortar having been allowed to aet a with whits lime putty, till a raiaed line of putty projecta beyond the face of the joint (aee illuatration). The edges of the white line are cut perfectly parallel by the pointing knife held against a straightedge, and drawn along ao as to remove the superfluous putty, leaving a line, about $\frac{1}{5} \mathrm{in}$. to z in. in widin, standingout beyond the facs of the work as far as it is possible to maks it. This gives the work the appeairance of being a good piece of brickwork, executed with square-edged bricks and clean white joints. The effect, however, does not often last loug, the first sharp winter usually playing havoc with the projecting jointa. If the pointing is to laat, it is better to use the ordinary weathered joint executed in cement.

Tuck Pointing.
Whits lims putty is made of pure lime slaked with water and atrained off whila hot (the consistency ahould be about that of cream) ; it is then mixed with washed ailver. sand-but a better material is marble dust-in the proportion of 2 or 3 of aand to 1 of lime. Blus pointing mortar ia made by using aifted cupola or forse coal instead of aand, and black pointing has lampblack added to the other materiala. Small aectious at a time should be prepared for pointing, for if the mortar is allowed to get hard, a groove for the white line will be difficult to make. To colour the work for yellow bricks, use lib. of green copperas to about 5 gal. of water; for red bricka, 1 ib. of Venetian red and 1 ll . of Spaniah brown to li gal. of water; the quantity of colour must be varied according to the tint required.
Watch Carried in ths Pocket Losing Time.All watchea (except extremely fins ones) lose to a certain extent in the pocket and go faster when lying horizontally, the differencs varying from thirty seconds to one minute per day. It ia caused by the more free vibration of the balance when poised on the end of one pivot only than when rasting on the aidea of two pivota, as it does when in the pocket. If the difference in a watch exceeds one minute per day, most likely the balance is not truly poised-that is, it is heavy at ons point of the rim-and acts more or less as a pendulum when the watch is vertical. To remedy it, remove the balance and taks off the hairspring. Then place the balance with ita pivota resting ou two finely poliahed atraightedges, on which it can roll freely and be tested for poise, any fault being corrected by means of the sorews in the rim (if it has them) or by filing, if it is a plain balance. Poising tools are sold for this especial purpose.
How to Make Silver Bronze Powder. - The beat silver bronze is made by mixing silver leaf with honey or gum water, and grinding to powder in a mortar, after which the powder is waghed with water and dried. For a common ailver bronze, melt together 1 lh, of bigmuth and 11 b , of tin, and add $\frac{1}{2} \mathrm{lb}$. of mercury. Pour the amalgam on to a cold surface and grind to powder in a mortar. Another form of ailver bronze is símply pulverised white mica.
"Marine" Glue.-Marlne glue ls made from 1 part of indiarubber (cut into shreds) and 12 parts of coal-tar naphtha; these are kept in a bottle in a warm place and shaken from time to time till the rubber is dissolved; then 20 parts of powdered shellac are added, and shaking is continued until the mass becomes party. it is then poured on to a cold surface, allowed to solidify, and then broken up into small pieces, which should be molted and applisd as thinly as possible while still warm. Great care must be taken in making this cement, as the naphtha is very inflammerble.
Making a Chila's Chair,-The strong uegful chair illustrated below is suitable for children in their teens, and will stand wear and tear for a great many years, provided it is made from a hard wood. All the spindles can be made with spokeshave and plane, and also the top for the back and seat if desired; or they can be obtained cut to pattern for a desired; or they can be obtained cut to pattern for a seat, a piece 16 in . by 12 in . by $1 \frac{1}{2} \mathrm{in}$. is required, cut to the shape shown at Fig. 3. The underneath part can be left in the rough. Bore through it fifteen holes sin. diameter in a slanting direction, at distances given on Fig. 3. Into the holes at the sides fit eight spindles 10 in . long ($9 \frac{1}{3}$ in. when trimmed flush), $\frac{s}{4}$ in. diameter, tapered at the ends so as to fit tight in the holes made for them ; these spindles form sides for arm-rests. For the arm-rests two pieces are required, $12 \frac{1}{2} \mathrm{in}$. long, litin. wide, and $\frac{1}{4}$ in. thick, cut to

left on them. The scale can only be got rid of by grinding on a large stone, or otherwise by the use of pumice-stone and water, followed by dressing off with Tam-o'-Shanter stone. For cleaning up alter firing, try a solutiou of about 1 part of nitric acid in 6 parts of water, slightly heating the brass before plunging it in, leaving for a minute or two, then brushing with a stiff worn-out brush, and finally washing in clean water and drying in hot sawdust. The solution may be bottled and used over again, adding a little fresh acid from timg to time.
Strength of Sheet Iron Wator Tanks.-Rectangular tanks are tested as follows: ${ }^{\frac{3}{16}}$ in., 10 lb .; $\frac{1}{B}$ in., 5 lb . per square inch. The corresponding values for cyliudrical tanks are 40 lb . and 25 lh . per square inch. The cylindrical shape is almost invariably used when the pressure exceeds about 12 lh . per square inch. The resisting powers of all tanks that are not spherical or eylindrical are iucreased by the use of internal stay-rods.
Photographic Mountants.-The best of all photographic mountants is starch. Place a teaspoonful of crushed starch in a teacup and mix into a thin of crushed starch in a teacup and mix into a thin boiling water till the starch thickens. Allow to cool, remove the skin from the top, and the starch is read. for use. When more than two days old it does not answer well. The following have also been recommended, and will keep a considerable time. No. 1.-Dissolve loz. of white dextrine in 3 oz . of water, add 1 oz . of powdered starch, and straid; then warm until the solution becomes clear. Now add about 40 gr . of white sugar and about

How to Make a Child's Chair.
the shape shown at Fig. 4; through thase are bored five holes, four holes $\frac{1}{B}$ in. diameter, and one hole $\frac{4}{4}$ in. diameter, at distances shown on Fig. 4, starting from the front part of the arm into which the spindles fit. The top for the back is cut from 1 -in. wood to the shape and measurements shown at Fig. 5, and has holes bored halfway through to receive the back spindles, of which seven are required, 20 in . long, $\frac{3}{4} \mathrm{in}$. diameter, and tapered at the ends to fit into $\frac{\sigma_{8}-i n . ~ h o l e s . ~ F o r ~ t h e ~ l e g e ~ f o u r ~}{\text { a }}$ pieces are required, $15 \frac{1}{2} \mathrm{in}$. long, 1 in . diameter, and tapered a little smaller at the top to fit in the holes made for them in the seat, which should be $\frac{7}{8}$ in. diameter. Fitted in the sides of the legs are two spindles, $10 \frac{1}{2}$ in long and $\frac{s}{1} \mathrm{in}$. diameter in the centre, tapered at each end to $\frac{1}{2}$ in. diameter; into these is fitted across a spindle 15 in . long and $\frac{1}{2} \mathrm{in}$. diameter. Before fitting the legs into the seat, fix the spindls into the legs, and then the legs into the seat; the legs are 14 in. long when trimmed fush with the seat; also trim the back and arm spindles flush. The arm-rests must be fitted on before the top of the back, so as to allow two of the back spindles to pass through the ends of the arm-rests. Then fit on the top of the back, and the chair is ready for decoration hy paint or enamel. The measurements could be altered so as to make the chair suitable for an adult.
Cleaning Sheet Brass after Annealing. - Large sheets of brass should be annsaled in a properly constructed muffe or furnace; small pisces may be dons in an open fire of cluders or small coke, not too hot. Heat the plates to a dull red heat ln the dark, and leave to cool off. They require careful watching, or they will burn. Some brsss plates, after being rolled, annealed, and washed in sulphuric acid and water, have a red scale
half a dram of a 10 per cent. solution of carbolic acid. No. 2.-Soak 1 oz . of gelatine in 4 oz . of water for an hour or so, then add $\frac{2}{2} \mathrm{oz}$. of chloral hydrate, keepiug the solution hot during this addition. Or a good plan is to dissolve the chloral hydrats in a portion of the water and then add whilst hot. A few drops of a seturated solution of carbonate of soda should be added to render it faintly alkaline. This mountant is oxtremely adhesive and does not penetrate the paper, so that it is specially suitable for mounting glazed prints, which lose soms of their brilliancy when the mountant is very wet.
Chomical Fire Engine,-The chemical fire ongine is fitted with two tanks, one of which contains a solus tion of bicarbonate of soda and the other sulphuric acid. By allowing the acid to flow into the bicarbonate carbonic acid is evolved, and the pressure induced forces the liquid through the hose pipe. When the liquids are mixed there is present a solution containing sulphate of soda holding carhonic acid in solution, and this has been found very effectual in putting out fires.
Preparing Moonilght Soenes for Diorama.-The high lights should bs cut with a sharp knifs, each cut being horizontal, and from 1 in , to 3 in . in length. Take care the cuts do not run into each other. '1'hs path of the moonlight across the water should be cut thickly and close, especially at the horizon, getting broader as the bottom of the picture is reached. A few cuts to represent ripples about the other part of the water will give a nice effect. A good light must be placed behind the picture, the light in front being very dim. For a small subject there is no necessity to cover the cuts with gauze; the movement of the painting as it travels along wlll give the shimmering effect.

Lens for All-round Photographic Work, etc. For all-round work with a whole-plate camera, procure a rapid rectilinear of about $9 \frac{1}{x}$-in. focus by a good maker, such as Ross, Dallmeyer, Wray, or Taylor The components of the lens should be of different foci, so that varying sized plates may be used, or different, angles included. A lens of this kind may be made to do duty for a variety of purposes. For example, quoting from one maker'g llst, a lens of 9 -in. focus covering a whole plate at fall aperture ($f / 6 \cdot 3$) will, when stopped dorvn to $f / 113$, cover a $10-\mathrm{in}$. by 8 -in., or to $\mathrm{f} / 22 \cdot 6$ a $12-\mathrm{in}$, by 10 -in. The lens is composed of two compound lenses of 14 in. and $194 i n .$, covering plates, when used at $f / 12{ }^{\circ} 5$, of 10 in . by 8 in . and 13 in . by 11 in . respectively. The lens is listed at $£ 16 \mathrm{l} 10 \mathrm{~s}$. Thus, for architectural work, where a doublet is most needed, the lens might be used in its entirety, and on a $12-\mathrm{in}$. by $10-\mathrm{in}$ p plate if in a cunfined situation. When portraits ol landscapes where good perspective is an important consideration are attempted, the single components or a smaller plate must be used. It must be borne in mind that the valne of the gtops varies with the lens. For example, a stop about 1 in. diameter, which, when used with the lens entlre, was valued at $f / 8$, would become, approximately, $f / 22$ and $f / 32$ when used with the single lenses. Lancaster's combina tion rectigraph is on the eame principle, and costs $£ 210$ s.
Following the Underelde of Ridge Roll.-To hollow the underside of a ledge for covering the joint of a roof as shown in the accompanying sketch (Fig. 1),
(probably about sixteen) on to a quarter-plate piece of clean glass that is free from scratches and bubbles, and squecze well into contact by placing a sheet of blottingpaper over the back and driving ont air bubbles. The prints must be placed face downwards on the glass. Put the glass in a printing-frame and hang it flat against a wall in a full light. Extend the camera to twice the focus of the lens and place it at the same distance from the printing-frame, measuring hoth ways from the stops. Having focussed very accurately in the centre, stop down until the ontermost pictures are sharp. Use slow plates and give two exposures, one double the other. These negatives should be enlarged on to bromide paper 24 in . hy 18 in., which will give 6 in. to each picture. Pictures as nearly the same as possible in tone shonld be chosen for enlarging together. Each picture could, of courge, be enlurged from a separate negative, but the expenditure of time and money would be considerable. When developing a sheet of this size the developer can be applied with a large pad of cotton-wool or a flat soft brush, first wetting the print with water to slow development.
Height of Domestic Hot-water Expansion Pipe. -The expansion of water in these apparatus never exceeds 1 in 30; that is, the top water line in the apparatus never stands higher than the cold-water line in the cistern which feeds it, more than 1 ft . for each 30 ft . vertical height to which the apparatus extends. It is seldom that an apparatus of this kind

How to Hollow the Underside of Ridge Roll.
the end of the piece of wood shonld be marked ont and a small plough groove made, as shown at Fig. 2. The greatel part of the superflnous material can then be cut away with a mallet and chisel. The surfaces can be finished with a broad rebate plane or, better still, by a jack plane (or panel plane) with a side slip, which takes off es shown at Figs. 3 and 4.
Obtaining Smooth Surface on Glass Balls.-To get a perfectly smooth surface on glass balls direct from the moulds, remove the onter hard skin of glass by revolving the balls with a little fine emery powder and water after that they will grind themselves smooth. If a polished surface is required, the balls will have to be revolved with plenty of dry rouge, colcothar, putty powder, or'other rather soft polishing powder quite free from grit.
Darkening Light Brown Leather Shoes.-To darken a pair of light till shoes, give them a couple of coats of Propert's dirk staiu, and afterwards polish with the darkest brown cream thit cin be obtained. If theleather has not becn creamid lefore, a couple of coats of the has not becu creamed before, a couple of coats of the cream takes well afterwards.
Enlarging a Quantity of Small Photographs.To enlarge to cabinct size, with as little expense as possible, a considerible number of small photographs, stamp size, the prints must be copicd the same si\%e, aud the neratives thus obtitincd eularged non bromide paper, If the prints are unmounted, proceed as follows:-Soak them in water, and, while they are still in the water, get as many as can be accommodated
exceeds 60 ft . vertical height, and at this height it is seldom that the water is anywhere near boiling point in every part of the apparatns (except the cold supply pipe), as the 1 in 30 rule requires it to be The common practice, therefore, is to let the expansion pipe extend at least 2 ft . above the cold-water line in honses of moderate size, and 3 ft . or more in tall houses. This is easily remembered, quite safe, and applies to all systems of apparatns. The quantity of water held in the apparatus makes no theoretical difference. In practice, it may mean that the large quantity does not get so hot.
Making Liquid Malt Extract.-To prepare a small quantity of liquid malt extract, cover the malt with water and heat to a temperature of 180° F. for an hour, then press out the extract from the grains. The addition of a small quantity of spirit of wine will prevent it becoming musty. On a large scale, the malt is thoroughly exhausted with sufficient water, and the liquid concentrated in a vacuum pan at a temperature of about $180^{\circ} \mathrm{F}$. A steam heat (i.e. $212^{\circ} \mathrm{F}$.) spoils the malt extract to some extent.
Oiling Watches and Clocks.-In choosing the oil to be used for watches and clocks, it should be remembered that a watch will generally go from two to three years before the oil dries up. A clock, as a rule, will go from three to five years, according to the situation of the clock and the fit or its case. Dried up oil must always be remoyed before applying flesh; thus a watch requires cleaning every two or three vears. Watchesrequirea very thin light oil, clocks a heavier oil; clock oil would soon stop a watch, and watch oil would soon run away from the pivots of a clock.

Dimensions of Canoe to Carry One Pergon.A canvas cance of the following dimensions would carry one person of ordinary welght on about 4 tin. draught, but by adding 2 ft . to her length she wonld be considerably easier to propel :-Length over all, 10 ft. 61 n. considerably easiel topropel:-Length over all, io ft. 6 in.; beam on load water-line, 271 n . ; draught amidships, $4 \frac{1}{2}$ in. draught at ends, $3 \frac{1}{2}$ in. $;$ freeboard amidships, 4 in.; free board at ends, 7 in.; the greatest beam being on load water-line, and at a distance of 6 ft . fiom the bow. Oak, rock elm, pine, or larch will be suitable for the canoe.

Determining Contents of Cylindrical Tank. First dstermine the contents of the tank in cubic feet. To do this, square the diameter in feet and multiply by 7854 ; then multiply by the length in fest. Thus the contents of a circular tank 7 ft . in diameter by 18 ft . high will be $7 \times 7 \times 7854 \times 18=38.5 \times 18=$ 693 cab . ft. (approx.). Then 623 gal. of water occupy 1 cub. ft., so that the contents of the tank will be about $693 \times 6 \cdot 23=4,317 \mathrm{gal}$. A quicker way is to reckon that a tank 1 ft . in diameter and 1 ft . high will hold that a tank 1 ft . in diameter and 1 ft high wilh hold 4.9 gal. Then, since the capacity will vary with the
square of the diameter and with the length of the square of the diameter and with the length
tank, it will be about $4.9 \times 7 \times 7 \times 18=4,320$ gal.

Shaping the Top Rail of Greenhouse. To determine the bevel or slant of the top cross-bar so that the

Shaping the Top Rail of Greenhouse.
piece shown in Fig. 1 shall be fitted as in Fig. 2, draw (Fig. 3) to scale as shown. Along a horizontal line mark off the span of the greenhouse to 1 in. to the foot aay, as indicated by A; then draw the vertical line shown at B, indicated by A; then draw the vertical line ghown at B, and mark of the amount of fall (that is the difference scale. Then the line o represents the correct fall. The end vew of the rail can now be marked out full size as shown at DEF, and the triangulas piece scored shows the amount of material to be taken off. A gauge may be set to the distance $G H$, and the wood marked by it; or a bevel can be set as indicated by the dotted lines, and the wood planed to suit it in the ordinary manner.

EHow to Gild Piano Fronts,-Artiletic designs aimilar to work seen on piano panels are usually put on by transfer process after the panels have been bodied up; the subgequeut pollshing and fmishing out will give an appearance of iulaid biass. In exceptional cases the panels are fluished out first, the decorative deaign is carefully cut in with oil gold size, the gold applied, and afterwards outilued and shidded with sienna. Occasionally engraved patterns may be seen, hut in the majority of cases only the outlined portions are gilt, the lines heing very fine. Piano fronts are often finlshed with a marqueterie
centre, with gold incised borders and corners. To gild these, it is usual to finish polishing the panels before passing on to the gilder, who will hrueh into the incislons several coats of parchment gize and whiting tinted with orange or lemon chrome; this mixture must bs apread evenly, as it sets very quickly. Clean off the be apread evenly, with a alightly wet rag stietched over a flat cork rubber ; avoid rubbing any more in the channels. When a solid basis has been thus formed, oil gold size is applied by means of a very fine hog-hair brush; it is spread evenly. When nearly dry, it is ready for the gold leaf, Which is out up into narrow strips on a special cushion; this is laid over the lines, and well skewed in by a tuft of wadding and camel-hair brush. Clean off all surplus as before, using a piece of cloth slightly damp with turps.
Pattern for Square Aquarium Top. - To make a perforated square zinc top for an aquarium, that could be taken off and put on as required, commence by drawing a plan and elevation (Figs. $\frac{1}{2}$ and 2) to the required size. Divide the semicircle $d d$ (Fig. 2) into six equal parts, and draw lines at right angles to 0 C to pass through the division points $b b$; also
 along $X X$ erect the perpendicular 0 o, and from 0 mark off lengths corresponding to $b \mathbf{B}, \mathrm{c} 0,0 \mathrm{O}$ (Fig. 2) ; join these points to 0 , and the lengths found, $\mathbf{B} 0, \mathrm{Co}, \mathrm{D} 0$, will be the true slants of the lines $b \mathrm{~B}, \mathrm{c} \mathbf{C}, 0 \mathrm{~d}$ (Fig. 2). To work the pattern, draw a straight line equal in length to OC (Fig. 2) ; mark upon this line a centre point A (Fig.3),

Pattern for Aquarium Top.
and mark on either slde of A divisions colresponding to AB (Fig. 2). From A, B, B (Fig. 3) draw lines at right angles to C C, and mark on these lines from the point A, alength equal to $D^{\prime} d^{\prime}$ (Fig. 1), and from B, B lengths equal to $0 B$ (Fig. 1). Next use o as centre, and with radius oo (Fig. 1) draw an are; with bc (Fig. 2) as radius and b (Fig. 3) as centre, cut the arofirst drawn to obtain the point c; again use C as centie on both sides of the pattern, and with radius od (Fig. 1) draw an arc; with the division length cd (Fig. 2) cut the arc so as to obtain the point d. Now take the length CD (Fig. 2) as radius, and again using 0 (Fig. 3) as centre, draw an arc; with $D^{\prime} d^{\prime}$ (Fig. 1) as radiue and d on the pattern as centre, cut the arcfirst drawn. Join the intersecting ares $d \mathrm{D}$ by a straight line, and alsojoin D O. Draw a, curve through the intersecting arcs $d_{2} c, b, a, b, c, d$, to complete the half pattern wlith seams placed in the centre of the aides at $D d, D d$. When making the top, bend the corners oo upon any eharpedged tools until the sides form a right angle with the end; the semicircle forming the half top can be brought to shape by pressing the perforation to a circular shape with the thumb. It the two halves are to be grooved togather, an equal allowance for the groove will be necessary on each side of the pattern; if soldering is adopted, then one lap, as shown, will do.

Grease for Under-earriage of Victoria.-The best lubricant to use on the perch bolt and felloespieces when putting together the under-carriage of a victoria is made by melting some tallow, then mixing with it sufficient axle oll Bo that it will be quite soft when cold, and about two small packets of powdered blacklead to 1 lb . of tallow and oil. The under-carriage, if the vehicle is in constant ase, should be taken out each time the trap is oiled, which is about every three months.
Removing Brass Collars from Glass WareIf it is wished to preserve the collars, allow them to stand for some time in dilute hydrochloric acid, which will dissolve out the plaster-of-Paris. If the collarsare not required, place them in strong nitric acid, which will dissolve the brass. Another method is to make file marks just above the collars, heat a piece of glass rod or thick iron wire in the blowpipe flame, and place it on the flle marks. Often a crack will go right round at once; if not, the crack can usually be obtained after two or three heatingsin this way.

Tightening up Floor Boards without Using a "Dog." -Floor boards can be tightened up without the gid of a floor dog by the method shown at Fig. 1. The board next the wall should bs well secured to the joists, and then three or four boards can be laid down and tightened up by means of wedges, as shown. The following is the method of procedure:-Place a piece

Fig. 2
Tightening-up Floor Boards.
of quartering about 2 in . by 3 in . next to the floor board, as at 0 . Cut a wedge, and place it as at B; then nail down a piece of batten to the joists, as at A (both this and the wedge can be cut out of odd pieces of floor board). The wedge B should be driven with a large hammer or axe until the joints of the board are quite close. Use prepared grooved and tongued boards, a section of which is shown at Fig. 2, to prevent dust and draught passing through the joints of the boards after they have bhrunk.
Transferring Drawings to Linen.-Transfer drawings of fowers, etc., are made with some composition on tissue or tracing paper from stencil plates cut to suit the particular patterns. The compobition is a material consisting of resin and colouring matter (common red sealing wax would do). This is powdered and sprinkled over the stencil while it is lying on the paper. On running a bot iron over the stencil plate the design is left on the paper. To transfer to linen, place the paper on the linen and run a hot iron over the back of the paper.
Blackening Brass Buttons.-To make shiny brass buttous black, immerse them in a strong solution of copper nitrate or sulphate. Then heat them on a hot plate or carefully in the flame of a Bunsen burner till they are black. Well swill them in hot water, and dry out in sawduet; polish with a blacklead brueh and lacquer.
Bevelling Plate Class.-To obtain a bevel edge on plate glass, either circular revolving tables or fixed ones may be used. The tablefor grinding is of thick cast iron, and is fed with sand and water ; the smoothing table is of glass with emery of different degrees of fineness and water, and the polishing tables are of wood covered with
leather or felt and sprinkled with rouge of increasing degrses of fineness. If revolving tables ars used, the glass plate must be fixed in a frame capable of being adjusted at any required angle, and the frame must be brought down until the edge of the glass just touches the table. As the grinding proceeds, the glass is brought lower until the bevel is fully formed. After bevelling all the edges the glass must be transferred to the smooth. ing table, and finally polished on the wood table. If fixed tables ars used, the frame containing the giass plate will have to travel perfectiy true backwards and plate will have to travel
Taking Aparta Geneva Lever Watch.-In taking a Geneva lever watch apart, first remove it from its case; then lever off the hands, remove the dial, and take off the motion wheels underneath it. Next remove the central set-hand arbor by knocking it out with a light tap. It is iriction-tight only in both the cannon pinion and the centre wheel. Then let down the mainspring by a key on the winding square while holding the click back. Take out the balance, pallets, 'scape wheel, train wheels, centire wheel, and barrel in the order named.
Particulars of Salinometers.-There are two kinds, one giving the percentage of common salt in the solution, the other used by marine engineers as a guide to the point at which to blow off. Salinometers are made either of glass or brass in the form shown in the adjoining figure. On the flist kind each mark represents 1 per cent. of

Salinometar.
common salt; on the second kind there are only three or four marks, one being marked "blow." To use the instrument, float the balinometer in a little of the water' the mark on the stem corresponding with the surface of the water indicates the density of the liquid.
Mixiag Lime Concrete.-For ordinary Poundations, with no great or concentrated loade, the following pro portions may be adopted: Bricks, broken to pass through a 2 -in. ring, 42 parts; clean, sharp sand, $2 \frac{1}{2}$ parts; ground lias lime, 1 part. If the bricks are broken to pass through a $1 \frac{1}{2}$-in. ring, then 5 parts to 2 parts sand and 1 part lime may be used. The materials should be accurately may be used. The materials should be accurately measured in gauge boxes, turned over twice or thrice, water applied by means of a watering can with a rose on the spout, materials again turned over twice, deposited in the required spot in layers about 12 in . thick, carefully rammed, and left to set. It is important not to disturb the mass aifer it has begun to set.
Cleaning Velvet-pile Table Cover.-To clean a velvet-pile table cover, first remove all dust by hanging ap the table cover and carefully beating it; then treat it geveral times with benzine, pressing each time 80 as to remove all the dirty liquid; then hang it in the open air to dry. of course, this dry cleaning should be done in a room in which there is neither fire nor artiffcial light. After thoroughly drying, if the table cover is not sufficiently clean, lay it on a table and carefully sponge it all over with a mixture of equal quantities of methylated spirit and water. Do not wet it more than is absolutely necessary, and immediately dry it by pressingdry; clean linen cloths upon it. Again dry the cover, and brush it carafully with a moderately stiff brush to raise the pile.

Heat-resisting Covering for Steam Bollers Hair, cotton, fihres of organic origin, and feathers sire the best materials, thongh fine sawdnst and cork powder have been used. Clay with fibres, and fihres with cowdung have also been employed. The materials should tirst he powdered, and afterwards applied in the form of washes to the surface, which must be quite free from grease. A covering of canvas, wire nettligg, hoop iron, hoards, etc., should be placed outside.
Making a Pedestal for a Table.-The following illustrations give a design for a pedestal for a walnut table top; the table is 2 ft . diameter and $\frac{1}{2} \mathrm{in}$. thick. Fig. 1 shows the elevation and Fig. 2 the greater part of the plan, looking up. The column should he turned out of stuff ahout 3 in . square. The upper part of the column can be finished with a screw, as bhown at Fig, $y_{\text {, f }}$ for fastening on the block. The legs sliould be
with a damper, and holes iu the roof for stoking purposes. Instarting the kiln all the compartments but one are flled with limestone loosely piled and the doors made up. Fires are made in the empty compartment, and the dampers are all closed with the exception of that in the farthest chamber, so that the fiames and hot air have to travel all round the kiln before they escape to the chimney. As the coal burns awsy slack is fed through the holes in the roof, and when the limestone is fully burnt in the first compartment the dsmper in the empty compartment is thrown open and the other closed, so that the empty compartment hecomes the last in the series, and the first compartment begins to cool down. The coal is now fed through the roof of the second compartment, and this procedure goes on right round the kiln. The empty compartment is chairged as soon as it is cool enough to enter; the first compartment is next emptied and refilled, and so on, emptying and reflling

cut out of material with the grain running in the direc. tion of A A (Fig. 1). A simple method of connecting the legs to the column is by means of dovetail housing, shown at Fig. 2. A conveutional view of this joint is shown at Fig. 3. It should he noticed that the shouldars require to be undercut (see B, Fig. 3). The "drop" shown at C (F'ig. 1) is a separate piece of turning with a dowel attached so that it can be fastened to the hottom of the column. The top may be hinged to the block by means of two flaps, as indicated at Fig. 4.
Method of Burning Limestone. No very great improvements in the method of burning mountain limestone have been mada for several years, but there are kilns, such as the Hofmann kiln, and calciners which are great improvements on tha old forms of kiln. The Hofmann kilne are very large and circular or oval surrounding a chimney stack; they can he divided into twelve or more compartments, each one of which has a door for charging purposes, an opening connecting it with the chimney and covered
going on all the time. The calciner is made in the usual form of circular kiln, but it has a cone-shaped structure at the bottom, snd there are openings all round the circumference of the furnace above the floor level. The limestone and slack are fed in at the top, and as the coal hurns away aud the limestone contracts during its conversion into lime, it gradually descends, hut is prevented bettling at the bottom of the furnace by the coneshaped structure, which directs the material towards the walls of the furnace, and it falls out through the openings ahove mentioned.

How to Get RId of Mites in Furniture. Ure ordinary furniture polish ou the wood of the furniturs, and place a sancer full of strong ammonla helow the sora and chairs from time to time. As a rule, a dry room is best for furniture, and therefore a firs should be lighted often. It will prevent the damp sattling upon the furniture and oarpets, and will tend tui keep out insects. Washing the floors with a carbollc soap will also be found of great value.

Varnishing a Van in the Natural Wood. Where the grain is to show ont plain it is not customary to staln the wood; staining blurs the natural grain, on account of one part absoroing more stain than another. The method usually adopted for vans, etc., is as follows: After the body is got up clean, and glass. paper marks acrose the panels have been removed, apply a good coat of pale gold size, to which about a tablespoonful of linseed oil to a pint of size has been added; let this stand a day or two, then lightly rub over with fine sand or glasspaper to take off the grain which will rise; then give another coat of gold size only. When bard, sandpaper off as before, and apply a coat of hard drying carriage varnish. Let this stand for a couple of days, and then flat down with ground pumice-stone and Water, being careful to wash every particle of dust from the corners; then give a coat (or two coats if necessary) of best carriage varnish.
Enlarging wlth Flxed Focus Hand Camera, The accompanying sketch shows an arrangement for making either enlarged negatives or prints. In the bottom of a lidless box M cut an opening $4 \frac{7}{8}$ in. by 37 in.; fit groover A A top and bottom, to carry the negative B (the box is standing on end). Make a box D of the size and shape shown (see also ground plan), having an opening at F a little smaller than the hand camera H, and with a close-fitting fillet run round it on the outer side at J, forming a recess, into which the back of the
frame. The above dimensions are worked out on the assumption that the lens is of $5-\mathrm{in}$. focus.
Using Gold Bronze. - To apply gold bronze to furniture in paint form, coat the furniture with paint, japan, spirit varnish, or anything that will prevent suction; then coat where the bronze is wanted with gold size or quick-drying varnish. When this is nearly dry, dust on the powder with a camel-hair brush or soft new chamois leather. As bronze is susceptible to atmospheric influences, it should be coated with a thin, even coat of varnish-clear spirit or oil varnish will do. Work thus treated will have a common brassy appearance, by no means equal to gilding. When gold leaf is too expensive, use Dutch metal, which can be purchased at from 2d. to 6d. per book.

Mouiding and Vulcanising Indiarubber. - The tools required would be a small rotary cutter, a sheetiron box with sliding fronu ann chimney at top, an iron tray, two large ring gas burners, knives or spatulas, and iron moulds shaped like the blocks required. The rubber may be cutin the rotary machine, mixed with powdered sulphur, placed on the iron tray in the sheet-iron box, and heated by the burners. A thosmometer hung in the box very close to the iron tray will show the temperature, which must not rise above $300^{\circ} \mathrm{F}$. When the rubber is softened, the moulde may be heated in the box, the rubber put in, and the tops of the moulde forced down so as to compress the

Enlarging with Fixed Focus Hand Camera.
camera fits, and is supported on the bracket E. The bracket is either detachable or hinged at 00. At the rear of the box is fastened another fllet P, at exactly l3in. from the lens stops. Cut a slot right down one side rather greater in width than the thickness of a whole-plate printing frame. The irame chould now be built up at the same side flush with the outside of the box, and a further piece screwed on, projecting $\frac{1}{4}$ in. each way beyond the opening, and fitting close to exclude light. Now ingert the frame, facing the lens, and screw another fillet behind it, so that it just runs easily between them. The frame is assumed to measure $10 \frac{1}{2}$ in. by 8 in. Next cut from a block of wood C a recess to form a bed for the condenser N, the centre of which must be exactly opposite the centre of the negative, the lene, and the printing frame. A lid may be hinged to D. The camera and other loose parts may then be stored inside. Now construct a board 36 in. by 8 in., hinged in the centre. Put two screws in the extreme end; these, by engaging with holes in $D_{\text {s }}$ ensure its being always in the same place. Now place the other parts roughly in position. Fix, with drawing-pins at the corners, the sheet of ground glase, rough side outwards, in the printing frame, and insert it in D. Having put the negative B in poeition, focus very accurately by moving the box to and fro. The condenser and light are next manipulated until the corners of the negative are illuminated and an evenly lighted screen is obtained. Then screw the block in position in M, and fit the points for the other parts as before. Instead of using a condenser, a piece of magnesium wire may be burnt behind the negative, the light being waved about, so that the negative may be evenly illuminated. In this case a sheet of ground glass should be placed a few inches behind the negative. To use the apparatus it will merely be necessary to insert the negative, then place in the printing frame a sheet of clear glass, free from bubbles or scratches, and of the same thickness as the ground glass mentioned above. Place upon this, face downwards or outwards, a sheet of bromide paper, and, having turned the light down very low, insert through K_{i}. If preferred, a sheet of cardboard, which can be slid out after placing the frame in position, may be made to run in front of the printing
rubber; the moulds may then be allowed to become cold, and t'ıe blocks withdrawn. Before pressing in the rubber, rub powdered French chalk over the insides of the moulds.
Obiiterating an Engraved Crest on a Silver Jug. -To remove an engraved crest from a small silver jug, (1) file out the work with a fine flat file if the surface of the jug is of a full or rounded nature, and with a riffler or small bent file if hollow. Finish with snakestone or Tam-o'Shanter hone, and polish with rottenstone and oil. Send it to be electro-gilded and rottenstone and on the inside, with a light coating of silver on the outside, and have the ontside burnished and " handed up." The jug will thus look equal to new. Before sending to plate, look well over for possible dents. (2) Fill up the cuts with silver solder-same colour as near as possible to the silver-dress off, and tinish as No.l. (3) Cut out a shield from sheet silver (No. 6 to 9 gauge, S.M.G.) either round, oval, or of an heraldic shape, hard solder neatly, and finlsh as No.l.
Shaping Soap into Bars and Tabiets.-The soap is made by boiling fats and caustic soda in large pans, from which it is run through channels over the "frames"; the watter are large rectangular monlds built up of iron plates bolted together. When the soan is cold the plates are unbolted and removed, revealing the blocks of soap. A frame with horizontal wires is run throngh the blocks, cutting them into slabs. The slabs are pushed against other wires, cutting them into bars. Tablet soaps are pressed from the bars or from ribbons. Toilet soaps are made from forcing bar soap against a cutter, which cuts it into thin slices; the slices are placed in a roller machine, from which it emerges in the form of extremely fine shavings. The shavinge are partly dried on wire netting in a heated room and then placed in a press, from which the soap emerges as a bar with a square, round, oval, or other section. The bar is cut into pieces of equal thickness forming plain tablets, which are then pressed in a mess fine having dies with appropriate designs. In scented soaps the ribbons are gently heated with the scent, or the scent is added immediately after the soap is made for common qualities.

Calculating Heating Snrfane of Radiators,For calculating the heating surfaces of radiators and pipes for schoois, greenhouses, etc., the following notes are useful :-For brick buidinge, for a temperature of $50^{\circ} \mathrm{F}$., use 7 sq . ft. of heating surface for every $1,000 \mathrm{cub}$. ft. of space ; for $55^{\circ} \mathrm{F}$., use 9 sq . ft. for $60^{\circ} \mathrm{F}$., use 12 sq . ft. ; for $65^{\circ} \mathrm{F}$; use $15 \mathrm{sq} . \mathrm{ft}$. for $70^{\circ} \mathrm{F}$., use 19 sq . ft. For leanto glasshouses, for a temparature of $45^{\circ} \mathrm{F}$., use 37 ft . of 4 -in. pipe for every $1,000 \mathrm{cub}$. ft, of space; for $50^{\circ} \mathrm{F}$., use $40 \mathrm{ft}^{\circ}$ of 4 -in. pipe; for $55^{\circ} \mathrm{F}$., uss $45 \mathrm{ft}^{\circ}$. of 4 -in. pipe; for $60^{\circ} \mathrm{F}$., use 50 ft . of 4 -in. pipe; for 65° F., use 55 ft . of 4 -in. pipe; and for $70^{\circ} \mathrm{F}$, use 60 ft . of 4 -in. pipe. For span houses, add one-fifth.

How to Find the Mitre, etc., of Rairing Cornice Moulding.-A (Fig. 1) shows the trus section of the raking moulding. The five points have heen taken in the

Fig. 2
G-

Marlboro' Easy Chair.
Make a loose cushion seat. Upholster in coarse canyas with hair or flocks, nailing the material on the outside edges; then cover with Gobelin tapestry or cretonne; cover the sides and back with the same material, sewn together at the edges and corded, or tack round a narrow coloured gimp.
Colouring Drawlngs.-The colours used in architectural and mechanical drawings vary according to circumstances. Some draughtsmen use a very pale sepia for York stone in elevation, pale Payne's grey for Portiand or Bath stone, pals indigo with ink dots for granite, and darker tints of the same colours for the sections. This, it must he remembered, is chiefly in connection with London stock bricks. Architects, who ought as a hody to have an eye for colour, are sometimes great offenders by using harsh and unnecessary colours on their drawings. An extreme case has been noted where a wrought-iron girder resting upon a cast-iron column standing on a stone base were all coloured bright Prussian biue. Blue in some form or other is much nsed by architects to represent stone, hut it should be ussd very sparingly, so as to resemble the natural tint of the stone rather than the conventionai representation. For stone rather than the conventional representation. ror Venetian red, or burnt ochre might be used, depsnding upon the general elevation colour. For cement in any form in elevations, pale Indlan ink or pale Payne's grey is generally used, with or without dots and markinge. Windows may be coloured with black Indian ink, or washed Prussian hlue, Prussian green, or Payne's grey, according to circumstances. A plain tint all over is the simplest, but a good artistic effect may be obtained with the exerclise of a little skill.

Oleomargarine.-This is the softer portion of the purest and freshsst beef suet from the rlbs, rendered at $140^{\circ} \mathrm{F}$. to $150^{\circ} \mathrm{F}$., and the fat poured off clean and pressed at $95^{\circ} \mathrm{F}$. The product is of a buttery consistency at ordinary temperature. The "oleo" oil, as it is called, is the chief constituent in margarine, brit a vegetable oil is also employed; sometimes this is cottonsead oil, at others earth-nut oil or sesame oil. The oleo oil is melted and, along with the vegetable oil, is run into the churns; the milk is first soured by the addition of acid, rennet, or sour milk, run over cooling coils, and then into the churn. The churns ara kept slightly warm, and are worked 60 that the fat, casein, etc., may amalgamate They are then omptied into tanks containing water cooled with ice, the masees of fat are removed, piled up to drain for come time, then worked and salted like butter.
Bamboo Newspaper Rack, - Four l-in. and two -in. canes will be required; from the former four lengths should be bent or toed out and cut off 20 in . long. Four pieces, each 16 in . long, for the four rails should now be cut off from the lin. canes, chisel-pointed, mortised (or hollowed) with the rasp, and fitted in their places. Holes should then be bored in the legs to receive the dowels, and the two sides framed up. While these sides, or sections, are setting, the two ornamental fillings should be made from $\frac{f}{3}$-in. .cane.

Bamboo Newspaper Rack.
Four pieces of l-in. bamboo, each 9 in. long (lisin. is allowed for fitting), should now be prepared to form the cross rails which are to join the two sections together. When the sections are set, holes should be bored to receive the dowels of the cross rails, and the whole joined together. The two uprights for the partition are fitted to the bottom cross rail, and the top cross rail and upright ars half jointed where they cross. The rail which carries the handle is mortised and dowelled at each end and fastened into position with two roundheaded screws. The handle is made from $\frac{5}{6}$-in. cane bent as shown, and fastened to the centre rail with round. headed screws. The rails which form the division of the partition, as also the three cross rails forming the bottom, are made from $\frac{s}{i}$-in. cane mortised at the ends and fixed into position with beading pins. A diagonal stay, not shown in the illustration, may be added to the central framework.
Photographing an Oll Painting. - Whether the painting is under glass or not, it will probably bs advisable to let it face the window. All reflections must be got rid of; sometimes slightly tilting the picture and swinging the back of the camera to compensate for it will be effectual. If pessible, the centre of the lens should be opposits the centre of the painting. If the illumination in the camera is waak, focus upon finely grained glass, mada by thickly coating a sheet of glass with negative varnish, and then rubbing down the surface with a little finely powdered resin on the ball of the finger; or the ordinary ground glass creen may be oiled. A firmly fixed copying camera, in which focusaing is done by moving the back part, would be preferable to an ordinary camera. The lens should be one giving a flat field and the best possible definition. The stand must be rigid, and, as the exposure is pro longed, every precaution must be taken against vibration. The plates used must be colour-sensitive; Edwards' instantaneous isochromatic are very suitable. If the picture contains any blues or greens, a yellow screen must be used-a home-made substitute for which can be made by staining to a lemon yellow a fixed
unexposed plate in a weak solution of picric acid. If the stain is too deep, the blues and greens will be rendered too dark. Pyro soda, is a most satisfactory developer for the above-named plates. Ues equal parts of each of the following solutions:-No. 1. Pyro, $25 \mathrm{gr} . ;$ sodium sulphite, $\frac{z_{2}}{2}$ oz. ; water, 50 z. No. 2. Washing soda, 165 gr.; water, 5 oz. Add one drop per oz. of 10 per cent. potassium bromide solution. The negative should be thin and full of detail, with clear shadows.
Vionna Regulator Striking Clock.-In the accompanying figure the wheels between the plates are represented by plain circles to show their positions. The gut lines are wound up on barrels, fitted with winding ratchets and clicks and click springs to prevent running back. The main wheels are driven by the barrels, and are mounted upon the barrel arbors. Around the pin wheel are arranged the lifting pins, which lift the gong hammer. The pallet wheel arbor carries the gathering pallet, which gathers up the rack teeth during striking. The snail, mounted upon the star wheel, determings the number of blows to be struck at each hour. This system of wheels is known as the rack striking work, and is used in a great many French clocks and in nearly all English grandfather and bracket olocks. The letter references are as follows:-A is the striking main wheel, \mathbf{B} pin wheel, \mathbf{o} pallet wheel, \mathbf{D} warning wheel, E fiy, F going main wheel, G minute whesls, H centre wheel, I third wheel, J 'scape wheal, K pallets, L minute wheel cock, M warning lever, N lifting

Vienna Regulator Striking Movement.
piece of warning lever, 0 rack hook, P gathering pallet Q rack, If star wheel and snail, S flirt, and T the flirt spring.

How to Make Cryotoleum Photographs.-A portrait should be chosen giving good gradation without very deep blacks. A pair of concave glasses in different sizes may be bought of any artists' colourman, and should be ehosen to fit the picture. Mix some starch-as for ordinary mounting-to the consistoncy of thick treacle, free from lumps, and, having carefully cleaned the glasses and soaked the print and blotted off the surface moisture whilst lying face up on a shest of glass, brush the starch well over the face of the print and over the concave side of the glass. Bring the two surfaces into contact and lay over the picture a thin sheet of blottingpaper ; place the glass on a cushion and work the print thoroughly into contact with the glass by stroking with the convex side of a spoon in all directions from the centre until all air bubbles are expelled. When the print thus mounted is thoroughly dry, it is rendered as transparent as possible by rubbing away the paper, quite cyenly, with fine glasspaper. When the film is nearly reached, cuttlefish powder may be applied with nearly reached, cutt of wool. The print is next warmed carefully and rubbed over evenly with castor oil till it will take up no more, the surplus oil being wiped off and the print allowed to cool. Transparent oil colours are next laid on over the dress, hair, eyes, lips, etc. Flat tints merely are used, as the transparency supplies the modelling. The second glass is then attached, and on it the flesh tints are painted. The outlines must in all cases be carefully followed. The crystoleum may now be bound up by placing a piece of white cardboard at the back and binding the adges with black paper.
Stain and Varnish for Fim.-For indoor work, use a good quality spirit varnish; for outdoor work, use a good oak, copal, or carriage varnish. A wipe over with raw linseed oil will fetch out the figure, a reddish tinge being imparted by colouring the oil by adding a small quantity of alkanet root- 2 oz. to 1 pt. Elm is a good wood for taking a walnut stain. Use a grain filler before applying any varnish or polish.

Two Bollers to One Hot-water Cylindor.-When a cylinder system apparatus is to be heated by two hoilers, one boiler is generally connected to the cylinder in the usual way, and the pipes from the second holler connected to the pipes of the first one, flow to flow and return to return. No fault can be found with this arrangement, which works well, whether either boiler is used separately or hoth are used together, and no atopcocks are needed. However, a hetter arrangement is to connect the pipes from each boiler into the cylinder independently, instead of allowing the pipes to join outside the cylinder. In this case there is the possibility of more uniform resulte, and it seems a more correct way to do the worls, although no fault can be found with the plan first explained.
Construction of Tenons for Entrance Gates.-The construction of tenons for gates, such as entrance gates to parks or lodges, is shown hy portions of two typical
upon it like water. Now press the tip of one finger hard unon it and wipe the finger again immediately. If l5-ct. the spot will turn a pale brown, as g.ct. did beiore pressing with the finger. If 18-ct, or over, the acid will still stand upon it like water; 22 -ct. can be told hy its colour by an expert.
Dry-cleaning a Valencia Waistcoat. - Sprinkle a mixture of fuller's earth and magnesia over the waintcoat, then rub it in with a clean piece of flannel. With another piece of flannel apply benzine to the waistcoat, after which sprinkle some more of the powder and leave it for several minutes. Then brush off the powder and hang the waistcoat in a current of freah air till the benzine has evaporated.
Staining White Wood Teak Colour,--Brush over the article some raw sienna ground in water, mixed in stale beer, and allow it to soak in. When nearly dry, wipe off the surplus with clean rag; this will give

Construction of Tenons for Entrance Gates.
examples of gates (Figs. 1 and 5). The forms of the tenone, etc., are indicated by dotted lines. Figa. 2, 3, and 4 show isometric views to a larger ecale of the tenons indicated at Fig. 1. Fig. 6 is an oblique projection of the joints at A (Fig. 5). When the rails are 3 in. and under, they ueually have tenons the whole width; but when over $3 \frac{2}{2} \mathrm{in}$. and up to 6 in . the tenons are diminished generally to 3 in. or 3 in in., having a are diminished generally to 3 in . or $3 \frac{3}{2}$ ing having a than 6 in. wide, they frequently have two tenons in breadth as illustrated. The temons are wedged into the mortises (see Fige. 1 and 5), and as an additional security they are occasionally plnned as indicated at Fig. 5.
How to Teat Gold.-File a clean spot upon the metal to be tested, so that any gilding or outslde colouring may be removed. Apply a small drop of pure nitric acid to this spot, and watch it closely. If the metal is hrass, it will boil up a hright green immediately. If an imitation gold alloy, it may go black in a few seconda If 9 -ct. gold, it will turn a pale brown tint. If $15-\mathrm{ct}$. or over. it will remain unaltered. and the acid will stand
a yellowish undercoat. Now take some Vandyke hrown ground in water, mix as before, and apply, with a ragged piece of sponge, putting in the figure and parying by a tremulons motion of the hand, blending the colours and removing any harshness by going over the still moist colours with a badger softener or a clean soft sash tool. When quite dry, rub smooth with coarse rag or fine glagspaper, wipe over with raw linseed oil, then French polish or spirit varnish. A slight tinge of red in the polish will be an improvement.
Producing Crystals upon Wiokerwork.-To produce crystals upon wickerwork, such ae baskets, boil about 2 lh , of alum in 1 gal, of water, and, while etill het. pour thle into a jar large enough to hold the baskets. When cool some of the allm will arystallise out, leaving a eaturated solutlon. Hang the basket in this solutien; tying a etring to the bottom and attaching a weight, so tying a string to the bottom and attachisg a the liquid. If allowed to remain several daye, the hasket will hecome If allowed to remain several daye, the hasket will hecome
covered with crystals, which will continue to grow in size if the jar be freely exposed to air.

Gilding Glass.-For gilding on glass, isinglass and distilled water are used; sometimes a little pure spirit of wine is added but not necessarily, as the best results can be ohtained with the distilled water and isinglass ailone ; these must be boiled for about five minutes and then passed through a filter or white blotting paper. Three gralns of the best isinglass to 6 fluid oz. of distilled water make a good gilding strength. The liquid ls then, by means of a hroad camel-hair brush, floated upon the glass, which must he placed in a slanting position. While still wet the gold is laid on from a gilder'stip and cushion, and after it has been allowed to dry it is gently rubhed with a piece of fine wadding and the cracks or ioints touched up. A second application of the gold leaf gives more solidity and makes a better job. It is new burnished again with the wadding and bathed with lukewarm water to hring up the buruish, dryiug with blotting paper. When thoroughly dry, burnish again, and then with a size brush dipped in water, with the heat increased each time, go over the geld again, thus giving it a third bath. It is then again rubbed and finally coated on the back with gilding size, which, when dry, is ruhbed with the cotton. It is then ready for cutting into shape, which is done with a strip of wood cut like a chisel. When the letters have been cut they may be backed with japan gold size or ordinary black japan, or a mixture of the two. For small ornaments such ris corners, paint directly on the gold with the japan, and when thoroughly dry, rub off the superfluous gold to when the gold figures on the glass.
How to Make a Portière Rod.-The rod A (Fig. 1) is cut from a broomstick; at one end is fixed a fancy wood knoh, at the other end a piece of brass pipe to act as a ferrule; into this end is screwed a round-headed brass

How to Make a Portière Rod.
screw bent to the shape shown (B, Figs. 1 and 2), Before serewing this into the end of the rod, it is fitted into a hrass socket (see A, Fig. 2) originally made for door bolts to sheot in. The bracket C (Fig. 1) is made from $\frac{1}{4}$ in. iron and bent round the rod as shown, with one end fitted into a similar socket to that in which the rod fits. Brass curtain rings are put on the rod hefore it is fixed up. To fix it up, the sockets D and E (Fig. 1) are screwed to the docr jamh. The rod is fixed inside the room, and when hung with drapery it serves to prevent a draught blowing on to anyone sitting at the right-hand of dcor when the door is cpen. The rod could be made of bamboo and with screw-eyes in place of sockets.
Polishing Marble.-Marble, such as is used for mantelpiece jambs, is polished in a variety of ways, the choice depending largely upon the uature and quality of the material, which vary greatly. The following method will answer satisfactorily for vein, statuary, Sicilian, St. Anne's, Bardilla, and most of the ordinary coloured marbles in general use. The wrought surface is rubbed pith fine sharp sand and water, until all the marks of chisel or saw are removed and an even surface is produced. It is then "grounded"-that is, rubhed with grit. stones of varying degrees of finsness, commencing with the coarse or first grit, usually Rohinhood stone; next the second grit, which is a little finer; finishing with snake stone or Water of Ayr stone. Particular care must be taken that in each process of gritting the marks or scratches of the preceding one are ramoved, so that when the surface is snaked no scratches whatever are visible. The gloss or natural polish is obtained by ruhhing with a psd of felt sprinkled with putty powder (calcined tin) moistened with water. The chief factor in this method is persistent and attentive rubbing, and a good pelish thus obtained will retain its lustre for years. For speed and cheapness chemicals are sometimes used for polishing, such as oxalic acid, hydrochloric acid (spirit of salts), and others, but their use is to be deprecated, as the polish socn
vanishes and the face of the marble is in some measure destreyed. The polishing of marble adds greatly to its beauty, inasmuch as its delicate figuring and gradations of rich colouring are brought out and heirhtened as it were by the process, which gives marhle its value as a decorative material. With regard to the appliances, for mouldings the grits are cut into small strips and shaped into hollows and rounds to fit the various memhers ; and for the polishing boss, an old worsted stocking, tightly tied up in a wad, dees admirahly. For plain facework the grits are in flat pieces, and are used on edge, traversed over the face. The polishing block is a piece of wood from I6in. to 18 in . long, and 4 in. wide, with a piece of felt on the underside fastened at each end.
Filtration of Olls by Heat.-Tow, such as brewers use for the filtration of malt liquor, answers well as a filtering medium for viscous fluids. The filtration is expedited by heat, and may be accomplished in the following simple manner. Two funnels are necessary. One funnel is placed inside the other, an indiarubber plug being on the neck of the inner funnel, around which the outer funnel fits. In order that the filtering liquid may he covered, the top of the inner funnel projects somewhat. The tow or paper is placed in the inner funnel, and the interspace contains water, which is kept hot by steam, which passes into it from a flask. The excess of water may be drawn off by means of a constant level syphon, or a strip of web-tape hanging over the outer funnel. The diagram is thus explained :-A is the outer funnel, which contains water, and into which steam is funnel, which contains water, and into which steam is o, flask containing water; D, flask to collect filtrate ; $E_{\text {; }}$

Filtration of Oils by Heat.
glass tubing (steam from C is passed along the tube to A) ; F, burner to heat flask; G, tripod stand to support flask.

Manufacture of Porcelain and Earthen ware Goods,
-The finer qualities of earthenware or porcelain goods are manufactured from mixtures of varicus clays, calcined bones, etc., from which every organic constituent has been hurned out. All these ingredients are weighed, and mixed together in a large quantity of water, and strained through very fine sioves. When the clay has heen allowed to dry till of the consistency of dough, it is placed by the potter on a horizontal revolving wheel, aud the lump of clay may become a bowl, vase, or any other article. When the object is sufficiently dry, it is ready for the "hiscuit" kiln, or first firing, where it is only partially baked. The design is then painted or printed on-that is, underglaze, or before the metallic glaze has been applied. The ware is now ready for dipping inte glaze, literally a form of ground glass which the half-cooked ware, being very porous, readily absorbs. It then undergoes its final firing at a much lower temperature than that of the biscuit oven. All articles are placed in saggars, or receptacles of coarso clay, which are next packed in a kiln; this is simply an oven arranged with fues in such a way as to equally dis. tribute the heat. The fire is not allowed to touch either saggars or ware, as in the manufacture of coarser geods such as bricks or terra-cotta.

Blackening and Bronzing Brass.-To obtain a black colour. dip the brass in a strong selution of copper nitrate or copper sulphate, and then heat on a het plats or hold the article in a Bunsen fame. To bronze the metal, dissolve $1 \frac{1}{2} \mathrm{oz}$. of copper sulphate in 1 pint of water, and pour in a solution of 1 par't carbonate of soda in 2 parts water until the precipitate ceases to form. Decant, well wash the precipitate with water, and dissolve it in ammonia until the latter is saturated. This solution is warmed and the article dipped in it as before.

Self-winding Clocks.-Many have been made. Some of these are being continually wound up by means of a fan plsced in a tadl chimney shaft, up which there is a natural draught that always keeps the fan revolving. The fan is connected to the winding shaft of the clock by suitable gearing of a speedreducing natare. Other clocks are driven by electrlclty: an impulse is given direct to the pendulum at each vibration by the cloaing of an electrical circuit in which is a weak battery made by burying carbon and zine plates in molat earth. Perhaps the most noteworthy perpetual clock is in the British Horological Institute, 36, Northampton Square, London, E.C. It was made more than a century ago, and is dependent for its motive power ou the variations in the density of the stmosphere. A sort of barometer containing many pounds of mercury is euspended from s rocking bar, and the constant shifting of the mercury causea the suspending bar to rock and drive the winding arbor by a rack and pinion. This clock has gone for many yesrs, and has only been stopped to be cleaned.
Machine for Withdrawing Axie Boxes from Wheels.-Fig. 1 shows the machine in position on a stock cornersare made with knuckle joints, sose to allow of side play to take various sizes of stocks, the top boss-piece being made as Fig. 2, having good stout riveta through the

Machine for Withdrawing Axle Boxes from Wheeis.
joints. For ordinary work the sides should be made of lron, i in. Wide by in. thick, with a good hroad duck foot at the bottom. 'The top crose-piece is made with a boss large enough to take a 1 -in. screw ; this has a collar and square on the top end to take the handle shown in Fig. 3, the bottom end being turned down to $\frac{i^{5}}{} \mathrm{in}$. so as to form a shoulder for the circular bolster to rest upon. in use, the cramp is put on the wheel as shown in Fig. 1 ; the bolster, which is a trifie smaller than the outside of the box, is put on the end of the acrew, and pressure spplied by turning the screw down until the box, indicated by the dotted lines, is removed.
Recipes for Cheap Red and Black Paints.-For a cheap black paint for rough outside work, melt together equal parts of pitch and coal-tar, and thin to a working consistency with coal-tar naphtha. The naphtha may be dispensed with if the melted material is applied hot. A chesp red paint can be made by slaking lime wlth water and adding sufficient red oxide or Venetian red to colour it; apply it as if applying whitewash. Allow it to dry, and then brueh over with silicate of eoda solution (l part of sllicate to 4 or 6 parts of water). This paint wlil be found very durable.
Painting Lines on a Glase Plate.-To palnt narrow lines on a plate of glass such as is used for ehow elgns, first clean the side of the glass to be lined with s few drope of ammonis, in warm water; then pollsh wlth a piece of soft paper, and lay the glases flat. Mix the colour ln turpe. Dry colour ground in
turpe is best, bound with japan gold size; do not use mare than loz. of gold size to 11 b. of colour. Put the colour on a piece of glass, and charge the lining pencil with the colour. Let the second finger rest on the edge of the glass sis guide; hold the pencil between finger and thumb, and draw your hand towarde you. If only a few lines are to be painted, perhaps it would be better to use a sign-writer's brush, and, when the lines are quite dry, to cut them straight with a straight-edge and sharp chisel. Lining pencils are made from sable hair, are from 2 in . to 21 in. long, snd are called lark, crow, duck, goose, and swan, swan being the largest.
Apparatus for Waehing Large Photographio Prints.-Large prints are not generally washed in the mechanical manner adopted for small prints, because of the difficulty of keeping the printe from clinging together, snd the impossibility of chsnging the water wlth sufficient frequency. Unless some such arrangement as described below is used, each print should be washed by itself. The accompanying sketches show two forms of washing machines for large prints. In Fig. 1 four trays are shown placed in a rack; each tray is in lour trajs are shown placed in arack; each tray is in into the tray beneath. The trays may be of enamelled zinc or of wood coated with paraffin wax; they rest on four rails (not chown) supported by vertical posts.

Apparatue for Washing Large Photographic rrints.
Fig. 2 shows an arrangement for washing unusually large prints. In this case the developlng tank, being deep and long, may be used as a washing trough. The washing machine consists of two circular disce of wood (the ende of tubs), bored in the centre to receive an axle (a broomstick), at each end of which g dise is fixed, thus forming the framework of a skeleton cylinder, the ribs of which are lathe stretching from one diac to the other, and nailed at each end. Around this cylinder the print is fastoned with wooden clips. At one end of the cylinder suffelent space is left for a small water-wheel, which may be driven by water from the tap above it. The outfow is regulated by a plug, thus keeping the water in the trough alwaye at the same helght.

Making Clinical Thermometers,-These, llke ordinary chemical thermometers, sre made from epecial tubing with s, caplliary bore. The bulb is blown by a^{\prime} mechanical blower. The arrangement for preventing the mercury running baok into the bulb is very slmple. A very small bulb is blown go that the capillary tube beoomes somewhat widened a little above the bulb. While the tube ls atill hot it is nlpped or pressed 80 that the enlargement becomes mueh flattened; the flattening of thls bulb breaks the thread of the mercury, so that on cooling the mercury in the tube above the constriction remaine, while that below runs back into the bulb. On heating, the mercury easily rises through the constrlction.

ELoop-iron Bond for Brickwork.-Hoop-iron bond ls either a plain band of iron, such as is used to fasten bales of goods, about 1 in. wide by No. 20 gauge thick, or it is scouter, and specially made with triangular stabs in it to cause projections, as in Tyerman's patent. In either case it is usually tarred and sanded, and then laid in the courses of brickwork parallel with the face, one to each half-hrick thickness of wall, and at such intervalsin height as may he directed by the architact. The object is to strengthen the wall, especially whers settlements are liable to take place. Sometimes it is lald in footings only, at other times at the singles of su building; and again, it may he usual as a virtual stringcourse round a building between the successive floors. The only disadvantage that could be caused by its use would be due to rusting if insufficiently protectad and laid in a damp wall.
Usual Simple Forms of Hot-Water Apparatus.The sketches below represent the tro commonest schemes of hot-water apparatus in their simplest form. They would be erected thus for small property, and also for large property if some of ths many special requirements or conditions to he fonnd in large houses did not exist. Fig. 1 shows the cylinder system of apparatus, to which this name is given because in it a cylinder is nearly always used instead of the square tank. A square nearly always used instead of the square tank. A square tank may he used when the apparatus onis extends, is used, because a square reservoir will not bear the pressure. The connections must be made as

Forms of Hot-water Apparatus,
shown. Draw-offs can be from any point on the expansion pipe up to the level of the water in the cold cistern. The reason the hot water does not run out of the top of the expansion pipe is that this pipe is carried up at least 2 ft . higher than the cold-water cistern which feeds the apparatus. Fig. 2 shows the tank cistern which feeds the apparatus. Fig. 2 siows the tank system of apparatus, so called becanse sot square tank is desired (the square tank costs less). In this apparatus the tank is fixed above the bighest draw-off, and usually only a few feet below the cold-water cistern. The cold service is taken into the bottom of the tank, and an expansion pipe is taken from the top and carried. to a height at least 2 ft . sbove the cold cistern. Draw-offs can only be taken from the fiow pipe, not the return, as can only be taken from the fiow pipe,

Tuck Pointing and Re-colouring Brickwork. The method generally adopted for colouring ordinary brick work is to apply with a brush a solution of green, copperas (l lb, to 5 gal. of water). This should be tried on is few bricks, and allowed to dry before applylng it to the whole front ; sometimes two applications are needed. Use, when the bricks are of a superior quality, a wash formed of 1 lb . each of Venetian red and Spanish brown to lit gal. of water, in which has been diesolved, while the water is hot, $\frac{3}{3}$ lb. of white copperas, or alum. This should also be tried on a few bricks, and allowed to dry before applylng it to the wholo front. The joints should be well raked ont, and the front washed and brushed with a stiff brush. When the work is dry, apply the colour ; and after this has dried, prepare the stopping. The mortar for this is coloured with Venetian red and finely sifted smith's ashes or foundry sand, unless red and inely sifted smith's ashesorioundry sand, nne procured. This mnst also be tried on a rew jaints and allowed to dry, to see that it is of a suitable colour. No more stopping should be done in one day than can be jointed, for if the work is allowed to dry
the white putty will not adhere. The putty is formed of finely sifted white lime mixed with linseed oil, and silver cand, or marble dust, the latter being preferable it it can be obtained. The putty is applied with a steel jointer of the width of the joint, on a rule about 7 ft . long. The rule should have three blocks of wood, in. thick, on the hack, to allow the cuttings from the joints to drop clear. "The joints are cut with a knife called a "Frenchman," the end of which is turned up at right angles. The vertical joints are laid on from a board formed like a set square, with a wooden handle on the front, like the handle on a plasterer's hand fios.t. It should reach three coursesin height. When the jointsare all laid on and cut, go over the work with a soft brush to remove all dust. A sufficient quantity of colouring and stopping should he mixed at one time to cover the whole. The tuck pointing should he $\frac{2}{s}$ in. thick.
Fnlarging Photographsyby Daylight,-For making enlargements by utilising the window of a dark room, construct a bracket A (see illustration) and an upright easel B, running in guiding rails X. Outside the window hinge a reflector D, consisting of a white board ahout 24 in. by 20 in ., held at an angle of 45° with the window aash by a cord s passing through the joint of the window frame. The camsra c, preferably ons with a movement of front for focussing or a lens with rack and pinion, is placed on the bracket as shown. The ground glass of its focussing screen may be removed and the

Enlarging Photographs by Daylight.

negative inserted in its stead, or a carrier may be made to fit the slide grooves. Another plan is to place the negative in the dark slide, removing the partition and withdrawing both shutters. The size of the enlargement will depend on the distance of the easel from the negative and the amount of extension of the camera. The finer focussing having been done on a sheet of white paper, make a cap of ruby glass to fit over the lens, pin up the bromide paper on the easel, and, if the position is correct, remove the cap and expose. Light must reach the easel only through the negative.

Staining Pine to Imitate Chlppendale.-To stain yellow pine in imitation of Chippendale mahogany, procure some burnt sienna, ground in water, mix with stalle beer, and add a small quantity of vandyke brown and rose pink; mix well together. Apply rather liherally with a brush, then wipe off with clean rag, finishing in the direction of the grain. This will form the foundation. The exact tone required is built up as the polishing proceeds by adding a sunall quantity of Bismarck brown to the polish to impart redness, black for a darker tone, and rose pink for the peculiar purple tone that characterises some Chippendale goods. The colours should be evenly distributed. Should any difficulty occur in applying them with polishing pads, use a camel-hair brush.

Dissolving Gum Copal.-Copal varies in quality, as hard half hard, and soft, and gives best results when dissolved in properly heated vessels. Soft gums contain a small percentage of water, and if cold turpentine is added to the gum when dissolved in spike oil, precipitation is the result. Copals do not readily dissolve by cold solvents unless the gums are powdered; they may then be dissolved in spike oil, if thoroughly mixed. To prevent precipitation when thinning out, nse one part of spike oil and nine parts of turpentine free from adulteration.

Demagnetising a Watch, - Place the watch over an alternating ourrent transformer so that it is in the magnetic field, and then decrease the current gradually to nothiug. Another way is to spin a bar magnet just over the watch and gradually to withdruw it ; or the watch mav be revolved over the flelds of a continuous-current dynamo, and gradually withdrawn from the influence.

Determining Speed of Photographic Shutter,Choose an object, say the wheel of a bicycle, which may be got to make exactly one revolution per second. F'asten to one of the spokes near the tyre a disc of bright tinfoil, and focus the wheel as large as the plate will allow. When the wheel is making one revolution per second release ths shutter. Now, without altering the camera, make an exposure with ths wheel at rest to serve as a measuring chart. On development it will be found that the first exposure shows an arc or smudge of light. The proportion which this are bears to the complete circle is the proportion which the shutter exposure bears to one secoud, so that all that remains is to mensure ths arc with a pair of compasses and divide the circumference by it. For a brief exposure of less, $a y$, than one-fiftieth of a second, it is necessary to have a special arrangement by which a wheel can be rotated at a much higher speed and with greater certainty.

Fastening Legs to a Bamboo Table Top.-Fig. 1 shows a simple method of fastening the legs. Strips of deal or other suitable wood are bored to receive

Fig. 2

Fastening the Legs to a Bamboo Table Top.

the top ends of the legs, which are glued and fastened with a sprig as indicated. The strips should hs halved and glued together whers necescary (the halving of one piece is shown at Fig. 2), and secured to the underside of the top with a few ecrews.

Timber-framed Buildings.-There are many ways of constructing these, but three methods adopted where cost is a consideration are as follows:-(1) Planting 7in. by 2 in. deals on the face of a wall; (2) framing timbers together the half thickness of the rfall and then .filling in the panels with rough deal studs to receive the laths and plaster; and (3) using metal lathing instead of the ordinary deal laths. These methods have only cheapness to recommend them. To properly construct such a building, the timbers of all the angles should be the full thickness of a 9 -in. wall, in fact, 9 in. by 9 in .; sills, 9 in. by 6 ln.; heads, 9 in . by 6 in.; other tlmbers, such as curved pieces, studs, and rails, 6 in hy 4 in. The timbers are grooved on the sides, jointed together by the mortiss and tenon joiut, and secured by 1-in. oak pegs, to project ${ }^{\text {lin }}$. from the face of the wood. The sills phould project li in. from the face of the brickwork, and be moulded and throated on the edgc. Between the timbers-that is, in the panels-this is flled with 4 -in. brickwork, 1 in . back from the face of the wood, to allow of sufficient room for the stucco. Behind the whole of the timber framing another $4 \frac{1}{2}$ in. wali ls built, to make it the full thickness of the wall below; consequently the timbers that are the full thickness of the wall will be seen from the inside, which should be covered with flatheaded nails to form a key for the plaster. After this,
the outside of the panels is covered with Birmingham adamant cement work to $\frac{s}{h} i n$. in thicknese, the groove in the timhers acting as a key. The timhers are coated twice with Carbolineum Avenarius, once before fixing and once after, oo that the blackness of the timber may contrast pleacantly with the whiteness of the plaster, Memel, deal, pitch pine, and oak are each used in the coustruction of half-timber framing Good red deal. if it were possible to obtain it in the sizes required, would be preferable to pitch pine, which is liable to crack and open under the influence of the weather, but the use of deal is, from the cause already mentioned, greatly restricted, pitch pine being chosen instead. In the majority of cases, oak io out of the question on account of its cost; but, if a good job is required, and when expense is not a prominent consideration, oakis the wood to he used.
Method of Panelling with Veneers,-Wood panslling, although a very suitable and much-used enrichment, is generally very costly. The following is a strong and effective method of fitting it at a greatly reduced cost. First cut some oak veneer into sheets about $2 \ln$. longer each way than the required panels. Mark the lines of tha framing on the wall, and glue these sheets to the plaster, overlapping the nourks 1 in . all round. The wall having been previously plugged, fasten to it pieces of oak, each about 4 in. by 8 in., to form the framing, which thus holds the veneer. The joints between the rails and stiles are merely butted,

Sham pins, either cut off flush or left projecting for $\mathrm{K}_{\mathrm{i}} \mathrm{in}$. may he added if dssired. Fig, 1 shows an elovation of panelling with an old-fashioned treatment of the mouldings, consisting of a double fillet and chamfer run on the upright membere only, and butting on the horizontal ones, which are left square. Fig. 2 is a section illustratones which are left square. Fig. 18 a section illustratling is solid, leaves no space to harbour vermin, and can bs polished, stained, or otherwise finished In the same manner as ordiuary panelling, while its cost is conslderably less than one-third that of the latter. A furthor advantage is that, as it is much thinner than ordinary work, the skirting, if already fixed, need not be taken up and hrought forward; for with suitable mouldings on the bottom edge of tha bottom rail of the panelling a neat junction may be effected. Fig. is shows method of treating mouldings for this purpose, while Fig. 418 an enlarged detail eection on the line AB in Fig. 1 . In Figs. 3 and 4 , A represents the framing, B the plaster, o the ground, and D the veneer. If a bolection moulding is preferred, it should be rememhered when designing it that the general character of a moulding arises from the contrast of curves with sharp edges; gnd, at the same time, the chief divicions of the nouldings at the same time, the chiel divisions of the mouldings coarse effect. Two or three small delicate mouldings, followed perhaps by a bold ovolo or scotia, and then by smaller mouldings agrain, ehould, if properly managed give that idea of richness whlch mouldings are intended to convey. It may be noted that oak-wood panelling ls, as a rule, better left rough from the scraper and, except when it is to be pollshed, not touched with the glase waper, as this ologe upthe grain.

Painting Clock Dials,-To repaint clock dials, all the old paint must first be removed, and the plate cleaned thoroughly from grease. The white ground can be painted with white enamel, obtainable in 3d. and 6d. tins. These enamels dry hard and glossy. The figures may be painted with black enamel, with a fine camel-hair hrush. If only a slngle dial is to be painted, the figures may be epaced out on a plece of paper a little smaller than the dial plate ; when this paper is laid upon the dial to be painted, the marks can be easily transferred to the minute circle.

Covering a Small Roof with Zinc.-A small roof of the shape indicated in Flg. 1 may be covered as ghown in Fig. 2, which is a section acrose one roll at A-B (Fig. 1) ; Fig. 3 is a section on $C-D$ of the end roll showing apron to weather the joint to brick at the gable end; and Fig. 4 a section on $\mathrm{E}-\mathrm{F}$ showing the eaves dripping into a zinc
given, as muoh as 9 parts water may he used and 10 drops per ounce of lo-per-cent, solution of potarsium bromide. No. 2: Sulphite of soda, 75 gr . carbonate of potash, 100 gr. ; glycine, 20 gr . ; water, 1 oz . Add glycine last. Use 1 part with 3 parts water. No. 3 : Sulphite of soda, $50 \mathrm{gr} . ;$ water, 1 oz ; amldol, 5 gr . The soda should be kept as a 10 -per-cent. solution, and the amidol added only when requircỏ. No. 4: Metol, 3 gr.; sulphite of soda, 40 gr ; hydroquinone, 4 gr . carbonate of potash, 20 gr . Dissolve the metol firet. Use 1 part with 1 part water, and, if necessary, 2 drops per ounce 10 -per-cent. solution of potassium bromlde. The following formula for a single fluid developer which will not stain the fingers may be used for either plates or papper:Digeolve 24 gr . of metol in 10 oz. of plistilled water, add loz. of sodium sulphite, 40 gr . of hydroquinone, and $\frac{1}{2}$ oz. of carbonate of potash or soda. For use, take one part of developer aud one part of water and add

FiG, 2

Covering a small Roof with zinc.
gutter. In section Fig. 2, G is a tack or clip about $2 \frac{1}{2}$ in, to 3 in, wide, x the stand-up of the bay, J the roll cap and K a fork or pointed strip with oue end soldered to the under aide of roll cap. On sliding the latter into its position, the loose end of the: fork passes under the clip G and thus forms an invisible fixing. The top ends of the hays are turned up against a ridge roll which has a capping similar to $\Delta-B$. If the ridge roll stands up about lit in. to 2 in. above the others, the saddle pieces shown at L (Fig. l) are unnecessary. For fixing the eaves gutter, bridging piecee of zinc tube are soldered in, and through these long screws are passed for fixing to the ends of the boarde, or to a fascia board if one is used.
One-solution Devalopers for Photographic Nega-tives.-I'hese developers are usually employed for the development of snapshot exposures, and are therefore compounded for under-exposed plates. The following are given in grains per ounce, from which any quantity may he made np by first finding the capacity of a suitable bottle and multiplying each item by the number of ounces. Use just sufficient hot water to dissolve, then fill up the bottle, shaking occasionally. No. 1: Sulphite of soda, 100 gr . ; yellow prussiate of potash, 40 gr . ; hydroquinone, 25 gr : caustic potash, 40 gr . ; water, 1 oz , Dissolve the potassium hydrate separately. Use 1 part with 3 parts water. Where more exposure has been

1 drop per ounce of 10 per cent. solution of bromide of potassium. It is preferable to increase this to 4 drops per ounce for bromide paper.
Renovating Plaster Bronzes.-Brush them carefully with a soft brush and paint the surface with gold size, and, when this is sticky after stauding a short time, apply the bronze powder with a pad of chamois leather, Dry in an oven till the coating is hard, then apply copai varnish and finally stove the bronzes.
Cementing Leather to Iron.-For uniting leather to iron, use marine glue, which is made hy dissolving l part of pure indiaruhber in 12 parts of coal-tar naphtha. After solution is complete, add 20 parts of powdered shellae; warm the mixture gently, and stir from time to time putil properly amalgamated. As the naphtha is very inflammable, the heating should be done in a steam bath in a closed pan. When made, the cement should be poured on a cold atone and allowed to set. Before applying the cement to the iron, the latter should be roughened with a file and heated. The leather also should be roughened on the back with glasspaper, drawn tightly over the iron while the cenient is still pasty, and pressed into position until it becomes cold. Rubher tyre cement is practically a marine glue, and it may be obtaiued from most cycle-repairing depôts.

Making Gelatine Moulda.-When making gelatine moulds for casting plaster ornaments, atc., the glue or gelatine must be of good quality; it is soaked in water till soft, and melted over the fire in the usual way. The gelatine must be of just sufficient consistency to pour from the can and enter into the finest markinga of the model. The mould should flrst be dusted over with French chalk, which is afterwards carefully bruahed off. Before pouring in the plaster, oil the mould with paraffin oil in which a piece of composite candle has been melted. This will put a elean, amooth Bkin on the mould, and prevent the plaster from sticking. The cast ahould be ramoved from the monld as soon as possible, and befors the plaster begins to beat. The mould will peel or scale on the caating through using poor gelatine, through not oiling the inaide of the mould properly, through allowing the plaster to set and become warm before being removed, and through using the gelatine too thin.

Self-feeding Poultry Food Bin.-Fig. I shows aisection and Fig. 2 a front view of the bin, which may be made of $\frac{9}{4}$ in. pine. The gides are raade with the grain of the wood running from top to bottom, a ledge being nailed across the lower and top edges to prevent warping. AA (Fig. 2) show the lower ledges, those at the top being ingide. The front (A, Fig. 1) extends from the top to a little leas than half the depth, and from this a plece of tin forms the front of the hopper and reaches to the feed-hole B (Fig. 1), which should be of guch a height from the ground that the poultry can

object is 720 in ., the rocus of lens 7 in ., the rapidity of motion 20 miles an hour or 352 in. per aecond; then $x=$ $\frac{720}{700 \times 352}=\frac{1}{5}$ of a second, which is the speed at which the shutter must be worked to obtain a sharp image, asauming that the greatest amount of blur or confusion admissible in any polnt of light muet not exceed ${ }^{1}$ part of an inch. It then only remains to find what lens aperture and plate will allow of so brief an exposure being given on such a subject and in such a light. For example, if $f / 8$ at 12 noon in June requires $\frac{1}{5}$ of a becond to secure desired density of negative, etc., then $f / 5 \cdot 6$ will be the nearest gtop to give the correct result at the same time.
Black Paint for Lettering on Glass.-To make a black liquid suitable for writiug letters on opal glasb, take $\frac{2}{2}$ lo. of lampblack, dry, and place it on an iron plate, well saturate it with turpentine, then qet fire to it and let it burn itself out. This will remove the greasethe non-drying oil-from the colour. Now grind it in hard drying mastio varnish, and thin with turps. It would be better to give the letters two coata of thin colour rather than one thick coat.
Dyaing Fancy Grasses Various Colours. - Allow the grasses to soak for some time in a very hot and strong colution of aniline dye in water. Thosa dyes which are not soluble in water may be discolved in spirit, and the solution added to water. Some aniline dyes will colour direct in this way, but others require a mordanting or flxing agent. For fixing basic dyea, such

Self-feeding Poultry Food Bin.
reach the grain. The feed-board is hinged to the back of the hopper at C, the joint being protected inside by a strip of canvas. A batten D is nailed acrose the graln of the feed-board to keep it from warping, and is extended throngh to the back, where a bolt with a thumbserew is provided which may be turned to regulate the size of the provided which may be ait the size of the graing of corn that are leed-hole B to guit the size of the graing of corn that are give a flrmer bearing on the ground. A sloping roof is provided, fitted with hinges at the front and a hook and eye at the back.
Meaning of Tension, Compression, and Strain.A body is in tension when a force, acting on it parallel to ita axis, tends to separate its particles by drawing, them apart. A compression force is one that acts parallel to the axia of the body and tends to furce the particles into one another. In short, a body in tenaion has a pulling force upon it, while, if in compression, it push would be exerted on it. A strain was at one time considered as a force acting on a body, but the more modern idea is to consider it wa the change of form in \approx body due to the application of a force.

Speed of Photographic Shutter,-There is no fixed speed at which a photographic shutter should be worked, because so much depends upon the atrength of the light, the aperture of the lens, the gpeed of the plate, and the rapidity with which the objects it is desired to photograph are moving. The exposure will generally be as long as the moving objects will allow. When the dlatance from the camera to the moving object and the speed at which it travels are known, an excellent rule is as follows:-Divide the distance between the camera and object (in iuches) by the focus between the camera and object (in inchess) by the focus
of the lens multiplied by 100 , and divide the result by the rapidity of motion (in inches) to obtain the answer In the iraction of a second. Thus, if the distance of
as magenta, methyl violet, etc., the grasses should first be soaked in a hot solution of oak bark or of sumach. Many pretty ghades may be obtained by first soaking in a bot solution of picric acid, and then in magenta, methyl violet, methylene blue, etc. For green, picric acid and indigo extract mey be used. In all cases tha dye aolution ahould be atrong and hot, or the dye will not penetrate. The grassea ahould be quickly dried after acaking in the coloure.
Tempering Cold Satts for Cutting Steel Rails,The methods of tempering ordinary engineers' cutting tools ale suitable for setta. Warm water is preferred by many, but cold water gives a harder temper. Water which has been loug in use is better than fresh water. Chemicals are not necessary, though a little rock salt added is said to be advantageous.
Colouring Malleable Castings.-A good green colour is obtained on malleabla castings by blackleading the castings, and then lacquering them, when heated, with a green lacquer. Or they may be painted over with bronze powder, which may be ohtained of various colours and tints, rubbed up in best varuish, and heated in a hot japanning stove. But the best way is to have them hronzed by electro-deposit of copper, brass, or other metal; or they may be tinued in the ordinary way, and then lacquered with yellow or gold lacquer when heated in a stove or on a hot plate.
Fixative for Penell Drawings. - Pencil drawings made on ordinary drawing paper may be protected from smudging or becoming blurred by a thiu coating of methylated apirit into which some resin has been dismolved. The varnish may be applied with a brush, but a better way is to blow it on with a spray, which may be obtained at any chemist's. A wagh of milk over the drawing wlll also serve to fix it.

Varnish for Kitchon Chairs.-Such chairs are generally made of birch; the commonestkinds are brushed over with glue size stained with venetian red, then varnished with common varnish heavily stained. The better lrinds are stalned with burnt sienna and size or stale heer, then hodied up with red pollsh and varnished. One pennyworth of Bismarck brown, added to 1 pt. of varnish, imparts a powerful red tone. Shsllac $40 z$., resin $20 z$., benzoin 20 z., and methylated spirit 1 pt ., make a useful varnish. Carefully strain. If the varnish is not thick enough, add more shellac ; if it is too thick, add more spirit. Apply with a camel-hair brush.
Design for Small Pulpit. -Fig. 1 shows a sketch plan, Fig. 2 shows front elevation, with a portion removed on the left in order to show the stairs. Fig. 3 shows the side eleration. Enlarged details are given as follows :Fig. 4, section through AA; Fig. 5, section through BB;
black. In pleasure carts it fo customary to have the bodies black, without any lines at all, excepting the front ssats and brackets, but tins kind of vehicle determines in a great measure the manner in which it is to be finished. 1t may parhaps he as well to add that the broad lines on a trap, usually on the centre of the spokes, shafts, and springs, represent "picking out," whilst fine lines ars the smaller ones sometimes used by themselves, when they are called counter-lines, and at other times edged on the picking out, or run up the centre of the same, when they are termed split lines.
Boring Holes in Bricks.-For boring holes about tin. or $\frac{s}{4}$ in. diameter at any place in an ordinary brick wall, an old twist-bit used as a horing tool may be made to serve the purpose: a piece of steel tube, such as cycles are made with, will, if jagged at the end, answer very well. These tools are only suitable where the

Pulpit for Small Chapel.

Fig. 6, section through CC; Fig. 7, section through DD; and Fig. 8, section of handrail. The construction is fairly simple, but the pulpit would look effective if made of good deal and stained and varnished, or of pitch-pine varnished.
Painting a Cart.-To be used for trade purposes, it would look very well with the body painted chocolate lined ont with vermilion; the under parts, such as shafts, wheeIs, etc., being painted a light yellow, picked out with a broad line of black, edged with vermilion. Another colour for hard wear and to look well is a good dark green, the hody fine-lined with a lighter green, and the under parts picked out with the same colour as the lines on the hody, and edged up, or ganged off with a lines on the body, and edged up, or ganged of with a for the purpose, as it has a tendency to fade and turn white ; but if used for the hody it should be fine-lined yellow and the under parts painted red picked out in
bricks ars fairly soft; with hard bricks it is quicker and easier to make holes with a chisel and hammer in the usual manner. Holes may be very quickly drilled in brick or stone walls hy making the cutting end of the drill in the form of a eross with four cutting edges. The drill is held in one hand and rotated while being struck with a hammer. When the holes are required to be deep, a projection may be made in the outer end, by which if can be knocked out of the hole quickly. The cutting end should bs larger than the shank, so as to allow for clearance, and the shank should be sufficiently long to allow a hammer to be used for knocking it out of a deep hole.
White Cement Floor.-For making a hard white cement floor for a room, lay an ordinary cement concrete foundation, ahout 5 in. thick (4 to 1), and on this lay a coat, lin. thick, of Portland cement and clean white sand (1 to 1). Such a floor has a white appearance when dry.

Efficiencles of Water Motors.-For mall power purposes, for pressures of 50 lb . per square inch and nowards, If efficiency is defned as the ratio of the work received from the motor compared to that put into it, the following list may represent the efficlencies of various water motors when used in clrcumstances that euit the special types considered:-Undershot wheel, 25 to 45 per cent.; low breast, 40 to 65 per cent. ; Pancelst, 60 to 70 per cent. ; high brenst and overshot, 60 to 80 per cent.; and turbines from 60 per cent. upwards. Undershot wheels and Poncelet wheels ars suitabie for heads of 6 ft. and under; breast wheels for heads over 6 ft ; overshot wheels, from 10 ft . to 60 ft . or 70 ft ; and turbines for any head recording to the dissign of the wheel. A preseure of 50 lb . per square inch corresponds to a head of $50 \times 2 \cdot 31=115.5 \mathrm{ft}$. The Jonval (parallel or axial flow), Fourneyron (outward fiow). Thomson (inward flow), and Schiele (mixed flow) turbines are suitable for pressures.
Hot-air Oven.-The modern hot-air oven suitable for enamelling and japanning here shown is about 10 ft .-by 8 ft . by 7 ft . high, with iron swing doors in front. An ordinary furnace fire, fire-brick lined, is built at the further end of the oven opposite to the smoke flue (see Fig. 1, which is a longitudinal section), access to this
oover. Fold in the corners neatly, and make a emall roll by running an seam in. from the outside edges all round the top and bottom. For hest work these rolls are piped with cord. Fill the mattress with curled hair and tuft \ln rows 6 in. apart with strong twine and red woollen tufts. To make the mattress square and firm at the edges the sides are stitched up with two or three rows of blind stitches. For this purpase an upholsterer's 9 .in. double-pointed mattress needle, threaded wlth twine, must be used, the needle being paesed through the side about lin. from the bottom edge, and brought out, but not drawn through, 6ln. from the edge on the top; the needle is then, being double-pointed, backed out on the side about 3 in. from the place at which it was first inserted. When the needle is pulled up tight all the hair contained in the stitch is drawn up to the edgs of the mattress. Stitch all round in this way as many times as necersary.
Design for Bamboo Cabinet.-In the accompanying sketch the uprighte of top are 2 ft . 6 in long, the cross rails 3 ft . 3in., and the mirror 20 in . by i5in. Use 1 l -in. or $1 \frac{1}{n}$-in. canes for the work. Make up the front and back of the cabinet in the first place, and, while these are setting, get out the back of the top. The two bottom sections should now be joined together. The rails should

Design for Bamboo Cabinet.
be about 10 in . between if the cabinet is to be 13 in . wids over all. Maks the door frames from perfectly straight lin. canes. These canes shonld be mitred at the corner, and a right-angle dowel should be used for filling. The rebate for the glass should be formed with split black cane. The doors work on pins, which act as pivots.
Renovating Brasswork of Bedstead. - Take the loose brasswork to pieces and boil off the old lacquer in a hat solution of carbanate of goda and water-Ilb. of carbonate to 1 gal. of water ; then swill the parts in clean water. Repolish with strips of flannel "list," to which is applied a mixture of lime and oll. Then clean off with dry lime, and relacquer with a camelnair brush. The work shauld be held in aome way, preferably in a vice.
Darkening a Mahogany Picture Frame,-To darken a Spanish mahogany picture frame, dissolve loz. of bichromate of potash in 1 pt. of warm water. Apply the solution with a sponge or brush, getting it well into all guirks or hollowe; wipe off any surplue with rag. Severgl coats may be given till the desired tone is gained. Whon dry, wipe over wlth raw linseed oil; smooth down by well rubbing with coarse rag or fnestgrade glasspaper. The worls may be flnlehed with French or wax polich.

How to Make a Pencil Marking Gauge.-This tool is not generally found among woodworkers' tools, but If it were more adopted it would he found an advantage over the common rough way of using the fingers and pencil as a gauge. It will be seen from the figures that there are several ways of making the tool. Any hard wood will do for making this gauge, but beech is preferahle. A piece of wood about 1 ft . long and lin. thick (see Fig. 1) should be chucked in the lathe for the stem of the gauge. This is carefully turned to in. In diameter, except the end nearest the hack poppet centre, which is left a trifle thicker than $\frac{3}{4}$ in., so that the head of the gauge may be turncd on it. For the hsad a piece of wood 3 in, square and $1 \frac{1}{3}$ in. thick will be required; two lines drawn from the corners will determine the exact centre of the block. At the centre on one side of the head a hole should be bored $\frac{8}{3}$ in. in diameter with a sharp centre-bit half through; the block is then turned over, and the other half hored; this ensures the hole being true. The corners should be cut off the block, so that it may be more easily turned; it is then fixed tightiy on where the stem was left thicker; it should be a tight fit. The head should now be turned, so that when finished it is just 2 In. In diameter." To immove its appearance, the sides of the head may he polished while it revolves in the lathe; but before this is done the top and bottom of the head should be turned

How to Make a Pencil Marking Gauge.
perfectly square to the stem, and as smooth as possible, so that when finished the head should measure $1 \frac{1}{4}$ in. thick. The stem should then he turned, 60 that the head slides along its length without being too loose; the stem is then cut off about 10 in . long, the ends being cut square. Fitting the wedge is next to bedone; it may be shaped with a chisel or fret-saw. The round on the thin end is to prevent the wedge when loosened from slipping out and heing lost. The wedge should be 3 in. long and ahout in. thick. The groove in the head is cut to takut the whick. The groove in the head is cut to iret-saw finishing with a chisel; the wedge should fit easily without any shake. A holethe size of an ordinary pencil should be bored in the stem ahout ${ }_{4} i n$. from the end; a piece of pencll is fitted in, and the gauge is complete. The gauge illustrated in Fig. 2 is octagon in shape. A piece of wood 10 in . long is planed up $\frac{8}{4} \mathrm{in}$. square each way for the stem. The head being octagonal, it is best way for the stem. The head being octagonali, it square first; it should measure $2 \frac{1}{2}$ in. When perfectily true, the corners are cut oft; it should be marked as shown in Fig. 3. This is done with a pair of compasses. Using the corner of the block as centre, and the middle of the hlock as radius, an are is described to the side of the block; a line from the ends of these arcs marked across the corners, should make a true arcs marked across the corners, shourd shake a be cut with a ${ }^{\text {ont.in. A chisel; }{ }^{\text {a }} \text {-in. hole should be bored through }}$
first to facilitate the cutting. Care should be taken to get the sides of the head square with the stem when it is fitted in. The head should also slide up and down the stem easily without side play. The wedge is cut to shape, and fitted as descrihed for the round gauge; and the pencil is also fltted as described befple. A good way to sharpen the pencil for theso gauges is with a sharp chisel. It will be found that the gauge will be handy in using up odd ends of pencils. A different way of making it, which answers well, and is less trouble to alter, is shown at Fig. 4, which gives the end view of the head, showing the shaps of the hole. The stem is cut the same shaps as the holo in the head, but slightly shorter in the flange of the snail. To make the stem. take a piece of wood 10 in. long place the head on one end, and mark the shape of the hole on it. Do the same at the other end, and then plane the wood to an ovail, as shown in Fig. 5. Cut a slot in it with a flne-backed saw, as shown by the dotted lines, and round off the inner corner. This gauge does not require a wedge to tighten it, hut is fixed at any desired part of the stem hy turning round, the shape of the stem acting as an eccentric. To loosen it, turn the stem in the opposite direction.
Frame for Working Fmbroidery.-The accompanying sketches of a corner and back view will give an idea of how to make a suitable frame on which to work embroldery. The tenon A (Fig. 1) is cut, not in the middie, hut towards one side of the piece of wood, to allow space for a groove to admit the wedge shown at Fig. 2. The

Frame for Working Emhroidery.
dotted part shows how this groove is to be cut. The mortise is filist cut to fit the tenon, and a piece chiselled out afterwards as shown hy dotted linee. This space is for the second wedge. Fit the frame together, and tack the cloth on which the embroidery is to he done as shown at Fig. 2, and, if the hard wood wedges are then inserted, it will he seen that hy tapping them with a hammer they will expand the framework in every direction, and thus strain the cloth quite equally. Fig. 1 represents a corner of the frame; Fig. 2 a corner with wedges inserted and cloth tacked on; Fig. 3 is a with wedge
back vlew.

Making thin Glass Covers for Microscope Slides, -The semi-fluid glass is flrst blown out into a very. large thin bulb and the blowpipe swung from side to side until the bulb elougates into a cylinder. The rounded ends of the cylinder are cracked off by applying a red-hot iron wire, and, with a straight wire, a longitudinal crack is made from one end of the cylinder to the other. The cylinder is placed on a flat stove in an annealing kiln for a few moments, when it softens and opens at the crack, gradually flattening out into a thin sheet. The circles are made by touching the thin sheet with a hot iron wire bent in the form of a circle, and the squares are cut out by applying hot, straight wires.

Deadening Sound coming through Party Walls. -The fault of sound coming through a party wall generally does notlie so much in the wall itself as in the joists. It will probably be found that the joist a rest in the party wall, possibly touching each other, and that the sound is conveyed by the timbers, not by the brickwork. The skirting boards, too, may be acting as sounding boards. If this is the case, "jack up" the end of each joist, take out the brick below the end of it, and insert a thinner brick, with two layers of tarred felt between the brick and the joist, at the same time wedging a piece of felt between those joists that touch each other. The skirting s should be taken off, and the space behind filled with plaster. If the cause is really in the walls and not in the joists, try covering with one of the thick pulp papers, such as Lincrusta-Walton, anaglypta, or Japanese leather paper.

Newspaper Rack in Bamboo. -The rack shown in the accompanying illustration has four corner posts, the accompanying illustration has four corner posts, each 19 in . long, slightly bent at the bottom to form B, and C, back and front, each $15 \frac{5}{s}$ in. long, and at the sides by rails D and E , each 9 in . long. There are also three cross rails running from front to back connecting the rails A. The rails E and the posts F (the latter being ladin, long) are halved where they cross. Connesting the posts F is a rail $G 15 \frac{3}{4} \mathrm{in}$. long, to which the handle H, of $\frac{3}{s}$-in. cane, is fastened. Running from the

Newspaper Rack in Bamboo.
rail G ares two $\frac{1}{2}$-in. canes K, each about $19 \frac{1}{2}$ in. long, pinned together whers they cross, and fixed underneath the rail D. An inclined rail J runs from \mathcal{B} to C, the lower end being lit in. away frown the corner post and the upper end belng15i2h. Another rail $\mathrm{i}, 9 \mathrm{in}$. long, inclined in the opposite direction, meets the rail J about $3 \frac{1}{2} i n$, from the top, and in the triangular opening thus formed panels are fixed. The dotted lines indicate how the cans L might be fixed if a variation in the design is desired. In this case the rail B would terminate where it meets I. The centre of rail A is $6 \frac{1}{2}$ in., and the centre of $B 93$ in., from the ground, and the distances between centres of D and E 3 in.
Sharpening a Cabinet-maker's Steel Scraper.A scraper, to be of any use, must have the edge as keen ind sharp as possible. The contrivance shown In Figs. 1 and 2 for truing the edge of a steel scraper does away with the necessity for a vices, or even a bench. It is so simple that it can be used without risk of rounding the edge of the scraper. It is easily made from a piece of any kind of hard wood, 4 in. long, $3 \frac{1}{2}$ in. deep, by $1 \neq 1 n$. thick. Dress up the piece of wood to size, and cut out the slot A (Fig. 1). The slot should be wide enough to allow a flat, fine cut file belng easily slipped through, and it should also be twice as long as the file is wide, so that the full breadth of the file may be made use of for trueing purposes. Bore a $\frac{2}{2}$ in. hole through the block, and square it out as shown at B; this is to take the wedge W (Fig. 2) which holds the flew ${ }^{(1)}$
in position. The square hole should be slightly tapered, so that the wedge can be easily released. Run a saw kerf straight through the block B down to the slot, as shown at o (Fig. 1). The kerf should be just wide enough for the scraper s (Fig. 2) to slide freely; then a few rubs backwards and forwards will produce an edge which cannot be otherwise than square with the face. It is somewhat difficult for the novice to hold the scraper perfectly upright, so as to prevent it from swaying from side to side on the oilstone whilst setting swaying the edge. A block something similar to Fig. 1 could be adapted for holding the stone, or even a square piece of wood might be held on the oilstone to act as a fence for the scraper; this at least would preserve the squareness of the edge. It is when the scraper becomes too dull and rounded on the edges by repeated applications of the "steel" that the edge requires to be turned over to an acute angle with the face. The proper instrument for turning over the edge of a scraper is a currier's "steel," which is a hard-tempered and highly burstashed, which is a hard-tempered and highly burthe edge projecting $\frac{2}{2}$ in. or so; hold it, firmly to keep it from shifting; grasp the "steel" with the right hand, handle downwards, and work it along the edge. T' hs "steel" should be held almost perpen.

[^1]

Wheelwright's Horse for Mortising Wheel Naves. -The horse shown in Figs. 1 and 2 is to be preferred to the pit for light work. It stands close against a wall, preferably under a window; the larger parts can be made of deal. Itis very light, and can easily be removed if desired. In Fig. 2, A shows the front of top of wheel horse and B the back, each being 4 in. square; 0 D are the legs, 3in. square; E Eare two pieces connecting frontand back of horse together, $2 t i n$. wide by li in, thick. These are dilven tightly into a mortise about halfway through B and pegged or ecrewed; the other ends ft fairly tight in a mortise going right through A, so that the whole front of horse, with legs, can be knocked backwards and forwards to accommodate hubs of different lengthe. Two pieces FF, 2 in. square and 19 in , long with $\frac{3}{-i n}$. bolts, are nailed or gerewed on top of wheel horse and hollowed out on top for nave to rest in. To strike a curve on front piece, open the compaeses $2 \frac{1}{3}$ in., and for back piece 3 in . The nave ie fixed with pieces of iron about In. wide and $\frac{1}{6}$ in. thick, dropping loosely over the bolts and spanning the nave at Pront and back, which they are bent to fit. A frame for a pit for making very heavy wheels. would have to be a fixture; the front might be 7 in . wide in the centre, and taper on the ingide to 341 in . at ends, thus forming a bow piece to allow for the dleh of the wheel. The timber for making the pit frame shown in plan, Fig. 3 , should be 3 in . or 4 in . thick, the pit being 2 ft . 6 in . deep.
pinion, 8; fourth pinion, 6; 'scape pinion, 6. Then $60 \times 60 \times 54 \times 13=2,527,200$; and $8 \times 6 \times 6=288$. Therefore, the train $=2.527,200 \div \frac{288}{2}=17,550$. Select a hairEpring of about vise required diameter to suit the regulator pins, or a little larger, and lay it in pobition on the balance, pushing the brass hairspring collet down tightly upon it to hold it temporarily in position. Then hold the outer end of the spring in a pair of tweezers, and lift up the balance, just allowing the lower pivot to rest upon a wateh glass. In this position, give it a rotary motion, as in the watch, holding it as steady as possible. When once started, the balance will continue to vibrate beckwards and forwards for more than a minute. Have at hand a watch with a seconds hand, and carefully count the double vibrations in a minute, or, for a preliminary trial, in twenty or thirty seconds. If thel trial spring is too slow, try a stronger one; if too fast, try a weaker spring. Be careful to hold the epring in the tweezers at the point where it must be pinned into its stud, as a epring that is too large for the watch must have several complete turns broken off before using, and in such a case must be broken off before using, and in such a case must be outside end. By repeated trials, select a spring that, when held at the required diameter, couuts the correct number in a full minute. To pin it into its collet, put the collet on a broach and hold in the hand; cut out

FIG. 3
Wheelwright's Horse for Mortising Wheel Naves.

The four mortises G are $1 \frac{5}{s} \mathrm{in}$. square, and the ground should be cleared away underneath them so that the pieces shaped like Fig. 4 (which are about 22 in. long, l点in. thick, and 4 in. wide at the top) may be knocked back from below. The inner surfaces of these holding pieces should be shaved out on the bevel, so that when driven in they come into close contact with the sides and top of the hub, thus holding it in place. These pieces (Fig. 4) take the place of the four thumbscrew bolts of the wheel horse.

Fitting a New Hairspring to a Watch.-It is first necessary to know how many beats per hour the halance is required to make. This varies according to the kind of watch. A Geneva or an American watch will beat 18,000 per hour ; an English watch may beat $14,400,16,200,18,000$, or come number between. In an English lever, if the fourth wheel has ten times as many teeth as the 'scape pinion has leaves, the train is teeth as the scape pinion has is in 16,200 ; if eight times as many, it is 14,400 . A watch with an 18,000 train beats 150 double vibrations per minute, and so on. The number of beata per minute of a watch balance when keeping correct time may be anything between 240 and 300 . Watch trains are calculated as во many beats per hour. Thus, a watch beating 240 per minute is said to have a 14, 400 train, and one beating 300 per minute has an I8,000 train. To ascertain the train of any watch, multiply together the numbers of the teeth in the centre, third, fourth, and 'scape wheels. Also multiply together the numbers of the leaves of the third, lourth, and 'scape pinions. Divide the firet product by half of the second product, and the result is the number of beats per hour. Thus, centre wheel has 60 teeth; third wheel, 60 ; fourth wheel, 54 ; ${ }^{2}$ scape wheel, 13 ; third
the inner coile of the spring until the collet will easily pass through; then bend the inner end sharply inwards to pin in the collet. To cut out the centre, lay the spring on a watch glassand, holding the inner coil with a fine pair of tweezers, break off about one-third of a turn at a time until it is correct. When properly cut out, and the end bent inwairds, pass the hairspring over the broach upon which the collet was placed, and incert the bent-in end for pinning. File up a emooth brass pin to fit, fiat it on one bide (to go against the spring), try it in the hole before cutting off, and half cut it through with a knife; then inser't it, and break off, afterwards pushing it home with the tweezers. Then eee that the Gpring is flat as it stands upon the broach, and revolve the broach in the fingers to test it. If flat, take it off the broach, lay it on a watch glass, and see that it is true to centre-that is, that the collet occupies the exact centre of the spring, and that the spring starts away from the collet freely, and does not "hug "it. Then put it on the balance, and again count it for a full minute, trying it repeatedly until a point is found at which, when held, it counts one beat per minute too slow. This is the point at which to pin it in its stud. Then try in the watch, and if too slow, as it will bea trifle, shorten it until correct. It ie always best to pin them in a little slow at first, and shorten till right, as, if the spring is once made too short, it cannot again be lengthened. When finished and in the watch, be careful to see that the epring lies quite fiat, and is free of the balance arms and the balance cock; that its outer coil passes freely between the curb pins of the regulator, and plays between them nicely $:$ and that the second coil does not touch the stud or the inner curb pin, and in a Creneva watch be careful that the outer coil never touches the centre wheel.

Stain and Varmish for Towel Rail. - Towel rails are usually finished in imitation pine or mahogauy. For pine, mix a small quantity of raw sienna with stale beer or vinegar: apply with a brush, rubbing well into all quirke, and wipe off the surplus with clean rag. For mahogany, use burnt sienna. When dry, rub smooth with coarse rig or fine glasspaper. Then coat several times with spirit virnish applied with a camel-hair hrush. A more intense red may be gained by adding one pennsworth of Bismarck hrown to each pint of varnish. A suitable varnish consists of metbrlated spirit, l pt.; shellac, 4 oz .; resin, 2 oz ; and gum sandarach, 2oz. Disbolve in gentle heat, and carefully strain.

Mitring a Cornice Moulding.-The method of mitring the cornice moulding shown by Fig. 1, when the cornice is built up as shown by the section (Fig. 2), should present littie diffioulty in respect of the members a and B. To lieep the moulding in position whilst cutting the mitre of c , place a strip of wood E in the mitre box (Fig. 3); the distance from the edge of this to the back of the hox must he equal to D (Fig. 2). For ordinary

Wired tubing is made in the same way, the wire serving in place of the mandrel. Some tubing l's made by kneading between steam-heated rollers the uncured rubber with sulphur and inert materials, such as zinc oxide, French chalk, etc., and forciug it through a hole in a die in which is a plug the same diameter as the tube. The rubber tube is drawn away as fast as it is formed. the rubber tube in drawn away as iast as it is formed, core of catheters and similar things is an iron wire, which is withdrawn after curing.
Making Photographic Carbon Tiseue. - Carbon tissue may be purchased either sensitised or unsensltised. Sensitised carbon tissue will keep for a fortnight, under pressure; unsensitised tissue will keep indefinitely. To sensitise the tissue, immerse it in a solution of bichromate of potash, and let it dry squeegeed in close contact with class. This operation is convegeniently performed ot night, when, if the room is conveniently performed at night, when, if the room is over the kitchen fire; in the morning they will he dry. Care must be taken to dry the tissues away from-gas or oil fumes, as these make the tissue insoluble. Many

Mitring a Cornice Moulding.
purposes, mitres made direct from the saw without shooting are suitable; the saw must have but little "set," and the mitre box must be true. Should easing be necessary, use an iron face smoothing plane set fine. In more important work where the mitres have to he In more important work where the mitres have to he simple form of shoot can be made by nailing together four pieces of prepared wood and carefully mitring the end, as shown at Fig. 4, in which the moulding can be firmly held while it is being shot by a couple or more Bcrews going through the box into the back and top of the moulding, as indicated at G and II (Fig. 4),

Making Indiarubber Tubing. - There are two methods of main 'ig lubher tubing. The pure rubher is treated with carbon bisulphide or benzine to form a dough, which is rolled out into thin sheets and then cut into strips. A strip is rolled round a cylindrical mandrel the diameter of the tube required, the superfluous edges are out etraight along, and the freshly cut edges touched with rubber solution and pressed together. The ruhber is now cured either by soaking for the requisite time in a solution of sulphur chloride in carbon bisulphide, or by heating in a mixture of French chalk and sulphur to a temperature of about 140 0 . The mandre] can afterwards be withdrawn.
good authorities, however, consider that better results are obtained when the bichromate is mixed with the gelatine before coating the paper. The following is Burton's procedure:-Cover 4oz. of Nelson's opaque or other soluble gelatine with 150 or of water, and allow it other solubie gelatine with heoz, or water, and andow hy placing the jar containing it in hot water. Dissolve fo oz of loaf sugar in $20 z^{2}$ of water, and add to the dissolved gelatine. Next dissolve toze of potaseium bichromate in 3 oz . of water, and add to it sufficient ammonia to give it a decided odour ; then mix with the gelatiue. The favourite pigment is Chinese ink, but any pigment in a very fine state of divislon is suitable; it pigment in a very fine state ol dirision is brokeu up, and made into a stiff paste with should. Mix some of this pigment thoroughly with the gelatine in small quantities, etirring vigorously, until more pigment has been added than is pecessary to render quite opaque a thin fllm spread on paper. The support must he a good tough paper that will stand rough handling when wet. Over the top of a trough is then fixed a large glass rod or tube. Two sheete of paper are placed hack to back, and, one end being brought under the rod, the solution is poured out until it haif covers the rod; by gently drawing the papar round the roller the two outside faces are coated. Hang up to dry, and the paper is then ready for use.

Making Watch Hairsprings. - The operation of making watch hairsprings requires special skill. In making by hand, flat wire is fastened at one end to the arbor of a winder not unlike a mainspring wlnding tool and wound up quite tight, and kept fiat by a brass guide on each side like a bobbin. When wound singly and released, the spring will open out a trifle only, and the finished spring is a "close-coiled" one. But when two or three wires are wound up one over the other, the results are more open in the coils. The best hairsprings are afterwards fire-hardened and tempered, but common ones are left solt. They are hardened by being heated to redness in a box specially made to exclude the air, and then plunged into oil or water. They are tempered by being heated on a metal plate until a slip of bright steel placed beside them turns to a full blue. They are then polished by means of rouge and oil on a peg or wood polisher, (this is very dellicste work), and afterwards "blued" by heat on a metal plate over a lamp fiame. These fire-hardened hairsprings are expensive, but are always used in the best watches.
Fastening Tenon Saw to Lid of Tool Chest.-A simple method of fixing a tenon saw on the lid of a tool chest is to use a wooden clip, as shown at A (Fig. I), which holde the end of the saw. The handle can be rastened by a button, as shown at B. When the button is moved to the position shown by the dotted lines, it will allow of
black. All trees and foliage should be treated in the same way; the buildings, etc., should be covered with a deepened local colour, especially in the dark parts and shadows. Windows and illuminated parts should be covered with Indian yellow for yellow lights, and with lakes for red lights such as a fire. The dioramic change is made by gradually turning down the light in front and turning it up at the back. The stronger the light the better will be the effect.
Making Cyanide of Potassium.-Prussian blue, ferrocyanide of potassium (Fellow prussiate), and cyanide of potash ale now recovered by the Gas Light \& Coke Co. from the purifying materials used. There are two methods of recovering the cyanogen compounds : the first by absorption in the scrubber, the second by absorption in the oxide purifiers. In the frist method a scrubber is used containing soda or potash and some suspended oxide or hydrate of iron; the cyanogen in the gas oombines with the iron and alkali to form ferrocyanide. If the iron is in excess the compound is insoluhle (probably as Prussian blue), but if the iron is not in excess, then the compound is soluble. After a certain period the liquid is run off for concentration. In the second method the cyanogen is fixed in the oxide of second method the cyanogen is fixed in the oxide of iron purifiers as prussian blue (Noric in in the series long after ithasbecome saturated with sulphuretted hydrogen

Fastening Tenon Saw to Lid of Tool Chest.
the saw being taken out. Figs. 2 and 3 are enlarged sketches of the clip and button respectively.
Recipe for Dead Biack Waterproof Ticket Ink. -Take 4vory black or any dry colour and grind (on a slab with a muller) in japan gold size to the consistency of honey (the proportions cannot be given, as one colour will ahsorb more size than another colour). Now spread the colour on at piece of stout blotting paper, and let it the colour on ar piece of stout biotting paper, and grease remain the gold size. Collect the colour in a pot and thin with benzine, as the latter evaporates quicker than turps, leaving a better fiat.
Preparing Scenery for a Diorama.-The kind of cloth used for dioramas is called union; it is made in varions sizes, and requires no preparation to receive the colours. The subject to be represented is first carefully drawn in outline with a pencil. Then mix some vandyke drown with hot double size, and with a fine brush go brown with hot double size, and with a fine brush go painting of the pleture may be proceeded with. Jelly size is the medium, about iqt. of water to a pound of size. Only transparent colours should be used, such as azure blue, celestial blue, indigo blue, तamp lake, brown lake, Duteh pink, raw sienna, burnt sienna, Indian yellow, Indian red, vandyke brown, ivory black, blue or yellow, Indian red vandyke brown, ivory land cover with water: Toke as much azure blue as is required for the siky colour, and make it into a paete with water, adding just enough whiting to make the blue flow evenly; the colour should be semi-transparent. Coyer the whole of the picture with this colour, commencing at the top and working downwards. As the work proceeds the colour should be thinned with the medium, so that there may be a gradual change of tint from dark to light. All illuminated parts mint be thinly covered. When this is dry, give the other portiong of the picture their local colouring, and finish off. If the other side of the picture is to represent moonlight, draw the moon with a flne line and slightly tint it with appropriate colour. For the dark parts of the sky, use celestial blue; for the dark dark parts of the sky, use celestial blue; for the dark
cloude, indigo; and for very dark clouds, baden with
as much as 8 or 10 pcr cent. of Prussian blue has been obtained from it. The oxide of iron is exposed to air in the usual way to revivify, and the sulphur extracted by carhon bisulphide in closed vessels; the sulphur ie recovered, and the carbon bisulphide used over and over again. The spent oxide is boiled with line and water, when the Prussian blue is decomposed and ferrowater, when the pranide of lime is produced. The clear solution is cyanide of acidified, and a per and proto salt of iron drawn off acidified, and a per and proto salt ol iron to settie, washed, collected in bags, filter pressed, and dried. From this pure ferrocyanide of potash is pro duced by boiling with the calculated equivalent of canstic potash. Cyanide of potash is formed by fusing Prussian blue or ferrocyanide of potash with the right proportion of carbonate of potash.
Sizing and Varnishing Wail-paper.-To size and varnish the paper of a hall and staircase, dissolve 7 lb . of size in 3 gal. of boiling water. When cold it will be of the consistency of a weak jelly. Apply this to the paper with a double-knot distemper brush, being careful to go over every bit of the paper. Twelve hourg after, apply a second coat of size. Twenty-four hours after the second cort has been applied the paper will be ready for varnishing. A good apaper varnish may be made by well mixing $\frac{1}{3}$ gal. of pale oak varnish, $\frac{1}{2}$ gal. of turpentiue, and $\frac{2}{2} \mathrm{pt}$. of raw oil. If the weather is frosty, the staircase and ball ghould be heated to about $60^{\circ} \mathrm{F}$. If this is not practicable, wait until the frost disappears. Spread the varnish with a hog's-hair varnish brush, commencing at the top, and working evenly downwards. A second coat of varnish six months after the first has been applied would make a first-0lass job.

Preventing Oxidation of Molten Lead.-Strew powdered charcoal over the surface of the metal; or add borax, which will fuse and form a layer unon the lead, thus excluding the atmosphere. The brown powder is largely oxide ot lead; it may be reduced by mixing with finely powdered charcoal and a little borax and raising to a red heat; from it the lead which it contains can thus be recovered.

Architects' Perspective Drawinge,-The perspective drawings prepared by architects sometimes have the principal lines put in by the ruies of geometrical perspective as taught in the art schoole, but usually they are found by a special method shown in the accompanying diagram, where a very simple building is chosen to indicate the course pursued. The drawinge

being often on eeparate sheets, the pian is first fastened duwn on the table by drawing-pins. A suitable point of view is then selected, and a common pin stuck in to represent the spectator: A narrow strip of paper is now fixed hy two drawing-pins, and a line ruled upon it in the position chosen for the transparent plane, or picture the position chosen for the transparent plane, or picture plane, which should touch the nearest angie of the ecross the picture piane from the pin to all the chief
angles of the plan, as on line $a b$, wrlting the names against the chier ones so as to know one from the other. A line representing the ground line is then drawn below

the position of epectator, as if the view were a sectlon, vertical iines drawn from the corners of the building and the heights of the angles set off above the ground line. Dottcd lines are now drawn from the extremities of these to the pin, cutting the plcture plane in. tioe
points marked. Now, for the perspective, take a clean sheet of paper, and fasten it down on a drawing-board pin the strip of paper a borizontal near the bottom adge, and project vertical lines from the points which represent the angles of the building. Decide where the bottom of the nearsst angle in the perspactive shall be, and above it set off the heights wherg the dottod lines crossed the picture plane, maasured from b, and from them draw horizontal lines to intergect vertical lines drawn from ab. Join the intersections, and the two visible sides of the house will be obtaingd. Produce these to intersect on each sids, and the two vanishing points will be found. For the remainder draw vertical lines from any given points on $a b$, such as $c d$, set up the height of the parts on the front angle of the perspactive, such as ef, place a straight-edge from these points to ling with the vanishing point, and the intersection with the vertical linas will give the required perspective. Geometrical perspective is useful as giving a scientific foundation and reason for the appearances of objects of all kinds when viowed naturally by the eye. Ordinary drawings of buildings and details are merely conventional representations, and although they may be looked upon as fiat models, and are most useful, thgy do not represent things as they are saen. Architects' perspective is an ampirical or "rule of thumb" method suited to the circumstances, but not available as a basis for the general study of the subject.
Medioine Cupboard.-Fig. 1 shows a front elevation and Fig. 2 a side elovation. It is 2 ft . long and 17 in . wide, and is fastened to the wall by four mirror plates, one at each corner. The four shelves are let into the ends about $\frac{8}{8} \mathrm{in}$. by sawing two gates and cutting out with a

A Simple Medicine Chest.
narrow chisel. The doors have imitation panels made by mitreing strips, chamfered at the edges, of a plain door lin. by $\frac{t i n}{}$. The piece sawn out of the top is fastened to the edge of the top shelf. The bottom shelf is rounded at the corners to bring it to the width of the end, as it is narrow where the bottom shelf goes. The ends are of $\frac{3}{3}-i n$. wood, the shalves of $\frac{3}{8}-\mathrm{in}$. wood, doors of $\frac{1}{3}-\mathrm{in}$. or $\frac{3}{3}-\mathrm{in}$., and the back of $\frac{3}{8}-i n$. wood. A button on the partition will do instead of locks.
Waterproofing Van Sheets.-A waterproof paint for van sheets may be mads by boiling together, at a temperaturs of $500^{\circ} \mathrm{F}$. for four or five hours, $1 \frac{1}{3}$ gal, of linsaed oil, 2 oz . of litharge, 2 oz . of umber, and just sufficient vegetable black to colour it. Another paint is made from 1 gal. of boiled linseed oil, $\frac{3}{2} p t$. of japanners' gold size, 1 lb . of vegetable black, and 11 b . of best patent driers. The shest ghould be laid upon a table and painted with either of the above paints, dried in the open air for several days, then again painted and dried.
Disinfecting Books.-If the book to-bs disinfected is not of much value, burn it. A valuable book may have each page dipped in a solution of bichloride of mercury, blotted and dried, the covers removed and burnt, and the book rebound. Or the book may be passed through a bot-air disinfector, the pages being opened so as to allow the hot air to pass batween them; and probably ths book will have to be rebound. A steam disinfector is equally effective, but the book will be more damaged than by hot air, and the covers will be completely ruinad, making rebinding a necessity. At Shaffield, a disinfeoting apparatus is in use in connection with
the free library, the books being placed in a closed chamber in which carbolic acid is vaporised by heat, Which it is claimed makes the carbolic acid more potent and active; the vaporisation takes place at 80° F., the vapour being raised to ahout 200° F.. s nd the books being subjected to this process for about fifteen minutes. It is also stated that books can be disinfected in fifteen minutes in a closed spacs simply by formaldehyde vapour (or vapour of commercial formalin) by using l cub. centimetrs of formalin to 300 cub . centimetres, or less, of air. The books may be placed on thelr ends, but the batter plan is to hang them up; the covers are opened out until they touch each other; and ars fastened together, being suspended from the fastener by this means all the leaves are slightly separated, and free access for the hot air, steam, or disinfecting vapour permitted. They should never be placed flat. These methods ars equally suitable for typhoid germs as for tuberculosis.
Reviving Polish on Pianos.-Take equal parts of lime water, raw linseed oil, and turps. Well shake the lime water and oil till a cream is formed, then add the turps. Apply liberally with wadding, and wipe off with rag. Clear out all greasiness, and bring up the polish by means of a clean rag made fairly moist-not wet-with methylated spirit. Ropeat if required. Should thers be any peeling off by reason of the paste already on, wash off with 2 gal. of warm water, to which has been addsd a teacupful of common washing soda.
Bed-rest for Invalid.-A simple form of back-rest suitable for an invalid when sitting up in bed is
 Bed-rest for Invalid.
shown in the accompanying sketch. For its construction good red deal, birch, or mahogany may be used. Maks three frames similar to Fig. 1, the outer edges being rounded. These three frames are hinged together as shown at Fig. 2, the back frame having a slanting adge to fit into the notehes of the hottom frame. A pair of iron or brass hinged stays, fixed at the sides, will prevent the sliding back from slipping.

Lacquering Brasswork.-To relacquer fire brasses, curbs, etc., have them perfectly free from greass, and heat them on a hot plate of some kind, and when hot euough apply the gold lacquer with a camel-hair brush; then place them on the hot plate again for a short time. Taks the articles off and allow to cool; do not touch them while hot with the fingers.

Polishing Teak to Resemble Rosewood. - To stain and polish teak to represent rosewood, dissolve one pennyworth of Bismarck brown in 1 pt . of hot vinegar and water (equal parts). With thim, brush over the article once or twice. When dry, wipe over with "red oll," which is made by steeping 2 oz. of alknnet root in $\frac{t}{3}$ th. of raw linseed oil. The work is then ready for polishing. As teak is a hungry wood, to gain good pesults a grain filler should be used. Mix finely crushed ary whiting in to a creamy pasts with turps, colouring it to match the wood by adding venetian red and vegetable black or lampblack. Rub well in in order so fill up the grain. Wipe off clean, leaving the surfacc of the wood free from paste, and polish in the usual way, adding Bismarck to the polish to give a reddish tinge; if a darker tone is desired, a trace of black may be added.

Erasing and Re-engraving Initlals on Watoh Case. -To erase initials from a watch case is a delicate joh. If the letters are in the centre of an otherwise plain cabe, take a fine fiat flle (costing about 4 d . at a jewellers material dealer), and, with \&hort, firm strokes, file out the letters. Dhen go, over the surface with a piece of snakestone or Tam-o'Shanter hone, and finloh with putty powdor on a piece of soft leather. If the letters are in a small shicld, the tendency is to damage the outside work, which would require to he re-cut. With a smanll riffer, or bent fle with a fiat surface, file out the letters, dress with snakestone fashioned to a point, and thish as described above. If new initials are required, first draw them in pencil, and scratch them on with a point or etching needle. Then whet up a graver at moderately sharp angles, outline lightly, put in the thickening cuts, relieve the whole with light and graceful sprigged work, and then clean up.

Combined Jewel, Glove, and Handkerchief Case.A case made in the form of Fig. I will be suitable for holding jevels, gloves, and handkerchiefs. It is 14 in . by 8 in . hy 9 in. deep, and contains two drawers, one to receive handkerchieff and one to receive gloves. The upper part is fitted with a tray to lift out thle is to hold jewellery. Figs. 3 and 4 are plans of the two drawers. Fig. 2 is a plan of tine tray; the centre part a is movable, and is arranged to hold a watch, the latter lying on a cushion formed on a piece of
citric acid. This tende to improve and retain the brightness of the lmage, by dissolving out the remaining iron, and preventing the deposition of fo white precipitate over the blue. It is very desirable that the paper should not in any case be washed for a lengthy period.
Tinning Inside Copper Pipes and Brasswork,For tinning any metal it is first necessary to cleas it from dirt and sand and remove the surface which is oxidised or tarnished. This suriace is removed by pickling the metals for a few hours in clean water containing a small quantity of sulphuric acid. The metale are then dipped in chloride of zinc, and afterwards laid in a bath dippedin chloride of zinc, and aiterwards laid in a bath for the surplus tin to drain off. It is doubtful whether this process is entirely satisfinctory for artificial mineral waters, as the so-called tinned surface partakes more of the nature of an alloy of tin and zinc. Unless the proper appliances are at hand, it is cheaper and better to buy the copper pipes already tinned. It is also probable that white-metal cocks or taps would answer equally as well white-metal cocks or taps woun made of brass, which would have to be tinned before heing ground in.

Contents of Tapering Vessels, A gallon of water accupies $277 \cdot 27$ cub. in, and the capacity of the frustum of a cone can be ohtained loy adding to the sum of the areas of the two ende the square root of their product and then multiplying by one-third the vertical height.

Combined Jewel, Glove, and Handkerchief Case.
${ }^{3}$-in. woad. The part at the hack is left open to allow the watch chain to fall into the drawer or box underneath the cushion. The back part of the tray is fitted with four compartments to receive trinkets, etc. ; the side parts marked B, with ribbon loops, are for 'pins, brooches, etc. ; the sides marked care slotted to receive rings, etc. The whole of the interior is covered with velvet plush, the inside of cover of the case is fitted with a hevelled nirror, and the sides are lined with plush, and buttoned. If' a smaller case is required, make a box in the ordinary manner, and fit it with a tray as H ig. 2 , omitting a compartment in length. Toline the drawers of the glove box rebate the inner upper edge of the drawers as shown in the accempanying sketch, and after fixing the lining a, fix in the head B. T is the top edge of the division and F the front of the box. The divisions should stand lower than the upper edge, and in covering, the lining should he stretched over the toll edge, the raw edges being carried to the bottom. Glue, il used thick, will not spoil the pile; if used in a thin state, the glue will percolate through the foundation, and so spoil the velvet.
Fints on Printing Biue Photographs.-The details of the picture should be fully out, and the dark parts should have a bronzed appearance. Care ierequired to prevent the blue becoming less Intense, and-therefore the white lines not showing up so much. A print too much exposed appears weak, but the same occurs with too little exposure. The ferricynnide used should be as pure as possible. It is allected by air and light, Which may chauge it into ferrocyandde. The first forms a blue precipitate, and the eccond a white. Orystale of ferricyanide should therefore be rinced before uee to rid them of the changed outside covering. The first washing water should be acidulated with hydrochlorio or

The contents will be in cubic inches if the areas and heights are measured in square inches and inches respectively. Of course, there are many varieties of tapering vessels that will hold 1 gal., but, assuming that the diameters are 3 in. and is in. at hottom and top of the vessel respectively, the, height can be determined as follows:- The areas of the two ende will be $3 \frac{5}{5} \times 3 \frac{5}{8} \times \cdot 7854=10{ }^{\circ} 3 \mathrm{sq}$. in., and $44 \times 4 \frac{1}{4} \times{ }^{-7854}$ $=14 * 2 \mathrm{sq}$. in. respectively; the product of these io about 144 , its square root being twelve. The sum of the ende, etc., is therefore $10 \cdot 3+14 \cdot 2+12=36 \cdot 5$, so that the helght should be $3 \times \frac{277.27}{36.5}=22.7 \mathrm{in}$. (say).
Etching on Copper.-A copper plate is polished, and fixed in a mixture of resin nnd beeswax by warming the wax and laying the copper plate on. All grease ieremoved with whiting, the surface of the copper coated with fine wax, and the pattern drawn with a fine etching needle passiog through the wax to the copper. Nitric acid is then applied to the surface; this eate into the copper plate where pricked with the etching needle, the was preventing the acld from blting in places not required. When ouffciently bitten in, the plate is removed, the wax warmed and pulled carefully off, and the plate wax warmed tuad pulled
Maining Night-1ights, - Night-ligits are made by melting the material and pouring it into metai moulde In whlch the wicke have heen previcuely placed. 'L'he commoner night-lighte are uade from parafin wax, whilst the better oues are made from stearin (the fatty acids which are obtained from tallow or palm oil by saponlflcation and pressure); or from compoeite, a mixture of paraffin wax or cerasin with stearin (alyceryl tristearate).

Copying a Mounted Photograph.-The print should be copied in contact with glass. Presuming the print is upon an ordinary mount (that is, not set back in a out-out mount), place it in a frame containing a perfectly clear shest of glass, snd press into close contsct. Set up the frame facing a full light, care being taken to avoid reflection hy covering up ohjects that are reflected in the shadows of the picture. If a studio is not arailable, the copying should be dons out of doors in full sunlight, in which case it may be possible to avoid grain without copying under glass. Slow plates are the most suitable, but much depends upon the degres of contrast in the print, the printing process to be used, stc. For example, if the copy is very hard, and the picture is to be printed upon P.O.P., use a quick plate and the usual developer. If, on the other hand, the copy is flat and wanting in contrast, and the negative is for printing in carbon or for reproduction, uss a process plate snd hydroquinone developer.

Position of Mast in Canoe.-The centre of sffort of a single lug-sail should be about 3 in , ahead of the centre of lateral resistance of the immersed portion of the canoe's hull; the correct position of the mast will therefore depend on the position of the centre bosrd, if any, or the shape of the keel, neither of which is given. The centre of any triangle's ares is the point at one-third of the line from the centre of any side to the opposite angle. Hence, if the sail be divided by line Ac (ses sketch) the points E and Fwill bo the centres of triangles ABC and ACD respectively. Join these points by line E F. Again divide the sail by the line BD, tind G and H the centres of triangles A BD snd BCD; join G and H, which lins intersects EF at O, the "centre of effort" of the sail. To ascertain the centre of resistance,

Position of Mast in Cance.
let down the centre board, place the rudder amidships, and let the crew on board hold ons end of a string in such a position that when the other end is steadily pulled by ε second person, the canoe will approach the latter, remaining at right angles to the string. Mark this position, and step the mast in order that the sail's centre may be 3in. or 4 in. ahead of it measured horizontally. The rudder stock must not extend below the keel, but the drag may'bs curved to 4 in . below it and extending aft to 10 in. A nearly vertical stern-post is advisable.
Power from Waterfalls, Tides, etc.-The different methods by which water can be made to perform mechanical'work are: First, by its weight; second, by shock, as when a stream of water impinges at right angles on a moving surface. third, by action or impulse, as when an unconfined stream of water meets a moving surface, the relative velocityhaving no portion at right angles to ths surfacs, but gliding along and ultimately leaving the surface; fourth, by reaction, as when a stream of water enters, flows through, and ultimately leaves a moving pips or channel, which it completely fills; and fifth, by a combination of two or more of the above methods of action. The classification of the motors may be as follows: (a) Water wheels (the water acting on the outside of the wheel) are either undershot, breast, or overshot wheels; (b) turbines (an arrangement where the water acts through the inside of the wheel) are either on the axial or the radial flow system, and may work either by resction and impulse combined or by pure impulse alons. Water power is useful for any industry requiring slow-moving, regular power, such as corn-grinding, ore-crushing, chemical mixing, etc. Tide motors may be on two systems: in the former, the tidal waters rush through a small opening into a reservoir, actuating a turbine which is fixed in the opening, and the ebb water rushes out through another opening (the flrst opening being closed by a penstock or shutter) actusting snother turbine.

The cost of the reservoir, which is practically a tidal dock, is very great. In the other system, a series of wooden gates hanging from a frame are set in motion by Fooden gates hanging from a frame are set in motion by
the rise and fall of the waves, and their motion is conveyed by cranks and rods to an engine. Tidal motore, especially the latter form, are only available for purposes not requiring regularity, such as pumping water for keeping a reservoir replenished.
Rubber Solution for Patching Mackintosh.Rubber solution must be made from indiarubber which has not been vulcunised; Para rubber is considered best for the purpose. The rubber should be cut into thin shavings with a very sharp, wet knife. The shavings mav bs dried, then placed in a dry, widemouthed bottle, and covered with benzene (coal-tar naphtha) or carbon bisulphide. Denzene is preferable, as it does not smell quite so strong as carbon bisulphide. The bottle should be tightly corked, placed in a warm plsce, shaken from timg to time, and more solvent added as ths rubber swells. One ounce by weight of rubber will take from 150 z . to 20 oz . by messure of the benzene. This solution will be found suitable for patching a mackintosh or for use in places where rain penetrates, but as a dressing for re-waterprooflng it will not staud.
Electric Alarm Device for a Clock.-The diagram below shows how to attach an electrio bell to a clock, the bell to ring at any given timo. A' is an alarm device cemented to the face of the clock. The flexible wire at B is connscted to the battery at C , and thence to the bell D and make and break swltch E. 'l'he terminal' connected to the pivot of the switch may be connected

Electric Alarm Device for a Clock.
to a terminal F fastened on the clock cass. Thus a complete circuit is formed with the whole of the apparatus in series.

Polishing Tarnished Copper. - The quickest and cheapest method of polishing tarnished copper is to buff np the article on a polishing maching: if this is impiscticable, it may be polished by hand. To do this, mix some fine flour emery with swest oil until a thin paste is formed, and, using a piece of house flannal as a pad, scour the tarnished surface with the paste until the surface is quite clean. Wipe off the oil from the copper, and with a dry piece of flannel dust the copper over with crocus powder, and polish with this until quite bright.

Painting Canvas Canoe.-Both sides of the canvas material of the canoe should be painted. The object in painting the iuside is to prevent any water getting between the framework and the skin and thus rotting the canvas. Particular attention must bs paid to all inside corners and edges of the stringers; the frame also must be painted betore stretching the skin. There is nothing better than ordinary paint, but see that thy white lead is good and not half whiting. Use plenty of boiled oil for the last coat, as salt water tends to harden paint. There is not much difference as to the durability regarding the effects of salt and fresh water.

Removing Brunswick Black.-To remove Brunswiok black from a stone mantelpiece previous to painting it, uss American potash dissolved in water, and mads into the consistency of paste by adding newly slaked lime. Apply this with an old brush, and let it remain on for a few hours, then wesh off ; if the first attempt does not remove the black, repeat the process. Care must be taken when using the potash, as it is dangerous to fingers and nails; should any of the liquid get on the hands, they should be at once well washad in water containing a little vinegar or few drops of acid.

Preventing Ruat In Kitchen Boiler.-A boiler can often be cured of rustiug by giving it two or timree coats of limewash to which has been added a little elze to act as a fixative; about the same proportions ahould be used as in maklng a whitewash for a ceillng, but builders' ordinary quicklime must be used. The first coat must be well rubbed in. Before applying the limewash the boiler should be thoroughly cleaned, and as much rust as possible removed from the surface; then let it dry.
Meaning of Term Kilowatt. -This is a measure of electrical power or rate of doing work, and means 1,000 watts. It is usually applied to large electrical outputs, and can be determined by multiplying the electro-motive force in rolts by the current in amperes aud dividing by 1,000 . Thus, if the electro-motive force at the terminals of a circuit were 200 volts, and the current in the circuit 250 amperes, the output would be $200 \times 250=50,000 \mathrm{watts}$, or $\frac{50,000}{1,000}=50$ kilowatts.
Sham Timber Building.-The usual way to get an appearance of old-fashioned timber work on a house is by nailing boards on the brickwork to represent the framed timber and plastering the intervening spaces Hush with the wood; the plaster to be afterwards whitewashed, and the boards painted a dark brown. Tolerably stout deal boards should be used, and for plaster, Portland cement, with in fail proportion of sand, is advised. The arrangement of the sham timbers is a matter of taste; but "suggestions are given in Figs. 1 and 2. By the "look-out
note. If two notes are used together, they may be neariy alike as is the duplex whistle used by the police, or they may he tumed in the interval of a third major or minor. The combination of two sounds nearly alike gives rise to "bests," which are very effective as "noises." With two sounds representing the dot and dash of the Morse alphabet any signal can be trangmitted.

Distinguighing Good and Bad Fur Skins.-When appreciating the good and bad points of skine of mink, marten, and other fur-bearing animals, every akin has ite own special points, and ase, season, and even sex must be taken into consideration. In a general way, the pelte of immature snimals will be of little valuethobs from breeding females will in most cases be of no use-and every hole or tear will take off some value even from good skins. The best skins are abtained during the coldest parts of the severest winters. When the underlying fur-the soft, downy part nesrest the skinwill be thickest, and the internal part of the actusl skin most free from black spots and patches.

Graining Walnut in Water-colour.-For the groundwork, give a coating of white lead $2 \mathrm{lb} .$, Oxford ochre 2 oz, , Venetian red 2 oz., burnt umber loz., thinned with equal parts of turps and boiled oil. Danap the work thirty-six hours afterwards with water 7 parts, beer 1 part, then brush it over with weak beer, burnt sienna, and a little vandyke brown, and, when dry, mottle it with a large mottler. Now over-grain with

Fia. 1

Sham Timber Building.

In the roof" it is preeumed that a dormer window is meant. The illustrations show euch a window, which recedes a little from the eaves. It rests on, and is framed to, the rafters of the roof. Its triangular sides and gable will bs of lath and plaster. In the elevation (Fig., 2) a roughly carved barge board is shown in the gigie. This adds much to the effect, and should not be omitted.
Enamel for Coating Pills.-Fively powdered French chalk forms the white enamel used as a coating for pills. The pille are first dipped in a sugar syrup containing white of egg, then placed in the chalk in an agitating machine, the shaking thus polishing the outer surfaces of the pills and producing the enamel-like surface. 'Ihs shaking could be done iu a tin box if desired.
Far-reaching Sigual Sounds.-An organ reed-that is, a reed with a vibrator larger than its apertureproduces a more poweriul sound than any instrument of the flue-pipe yariety. The wind pressure in each case being equal, a low note can he heard at a greater distance from its source than a high note, but a low nots requires a larger tube. A note within the limits of a man's voice, say low F, pould be suitable. This note could be produced with a tube about 3 ft . long. A great pressure of wind is not required. The most powerful organ pipes speak under a pressure of about the weight of lizin. of water, that is, about 631h. to the square foot, but everything depende on the weight and flexibility of the vibrator. The conical tube uscd for a speaking trumpet is a suitable shape for a mouthpiece. Two instruments could be adopted, which may be used either together or alternately. A short sound followed by silence is better than a continuous
a hog-hair over-grainer dipped into a thin mixture of vandyke brown and weak heer; use it very freely, and soften upwards only. While this is wet, the dark veins and curls should be put in with an over-grainer, using drop black thinned with weak beer. Soften in all directione. Glaze or shade with drop black and a little directione. Glaze or shade with drop black and a ittie
indige. Do not overcrowd the work. When dry, it is ready for varnishing. Take as a pattern for the graining some article of furniture in walnut, such as the case of a piano.
Oak Finish for Yellow Pine.-Staining and French, polishing will give the colour of oak, io generally considered the best finisb, and is readily clesnsed. Pine finlsh is easler to gain; generally the polish only will give it this appearance, especially if dark-coloured shellac is used. Mahogany and walnut tones srs considered superior, the colour being gained by first staining. Oak is not advised as a first effort: to make the work look really well, and pass for oak, requires rather clever treatment. Shellac, 6 oz , dlssolved in 1 pt . methylated spirit, makes Freach polish si used by most polishers. It gives best results when applied by means of polishing pads, but if applied with s camel-hair brush 20 z , of resin should be added.

Varnishing Oil Paintings.-To finleh oil paintings that have not been varnished, they should not, as a rule, be entirely coated with varuish, as this will tend to make them objectionably glossy. When a painting has hecome thoroughly dry, certain parts of it will be much duller than others, and these parts may be brightened by applying a little raw linseed oil with a hog's-hair brush. If the whole picture is dull and requires varnishing, s thin coat only of varnish may be put on. Both varnieh and oil should be bought from an srtists' colourman.

Polishing Flooring. - First coat the floor with a solution of patent knotting, made by adding $\frac{2}{2}$ gal. of methylated apirit to each gallon of knotting. Place near the fre for half an hour; shake well before using. one hourafter applying the first coat, glasspaper slightly; then give another coat. Now take come crude paraffin or psraffin wax and thin with turps; put this on with a brush. Now take a 141 b . polishing iron, which has a long handle like a sweeping hrush, the iron working on a swivel, heat it on a coke fire, then work it rapidly to and fro over the fiooring. Do a small piece of fiooring only at one time.
Perforated Metal Screen for Window.-To make a perforated tin or zinc screen for a window frame 35 in. Wide by 30 in . high, cut from the metal sheet a rectangle $3 t^{\circ}$ ill. by 29 in. A tube frame round the edge makes a neat aud strong finish. Now cut two lengths of $i n$. split brass tube $35 i n$. long, and two lengths for the ends 30 in . long ; make the cuts at au angle of 45° so that the pieces of tube will mitre, and measure the lengtha along pieces of turde of the tube opposite to the split seam. Place the tubes in position round the perforation, solder the corners strongly, and solder a semicircular-shaped piece of metal with a hole punched in it to the tube at the top corvers, 60 that the screen may be hung on two brass hooks fixed at the sides of the window. Clean off the solder at the mitre joints, polish the tuhe, and enamel the perforated part green or other suitahle colour, and the screen is finished.
Simple Folding Table.-Fig. I is an underneath plan of the folding table. A narrow frame A, shout 2 in. deep, is fixed hy means of screws or wood buttons to the underside of the top. The legs are connected to end pieces B, and fold inwards. The connecting pieces B
to any desired ehape, and after evaporation of the alcohol this material becomes quite hard. To cheapen the materis., large quantities of starch, zinc oxide, whiting, or barytes are mixed with the ahove material, Yielding the ivory or bone-like producte usually seen. The coloured varieties are made by incorporating pig. ments with the celluloid, and tortoiseshell and other forms are made hy special treatment. To soften celluloid, hreak it smsill, add s, small quantity of camphor, and then add sufficient spirit to cover the mass. After standing a few daye it will be soft enough to work. Horn can he coftened, but not dissolved, by treating it with caustic soda for a short time, while prolonged action of the alkali will convert it into glue.

Copying Manusoript by Photography.-The cheapest plan of copying manuscript booke is to uee one of the ordinary methods of copying written matter. This, however, necessitates the firet copy heing written out with special ink. If the writing is on one side of the paper only, procure some fairly pure paper and mix together (A) potassium ferricyanide $2 \frac{1}{2} \mathrm{oz}$., water 10 oz . ; and (B) ferri-ammonium citrate $2 \frac{1}{3}$ oz., water 10 oz . Mix an equal quantity of each, and cost the paper by rubbing the solution well over it several times with a soft sponge or tuift of cotton wool. The paper should he coated as evenly as possihle, but no notice need he taken of streakiness, so long as the paper has heen well covered. A convenient tool consists of s glass tuhe through which slides a loop of fine wire holding a tuft of wool. When pulled up tight, the wire is wound around the top of the tube. As the potassium ferricyanide is exceedingly poisonous, it is not advisable to get more on the fingers than can be avoided. The paper is printed in contact with the drawing or writing in the usual pressure frame, or the sheets may he fastened together with wooden clipa hetween

Fほ. 1

Simple Folding Table.

are rebated on the inner edge, 6 in. by $\frac{1}{3}$ in. The piece c is 6 in . Wide and $\frac{3}{8} \mathrm{in}$. thick, and is screwed to the centre of the table top as shown. This piece fits into the rebates cut in B, and serves as a epring to keep the lege rigid when the table is set up. Fig. 2 ie a hali elevation of the table showing the spring \mathbf{c} fixed in the leg.

Painting Compo Work on Bnilding. - To paint stone-colour newly compoed work on the front of a house, mix well together 71 b . of dry red lead, $\frac{1}{2}$ gal. of hoiled mix well together ild of dry red lead, the gal. of holled this, and let it stand for forty-eight houre. Now take 71 b . of white lead, $\frac{1}{2}$ gal. of boiled oil, 1 qt . of turps, and lh. of patent driers, and give the compo two coats of this, letting it dry well hetween each coat. Forty-eight hours after the last coat, take 7 lb. of white lead, 各lh. of yellow ochre, and $\frac{3}{3} 1 \mathrm{~h}$. of patent driers; thin with boiled oil so that it will cover nicely. For washing down the remainder, boil in 1 gal. of water until dissolved $\frac{1}{3} l \mathrm{lb}$. of soap cut into thin shreds, then add one tahleapoonful each of alum and carbonate of ammonia. Apply thoroughly with a hrush, and wash off with cold water before the ammonia has had time to aot on the paint.
Asphalt Damp-proof Course.-An ordinary dampprool huilding course may he msta. hy mixing 12 gal. coal-tar, $\frac{1}{2}$ cwt. pitch, and 2 gal. creosote oil. It will take nearly an hour to melt this quantity, and it should not hoil more than a few minutes. After being poured upon the wall, which ehould be first swept and quite dry, it should be sprinkled with eand. The above quantities will cover about 12 sq . yd.
Composition for Making Cheap Combs.-The combs sold at a penny each are nsuslly made of celluloid, a composition produced by treating collodion cotton with camphor and methylated spirit. The camphorated spirit diseolves the collodion cotton sufficiently to convert it into a gelatinous mass which can he pressed
two pieces of glase. Printing on this paper requires a longer time (six to ten times) than silver paper; but on taking the print from the frame it merely requires washing in water, to the firet bath of which it is advisshle to add a little citric acid. This process gives white letters on a blue ground. For black lines on a white letters on a blue ground. For black lines on a white stock solutions: (A) Gum 1 part, water 5 parts. (B) Ferriammonium citrate 1 part, water two purts. (C) Ferric chloride 1 part, water 2 parts. For use, take (A) 30 parte, (B) 8 parts, (C) 5 parte. Develop with potassium ferrocyanide (or yellow prussiate) 50 gr. , water 1 oz., and fix in a 10 -per-cent. solution of hydrochloric acid. If the writing is upon hoth sides of the paper, the only plan will be copying through the camera. The book must be taken to pieces, and pages in consecutive order arranged on a board to go as near as possihle into the size plate to be used, and copied on process plates, using hydroquinone developer. From these negatives enlargements could he made, or the optical lantern could be nsed. Great care must he taken to get a thoroughly sharp negative : use a lens with a flat field or a small stop and keep the negatives fairly thin. If, for example, the pages are 6 in. by 4 in., then twenty-four of these could he copied in one exposure on a half-plate, making seventy-five expoeuree in all. The wet collodion would he the hest and cheapest process to employ.
Removing Iron Stains from White Marble, \rightarrow Surface iron stains may he removed hy applying a solution of oxalic acid and then washing with water ; but if the stains bave penetrated through the markle, they cannot be removed. They may be covered hy applying a little lime crean (lime slaked with water) and, after drying, hrushing over it a solution of silicate of soda, but this coating. would be without polish. On highly poliehed marhle, zinc-white ground with copal varnish and turpentine carefully applied might serve to cover the etains.

Removing Damp Stains from Plctures,-To remove damp staing from prints or engravings, they are immersed in a bath containing chloride of llme. Pastels, water-colours, and pencil sketches are more difficult to work upon, in fact, in the oase of thess latter it is almost impossible to remove danip effectually.
Double Seats for Shop.-Figs. 1 and 2 show the ende of two seats different in design for the centre of a shop. Flg. 1 is a double seat, with a footboard 10 in . wide raised 6 in. from the ground. Fig. 2 is adouble seat 1 ft .8 in . from seat to ground and 2 ft .4 in . Wide, with one centre back rail. The seat 日hown at Fig. 1 is 2 ft . 10 in . wide and 2 ft. 1 in. to the ground, and will be found very useful, as it enables the shopman to fit boots easily, A and B are back rails, and 0 the top rail. A centre leg will be necessary under the foothoard and seat, and cross bearers framed into the longitudinal rails. The footboard may he made movable by framing the rails into the legs of the seat and flying them by means of a boit through each leg, tightened up on the inside with a wing nut.
that when the former becomes soiled it is easily removed by soaking the bust in water. The water will soften the whitewash, but leave the varnish underneath intact, thus making it pobsible to retaln any delicate modelling there may he, and preventing the finer parts from getting flled up as they would be if a succession of coats of paint were applied. To attempt to wash the figure would oniy be to furtiar rub in whatever dirt there was on it.
Making a Scriling Block.-The scribing block sbown in the aocompanying illustrations is made from a rod of mild steel 10 in . long and in. in diameter. This is turned down to T_{1} in., finished smooth, and quite parallel throughout its length. The top is finisbed off as at A (Fig. 1), and the other end, for r6.ther more than 1 in., is turned and threaded Ein. A collar B is then screwed on tightly. The bottom disc of iron or

Double Seats for Shop.
Strength of Beam,-The usual formula for finding the strength of a beam when simply supported at both ends is-

$$
W=c \frac{b d^{2}}{L}
$$

Whare $W=$ breaking weight in cwt. in centre, $a=$ constant (3.6 spruce fir, 400 Northern pine, Dantzic, and Memel, 3.5 Riga, 43 Baltic oak, $5 \cdot 0$ English oak), $b=$ breadth of beam in inches, $d=$ depth of beam in inches, $\mathrm{L}=$ clear span or length of beam between supports in feet. Where the load is distributed a beam will carry double the amount. The safe load for temporary work may be one-sixth of the breaking weight, but for permancut work it is better not to exceed one-tenth.
Cleaning a Plaster Bust. - The best method of cleaning a plaster bust when it has got blinded by the finer markings getting dulled with dirt, is by careful scraping. If the whole figure is slmply stained, or presents a dirty appearance, the best way is to give it a coat of knotting-a fine varnish that may be bought from any house painter-and, when this has become thoroughly hard, paint the whole with whitewash, adding a littile glue to keep it from rubbing off too readily. Whitewash is preferable to paint for the reason

How to Make a Scribing Block.
gunmetal 0 , with the bottom dished out, is tapped to suit the post. The hole in the sliding block (Fig. 2) should be a sliding fit on the post, the saw out meeting the large hole; thls will enable the block to grip ths rod and scribing point when the nut (Fig.3) is tightened. The steel pin (Fig. 4) should he turned, drilled, and threaded to fit the nut. Two washers (Fig. 5) are required, one being grooved diameter"wise for the scriber to bed into; they are placed one at each side of the block (Flg. 2). The ends of the soriber (Fig. 6) should he hardened and tempered.

Clarifying Dextrine.-A solution of dextrine may be rendered clear hy adding to each pint t drachm of alum discolved in $\frac{3}{4}$ oz. of water; shake thoroughiy, and then add $\frac{1}{}$ drachm of washing goda dlasolved in $z o z$ of water; again shake, and allow to stand for a few days. The hydrate of alumina preolpitated out wlll carry with it the suspended matter and some of the colour, learing the liquid much clearer and brighter.

Stifiening for Straw Hats. - For stiffening straw hats, thln glue size applied warm is generally used. Ordinary glue size may be employed for coloured straws, and parchment size for white straws. For black straws, add a little aniline black to the size to colour it. Spirit varnlshes may be used for stiffening straw hats; ordinary French polish, diluted with methylated spirit, ordinary french

Etching Brass Plates with Acld. - First make a pencil drawing on paper of the lettering to be etched; plain block letters will be the best for the purpose. Then get a brass plate of the size required and about $\frac{1}{3}$ in. thick, and coat its polished side with white wax or ordinary beeswax. "To do this, heat the plate and rub the wax evenly over the surface; then transfer the lettering to the waxed suriace of the plate by means of carbon paper placed between the plate and the sketch, and paper placed between the plate and the sketch, and on the plate. Then carefully scrape away the wax inside the outline of the letters, care being taken net to lemove the wax from any part of the plate not to be engraved. A wall of wax is then put round the plate to retain the acid, which is then poured on the plate and left there until it has bitten deeply enough, when it is poured off and the plate washed in clean water. The plate should then be polished and the letters filled in with black japan varnish.
Simple Curtain Rod.-The accompanying sketches show at A an old gas bracket, large enolngh for a fin. rod as B fitted with curtain rings supporting the curtain. The bracket is serewed to the door-post C , and a brass

Simple Curtain Rod.
eyelet in the far end of the rod holds a brass chain D so that it will bear the weight of the rod, etc., the chain being attached to the post about 20 in . above the bracket A. Fig. 2 shows a piece of wood which is fastened to the wail to act as a stop to the rod.

Re-covering Cushion with Moquette or Wilton Pile.-For a seat 20 in . wide, allow 21 in . for the top, 1 in . Por the joining seam at the back, 6 in . for the sqnare front, and two piped seams, making a total width of 29 in., providing the seat cover is made out of one piece as is usual with edge seams of cushions made of moquette or strips of leather. The heavy pile of the cloth prevents a neat appearance. The under lining can be made of black glazed linen. Machine up before commencing to stuff, leaving one corner open to put in the stuffing materials. If deep tufts are required, do not pack tight. If the front and back are made square the cushion will be reversible. Moquette is the French name for Wilton pile.
Aunt Sally Gallery.-An Aunt Sally gallery should be from 15 ft . to 20 ft . long and from 10 ft . to 12 ft . wide, and the apex of the roof from 8 ft . to 10 ft . high, sloping from 5 ft . to 6 ft . at the side. The posts or uprights, 18 in. of which should go into the ground, should be about 3 in . square: the apex piece for the roof should be tin. wide and lin. thick, and the framework for supporting the canvas shonld be 2 in . square. Fasten the woodwork together with small carriage bolts. The dolla, of which there may be one, two, or three rows, should be about 2 ft . high and about 2 in . apart, six or eight dolls being placed in each row. The foundation for a doll is a stick or piece of wood about 2 in . square and 2 ft . long. The head of the doll is made of tow or rage tightly wrapped round one end of the stick till it forms a ball 4in. in diameter. The ball is covered with calico, the ends of which are tied round the neck of the doll; a coat of white oil paint is then applied, after which the face is painted in. The body of the doll is
fashioned from lings of steel wire, the ende of which are bedded in the wood. First ring, the neck, 3 in. in diameter ; second ring, the shoulders, 7 in .; third ring, 6 in.; fourth ring, 5 in.; fifth ring, the bust, 4 in.; sixth ring, the hips, 5 in. Rings 1 and 2 , lin. apart; all the other rings 2 in. apart. The rings are connected to each other by lacings of finer wire, passing from top to bottom, the space between the lacings being 2 in. in the largest ring. The lege are made of calico stuffed with tow, and are attached to a piece of wire, 4 in. long, that has been driven through the centre of the wood just below the sixth ring. A frilled csp is placed on the head, and the dolls are otherwise dressed according to taste. Hinges are used for fixing the dolls to their perches.

Coke-breeze Concrete Floor.-In a large area of coke-breeze concrete fiooring, the coke breeze should pass through a sieve of h-in. mesh, all larger pieces being broken smaller, and be retained on a sieve of ri-in. mesh, all the dust that passes through being rejected. The proportions should be $2 \frac{2}{2}$ parts of coke breeze, 2 parts of sharp clean sand, and 1 part of Portland cement. The whole of the materials should be carefully measured, and thoroughly mixed in a dry state. The water should afterwards be added slowly through a rose nozzle, and the materials turued over again at least twice to ensure thorough mixing.
Fixing Trellis Work.-The best way to fix a fence of trellis work is to drive stumps (A, Fig. 1) into the ground, and to nail on them a top rail B and a bottom rail 0 . The trellis can then be nailed to the face of the stunps and rails. The top rail should be 3 in. wide

Fixing Trellis Work.

by $2 \frac{1}{2}$ in. deep, the top being bevelled oII to each side as shown in the section (Fig. 2), and a l-in. by $\frac{1}{2}$-in. rebate made on the face side. The stumps should be 2 in . square, and must be driven in the ground about 18 in. , the top then being cut off to the right height. Each stump must be notched to receive the bottom rail, which must also be notched, so that when the two are together they will be level or finsh on the face side. The top rail must be notched the depth of the rebate to fit on the top of the stumps, as shown at DD (Fig. 1), and, in fixing it, the rebate must overhang the face of the stumps; this prevents the wet from getting to the ends of the lathe. The end stumps must be rebated in the same way as the top rail, to give a better finish.
Fitting a Mainspring to a Skeleton Clock.-Take the clock to pieces and obtain a spring of the correct height and length for the bariel. This should be about $\frac{1}{i n}$ in. less in height than the inside of the barrel, and when in, it末 wire should just be capable of slipping When in, its wire should just be capable of slipping spring in, taking care that the hole for the hook is in such a position that it will slip on the barrel hook. When in as far as it will go, cut the wire tie and knock the spring quite down to the barrel bottom by taking the barrel in the hand and striking the bottom heavily on the floor or on a wooden bench. If unable to do this, hold the spring in a duster to protect the hands, and cut the wire tie. Then commence at the outside end and coil the spring in a portion of a turn at a time, holding it tightly to prevent it alipping out. Rest the barrel on a firm stool dnring the process and hold it with a duster for protection. The operation requires a firm wrist, as the spring must not be relaxed in the slightest degree until it is all in. A little bending with pliers when it is in will ensure the spring catching on the barrel arbor hook in the centre. When in and the cover is on, screw the square in a vice and, with the hands, wind it up by turning the barrel to the top to see that all is right. Plenty of oil should be applied.

Affix'mg Goln Leaf to Glass. - The only reliable medium for atlixing gold leat to glass is weak isinglas disaolved in rain-water. The backing should be red lead ground in varnish and thinued with turps. Cracking and chipping h^{t} the edges is due to the use of Brunswick black, iapan, and asphaltim; these materials are wick black, japan, and ald contracts and heat pexpands unsuitiable, beciuse cold con

Cement for Repairing Marbie.-A simple and excelleut cement is made by beating the white of an egs in flour till the mixture is of the consistency of thin paste. This cement will even withstaud hot water, and, on'account of its colour, is not easily detected. Clear shellac or superfine plaster of Paris may also be insed.
Method of Working Mouldings on Arches.-Arches of moderate span, say ahout 6 tt , can be worked as follows:-Two pieces of timbering should be bolted to the caps of the brickwork columns, on which another piece is fixed to take the bolt which is in the centre of the arch, and holde the radius rod in position (see elevation of arch, Fig. 1). A radius rod should be prepared, to the end of which the templates necessary to run the mouldings can be fixed. repe plain part of the wun the mouldings can be fixed. The plain part of the cement, this theu forming a screed on which the mould to work mouldinge can travel. A mould should then be cut from a piece of wood to the shape of the moulding, $\frac{1}{4}$ in. less being allowed in every part to allow for the finishing coat. After this has been used to ruv the moulding in cement, another should then be prepared to the exact shape and size required, this one being faced, as shown in section of arch (F'ig. 2), with being faced, as shown in section of arch (Fig.
either copper or zinc. The fine stuff is then laid on the
a grooved seam by foldlng an edge over on one and upon the hatchet stuke, and the opposite end is swaged with a hammer swage, which forms a bead of seml. circular sectlon aloug the edge, Half of the bead is worked over inside with a round-faced hammer on a hatchet stake θ as to form a fold, into which the fold on the opposite end will fit wheu the body is turned round. A flange is next thrown of along the top edge With a round-taced hammer on an anvil otake, and this flange is worked over towards the outside of the body upon a hatchet staike, the size of the flange being proportionate to the size of the wire which it is to cover. Draw the fold down oyer the wire with a mallet, using a round-headed stake for the body to reat on, and then close the fold down neatly over the wire with the wiring machine. With the mallet work round the two eude of the top to a radius eqtial to the top of the body, and then work the body round by pressure from the hands upon any convenient tool until it is circular at both ends; hook the folds together and draw them together closely upor the saucepan belly stake with a groover. Throw off an edge at the bottom with a jenny. Cut out the bottom, making it sufficiently large to allow an edge to be taken up to flit over that thrown off on the body. Planish the bottom by covering the surface with a number of hlows from a flat planishing hammer upon a bright anvil. Next edge up the bottom and pene down the edge upon the edge on the body, work the edges partly over upon the hatchet stake, and close it down smooth and true upon a mandrel. Next rivet on the handle, solder rouud the bottom, along the groove, and over the rivet heads to complete the bodv. If a lip is

Method of Working Mouldings on Arches,
cement backing, and worked to the required section by moving this mould round the arches by aid of the radins rod, as shown. After the moulding has been finished, the key block can be moulded and placed iu position, The intersections of the arch mouldings can all be run by having the top part of the template, from the dotted line a upwards, hinged on to the radius rod, so that it can be held back while passing over intersecting points.
Improving Furnace for Melting Lead Ashes.To improve a cube lead-melting furnece from which the slag comes out with the lead and blocks 11 the hole, the temperature of the furnace should be raised gradually and air allowed to enter the furnace to oxidise the sulphur contained in the coke. The front of the furnace should be lnted with clay, and a tap hole made to remove the slag above the lead. If this cannot readily be done, add a shovelful of lime to stiffen the slag. The temperature can then be raised and more lime thrown in, if necessary, when the slag can be removed in lumps. A comparatively low temperature is required for rich slags and a high temperature for poor slags.
Malsing Saucepans. - When making round-bellied sancepans, flret cut the pattern for a frustum of a right cone, using the leugth of the curve of the side as the slant for the cone, and the top and bottom diameters of the eaucepan for the diameters of the ends of the cone. The body is hollowed, usually in tacks of four, on a tinman's block. Commence by working across from side to side on the block until the whole surface has been covered and the metal slightly hollowed equally all over. Now take the metal over a deeper hole in the block, and work along the bottom edge and up to the centre of the body, so that the curve of the lower part of the body stands out more holdly than the top. Again work over the whole of the surface until the metal is smooth. The tacks of bodies are theu smoothed on a planishing wheel, separated, cleaned, and planished singly, either on the planishing wheel or on the anvil. A square notech is next cut at both ends of the top, and a corner notch at the bottom of the body. The ende are then prepared for
required, the wired edge of the hody is held firmly on an reqtinguisher atake at the place where the lip is to be extinguisher stake at the piace where the and few smart blows are given with the heel of a mallet upon the wire at each gide of the stake. A lip punch is then held firmly on the body from the wire downwards, and a blow delivered upon this gives the required taper. Oyal bodieg are the game size at the top and bottom, and are usually made in four pieces, the seams being formed in the same manner as for the round ones, and occurring at the parts of the oval where the side curve joing the curve of the end. Where hollowing, the end pieces are hollowed deeper than the sides, and equally at the top and bottom. Oval loodies are usually wired after being grooved together.
Warming Bulldings by Hot Water.-The custom. ary method of calculating the amount of hot-water radiating eurface required to warm a building is to allow so many superficial feet or radiating surface per thousand cubic feet of space in each room, hall, or corridor. Thus, in living-rooms (a dining-room, for instance), it is usual to allow 15 ft . of radiating surface per thousand cubic feet of gpace, and such a room measuring 15 ft . by 20 ft . by 12 ft . high-which rould have 3,600 cub. it. capacity-would need a radiator With 54 ft . of surface to it. Entrance halls need 20 ft. per 1,000 , as practically all cold air euters here and should receive warmth heoore going farther. Bath-rooms, 20 ft . per 1,000 ; bedrooms, 10 ft . to 12 ft . per 1,000 . These figures will give an ider of whit will be needed for other purposes. They will afford a temperature of ahout 62° when there is a hard frost outside. The piping used is the "red steam" quality. This le stronger than gas or water pipe. Custom has decided that this is the quality of plpe to use, but except in very high buildings such a thick pipe is not needed as regards its ability to resist pressure. Boilers are made of $\sqrt{4}$ in. and $t-i n$. iron, and capable of withstanding any ordlnary pressure, but with high buildings the suddle boiler or any shape having large flat surfaces should be avoided, as the plates may bulge out.

Removing Zinc from Solder.-To remove the zinc, jnet melt the solder in a pot, then take it off the fire and atir in a good handiul of powdered sulphur or brimstone until the whole ie of the consistency of wet sand. Replace the pot on the fire and melt, but do not atir the contents. The sulphur and zinc will rise to the surface and form into a cake. Now take the pot off the fire and carefully remove the cake wlthout breaking if poseible. This can be done with two pieces of hoop iron with bent ends.
Design for an Arbour.-Mig. 1 is a plan with dimenaione marked, Fig. 2 a front elevation, and Fig. 3 a side elevation; at Fig. 4 is shown a section through a yail and boarding, as at DD (Fip. 3). Fig. 5 shows the construction of the joint at A (Fig. 3), Fig. 6 that at B, and Fig. 7 the group at C. The general dimensions and sizes of the principal members are aleo shown. For the panels and roofing, $\frac{3}{4}-\mathrm{in}$. prepared matchboarding will be most suitable; the roofing should be covered with felt. The
is employed, it is either sugar syrup alone or sugar syrup to which white of egg has been added. The toys made from pure sugar will not melt in the sun.

White-enamelling Furniture. - For whiteenamelling the surface of new wood, the foundation is built up with gilders' washed whiting and patent or parchment size ; three coats at most should prove sufficient. This is smoothed down with worn glasspaper. At lenst four coats of white euamel should then be applied, allowing each coat time to dry before applying the next. A superior finish can be obtained by French polishing the surface, usiug transparent polish with or without the addition of flake white, as the undercoating may require. If the furniture has previously been enamelled, it is not necessary to remove the old enamel right down to the wood. The surface should be freed from grease by thoronghly washing with warm water in which is small teacupful of washing soda has been dissolved. A little pumice powder will prove beneficial

sash could either be made fixed or hinged. The arrangement of the eeats is ehown in Fig.1. A simple method of fixing the boarding to the framing by means of beads at each side is shown at Fig. 4.
Making Moulds for Sugar Toys.-First make a model of the toy in wax, and take a cast of this in plaster of Paris. To do this, procure a small wooden box which will hold the wax model comfortahly. Mix some plaster of Paris with water to a very thick cream, and pour enough of this into the box to about one-third fill it. Next place the wax model upon the plaster with its base pressed against one side of the box, and fill up with more plaster. When the plaster has set, take the box to pieces, remove the wax model, and with a fine saw very carefully cut the mould in half. The cut faces may be smoothed by scraping carefully with a knife so that they fit close together. The mould may be improved by warming and rubbing it with warm paraffiu wax or a waxed cloth until it has received a silght polish. In using the mould, bind the two halves together with rubber bands and force the sugar paste or syrup through the opening leftby the base of the wax model until the mould is quite full. The colours now used are harmlese. coal-tar (aniline) dyes sold epecially for the purpoee. If a glaze

if the furniture is very dirty. The whiting and eize may be omitted, and the surface built up with two coats of white enamel, as in new work. A suitable enamel can be made by mixing finely crushed fiake white in transparent polish; strain through muslin before use. For a bright tinish, mix flake white in best quality white hard varnish.

Fitting a New Mainspring Earrel to a Watch. -In an English lever with fusee and chain, the fitting of the barrel ie a very simple job, the barrel being merely a brass box. Take the rongh barrel and broach out the bottom hole to fit the bottom shoulder of the barrel arbor tightly. Serve the cover in the same way. Then tarn the inside of the cover central boss down until the top shoulder of the barrel arbor just appears throngh, Turn down the inside bottom boss until the arbor has just a little endshake in the barrel; then put in the hook and cut the shake in the bariel; then put in the hook and cut the the barrel and broach one slanting into the other. To turn the barrel and cover with turne, place them on arbors; with a watch lathe, hold them in step chucks and use the slide-rest. For a Geneva barrel with stopwork, if possible use the old cover with the stopwork on. When finished, ease the arbor in the holes at top and bottom.

Finishing Cement Cornices. A smooth finlsh is obtained by the use of fine Portland cement mixed neat. As this works "short," It is left a little tlme till It beging to set; then fresh water is added, and it is beatan up agrin. This process brings the cement to the state knorvn as "killed". when it sets more slowly, attains a less ultimate strength, and works easier in the running of the mouldings. If this last coat is laid soms time after the body of ths work has set, it is advicable to wet the surfacs on which it has to be placed so that the moisture is not drawn out of the finishing coat too quickly.
Materlal for Sketching on Glass.-To maks the material used by sign-writers for outlining letters, etc., on glass, melt together 4 parts of stearic acid, 3 parts of mutton suet, and 2 parts of beeswax. Add 6 parts of red lead and 1 part of purified carbonate of potassa. Mix well together and pour in glass tubee or hollow reede to set.
Making a Finder for a Hand Camera.-To make a finder for a hand camera, procure a plano-convex or bi-convex spectacle lens, unedged or centred, of about l-in. focus (cost, 3d.) ; also a piece of zinc and a piece of silvered glass. Cut the zinc to the shape shown in the figure, and bend on the lines A, B, C, D, E, and F. The first two, being bent outwards, enable it to be attached to the camera top; and the last two, hent insards, form a support for the ground glass, which rests at an angle of 45°. Without knowing the make of camera it is intended for, it is impossible to state how the finder should be finished and attached; a very common plan, however, is not to make the finder complete in itself, but to let the camera top and trout form the remaining sides. In this case, cut an opening in the camera top $1 \neq i n$. by lin., and sink a rebate to hold the ground glase, rough side inwards. This may be

Making a Finder for a Hand Camera.
fixed in with pins. Fix the frame with the mirror, and sink the lens in a recess until the image is sharp, then fasten in with a ring of wire. With strips of black paper, block out on the ground glass of the finder as much of the picture as is not shown on the screen of the camera. The best finders for instantaneous work are thoss of the brilliant pattern, but these are not easily made. One should be chosen the image of which does not vary with the angle at which it is viewed.
Power of Model Steam Engine. - A steam engine has a steam pressure of 25 lh . per square inch, the bore of the cylinder being lin., the length of the 3 troke ${ }^{3}{ }^{3}$ in., andithe speed 350 revolutions per minute. The maximum effective pressure may bs 22 lb . per square inch. The area of the piston is $1 \times 1 \times 78 \overline{5}$ $=7854 \mathrm{sq}$.in., and the length of the stroke is $\frac{10}{12}={ }_{\frac{7}{4}}^{7} \mathrm{ft}$. Then, if the engine is double-ucting, and the steam supply is kept up throughout the stroke, the maximumindicated power will be $\frac{22 \times \frac{7}{17} \times 765 t \times 350 \times 2}{31040}$ $=\frac{\pi}{\pi i}$ horse-power (say). The maximum brake-power will be less than this -say $\frac{1}{3}$ horse-power.
Light Oak Gralning.-To grain and varnish yellow deal a light oak, first kill all knots by applying a coat of shellac (knotting) over thom; then prime with light colour. When the priming is dry, putty holes and maks joints good, etc. Now paint a second tims with light colour; when this is dry, lav or a ground made of 11 lb . of white lead, 2 oz. of patent driers, and 2 oz. of Oxford ochre. Thin with oil or turps (some grainers prefer a dead ground, others a bright ground to grain upon). Fortyeight hourg after the gronnd is dry, rub down slightly with fine sandpaper. The work is now ready for grain. ing. The gralning colour should coneist of 2 oz . of vandyke brown or' 2 oz of burnt umber. To this should be added, for a warm shade, loz. of burnt sienna; for a cold shade, 1 oz . of raw sienna. Thin whth equal parts of oil and turps, and add driers in the proportion of about 1oz. to 1 pt. Brush over the work sparingly with the above colour, getting it as even as possible. Now draw a coarse graining comb down the board or panel the way
the grain is to run; then with a fine comb go over the coarse combing in a zlg-zag manner: this will cut up the combing like the fine tibres seen in real wood. Now take a piece of relg, fold it over the thumbnail, and wipe out the lights. The most important thing in gralning is to get clean joints. Even if the work is othorwise well done, a bad joint spoils it. The work is then ready for coating with copal varnish

Affixing Anaglypta.-When attaching Anaglypta and Liacrusta Walton to ceilings and walls, all but light quality should bs trimmed with a metal-edged straightedge and a sharp knife, such as a shoemaker's knife. The material having been cut to the required lengths and trimmed, should be pasted with ordinary paperhangars' paste. Let it stand for fifteen to twenty minutes, then cover it with ordinary paste to which is added one-fourth glue, and at once hang the material hefore it commences to dry. Use a cloth for pressing the Anaglypta to the wall, as a roller presses down the relief. Lincrusta is hung in a similar manner, but for this a roller can be used, as the relief is solid. A better finish is gained by first lining the ground with a common brown paper.

Heating Chicken Rearer,-The accompanying sketch shows a small heater 8 in . by 6 in ., with about 9 ft . of $\frac{1}{2}$-in. pipe attached. There is an air valve on top of the heater, and a small filling cistern is connocted to the return pipe. This would fail owing to air in the pipes, and it must be difficult to fill the pipes without locking air in with the pipes arranged as shown. Putting an air pipe to each pipe at the point marked with an asterisk at A should prove a remedy' these two air pipes either going up separately or joining together, but in each case they must go as high as the little cistern. This point should be the highest point in the circulation, the flow pipes from the top of the boiler rising, say, 1 in.

Heating Chicken Rearer.
to the air pipes, and then descending lin. from this point towards the cistern connsction.

Making Tube Chimes.-A set of chimes may be mads from tuhing suspended from a frame. These metal tubes ars open at each end, and composed of a special alloy. Their musical pitch varies according to their thickness, diameter, and longth. The longest tubes sound the deepest notes, and are usually both larger and thicker. If the tubes were all of ths sams material and diameter, their pitch would vary solely according to their length; and given two tules, one twice as long as ths other, the long one would sound the same note as the short one, but one octave lower. Eight is a good number for a peal, tuned to a complete ootave. I'he distance apart does not affect the tone. The tubes are suspended by silk or leather thongs threaded through holes at each side near the top. They are struck near the top end with leather-faced hammers. To form the scale, maks one (the longest, 2 ft ., 3 ft . or 4 ft ., according to laucy and the note desircd) and set its measursment down on paper, for the longest, and another half its length, for the shortest; then draw a slanting ling from the lower end of one to the lowsr end of the other. If ths remaining six tubes are now drawn in between ths longest and shortest, at equal distances, the slanting line will cut off each to its proper length, These lengths are only approximate, and the tubes will require tunlug in unison with an octave on a piano, cutting them down carefully uutil each ons sounds the note desired.

Cement Rendering on Rubble Wall.-Portland cament and sharp saud should be used in the proportion of, say, I cement to 3 sand. Ths cost would vary with local circumstances, but might be about 2s. per yard super. for plaln face finished from the hand float, with, say, 3d. pel yard extra for jointing to imitate ashlar work; mouldings, say sd. extra per inch girth per foot run; arris edges, ld. per foot run. A rubbls wall is generally supposed to be required one-third thicker than a similar brick wall. Brickwork, say 9 in. for top floor, and $4 \frac{1}{2}$ in. extra for sach floor below. Rubble walling, say 12 in . for top floor, and 6 in . extra for each floor below.

Working Paper Pulp.-To give the pulp tenacity, It is hoiled in a solution of gum arabic or size. To make figures, the pulp is poured into the mould and a counter mould presed over the mass so as to make the cabting a mere shell. For flat articles, like trays, etc., differeut thicknesses of sheets of paper are glued together and preesed 60 as to become one. To make casts of heade iu relief, stiff, unsized paper is damped and placed with the dry side next to the figure to he moulded. It is then patted with a cloth into all the markings of the ohject, and after abont five minutes is taken off and left to dry. A polish impervious to water is obtained hy ueing a varnish composed of turpentine, amber, and ivory black. This is applied in a heated room, and the cast afterwards placed in an oven.

Design for a Model Brickwork Cieck-stand.The accompanying design represents a gateway, over which is the opening for the clock. N'wo types of arches are shown-one camber or flat, the other semicircular. There is very little enrichment, and what there is might be dispensed with and plain brickwork substituted. The string-coursing, capitals, and bases of
inseed oil. Common washing soda, carbonate of eoda, or water in which lime has been slaked, will give different shades. A French method is to rub the surface with dilute nitiric acid. which, when dry, may he brushed over with a solution of $1 \frac{1}{3}$ oz. dragon's blood and $\frac{1}{2}$ oz. carbonate of soda dissolved in 1 pt of methylated spiriu.
Brickwork and Foundations for Tall Chimney.In constructing chimney shafts for Lancashire hoilers, the area of the chimney at the top is based upon the size or capacity of the boilers. Thue, area in square inches $=\frac{180 a}{\sqrt{h}}=\frac{100 \mathrm{HP}}{\sqrt{h}}=\frac{15 \mathrm{~F}}{\sqrt{h}}$, where $a=$ area of firegrate in square feet, $H P=$ indicated horse-power of engine, or $N=$ quantity of coal consumed per hour in pounds. The diameter externally at the hase chould be t_{0}^{2} to $\frac{1}{12}$ of the height. The latter should be 0.3 in. to the foot, or about 1 in 33 , though this is not imperative. The brickwork should be 9 in . in thickness for the top 25 ft ., and increace half it brick at each 25 ft . from the top. If the inside diameter at the top exceeds 4 ft .6 in , the top length should be ls bricks thick, and each of the

the pillars could be made of 3-in. moulded hricks. The chamfered plinth might also be constructed of bricks. though plain terra-cotta pieces of the full depth would be preferable. The brickwork could be carried out as far as the outside pillars, and still leave sufficient space for the small flower vases as shown in the design. If the space between the pillars be left empty, a second pillar will be required at the hack to support the entahlature. Small statuettes, vases, or sny bric-a-hrac, might be appropriately placed over the pillars as illus traifed, or a mirror could be let into the vacant space for the gateway. An approximate idea of the sizes may be gathered from the courses of brickwork.
Darkening Mahogany.-To darken mahogany, enclose the finished articles in an air-tight box, on the floor of which are placed a number of shallow dishes containing liquid ammonia 880 per cent. The fumes, which may play around for hours, have such a penetrating power that a thin ehaving of the wood might be taken off without disturbing the colour; this treatment does not raise the grain. Stains may also be applied with a brush. Diesolve loz. of bichromate of potash in 1 pt . of water; two or three applications of this may he given, and, when the stain is dry, the colour may be enriched by wiping over with red oil, obtained hy steeping 2 oz . of alkanet root in $\frac{1}{2}$ pt. raw
lower lengths consequently half a hrick thicker. The foundations should be carried down to the solid; they should he spread out so as to make a good broad hase, and the load on the foundation should not exceed 1 ton on the sqnare foot. After arriving at what appears to be a solid hed, it is a good plan to sink a trial hole under the centre of the chimney some feet lower; if the ground is found to he good, the hole may be filled with concrete at 10 or 12 to 1 . The bake for the chimney should consist of a solid block of concrete, 6 to 1 , not less than 21 ft . or 3 ft . thick; and as concrete is cheaper than brickwork, it may be carried up in concrete to the invert of the flue.
Making Crocus Powder.-Crocns is an oxide of iron, and it is made hy calcining copperas (sulphate of iron) the residue is divided into two portions, a bright red p swder known as rouge, and a bluish-red powder known as crocus.
Making Putty Powder.-Putty powder is made hy heating metallic tin in a furnace, and thoroughly stirring it $s 0$ as to bring it in contact with the air the tin is gradually oxidised, forming first a grey powder and finally a white powder of oxide of tin, or putty powder. The commoner kinde of putty powder are made from an alloy of 75 parts of tin and 25 parts of lead.

Graining Mahogany in Water Colour．－Mahogany graining should be worked on a ground made from Fhite lead，venetian red，and chrome．First damp the work to be grained with a sponge dipped in water to which has been added a little fuller＇s－earth or whiting this will prevent sissing．The colours required ar＇e vandyke brown，burnt sienna，mahogany lake．and blue black－all ground in water；these may he bought in tubes from 1s．each．The tools required are a 3－in． mottler，a medium－size sash tool，a thin hoghair over－ grainer，a small bevelled cutter，a sable pencil，and a badger hair－softener；these would cost trom 10s．upwards． The method of working is as follows：Rub up on a palette a little vandyke，burnt sienna，and laks with weak beer end water，keeping each colour separate；dip the sash toel in the colours and cover the work，which in soms places should bs dark and in others light，in the direction of the grain．Next dip the mottler in water，wipe it on the washleather to take out superfluous water，then mottle the work to imltate the real wood；soften off with the badger brush．Higher lights or feather mark－ ings can be taken out with the cutter；soften the work as it proceeds．The work may next be overgrained by using the thin overgrainer with blue black．Divide the hairs by drawing it through an ordinary comb whilst wet．Use the sable pencil for the fine or feather work．
Weight，Measurement，and Strength of Timber．－ Information on the weight，measurement，and strength of timber is scattered through various books，from which the following table is extracted：－

Timber，Selected Quality．

	N	$\begin{aligned} & \text { 第空愳 } \end{aligned}$	言复		
White pine	28	－	1.8	$3 \cdot 8$	－27
Spruce fir ．．．．．．	31	1.5	$2 \cdot 5$	3.6	－22
Larch ．．．	35	1.5	$2 \cdot 6$	3.6	
Honduras mahogany	35	1.5	$2 \cdot 8$	$4 \cdot 9$	－58
Elm ．．．．．．．．．	37	20	3.0	3.0	
American red pius	37		$2 \cdot 2$	40	
Northern pine ．．．	37	1.5	$2 \cdot 9$	$4 \cdot 0$	＇60
Kauri pine ．．．	38	2	$2 \cdot 8$	48	
Beach ．．．\quad.	45	20	3.5	50	
Baech oak ${ }^{\text {Baltic or }}$ ．．．	47	1.9	$3 \cdot 8$	$4 \cdot 5$	－
Baltic oak ．．．	48	3.0	$3 \cdot 2$	43	
Pitch pins ．．．	50		$2 \cdot 9$	$5 \cdot 0$	$\cdot 76$
English oak ．．．	50	3.0	$3 \cdot 2$	$5 \cdot 0$	－90
Teak ．．．．．．	50	3.0	3.8	5.0	1.9
Spanish mahogany	53	1.8	$3 \cdot 0$	$5 \cdot 0$	1.9
Greenheart ．．．	60	－	$5 \cdot 8$	8.0	
（1）	（2）	（3）	（4）	（5）	（6）

The safe load in tension and compression，columus 3 and 4，would be from one－tenth to ons－fiftesnth of the amounts given．The safe bearing pressure across the graln of timber as at the ends of a beam will be about one－fifth of the amounts given in column 6 ．Column 5
 gives the coefficient would be about one－slxth of ${ }^{\text {and }} \mathbf{~}$ for temporary work，or one－tenth for permanent loads．
Deepening the Colour of Jlectro－gilding．－When chains，etc．，are electro－gilt their surfaces are caated with a film of pure gold，which assumes a pale yellow tint when deposited from a new solution，or from a slightly warm one，or by a very low tension current． The colour may be deepened by re－dipping in an old solution or in one heated to $180^{\circ} \mathrm{F}$ ．，or under the influ－ ence of a 10 volt current．If the chain is made of bronze， copper，or dark brass，or coated with a deep colour gold， the deep colour may be restored by carefully hating it on a sheet of iron over a gas stove，or over a charcoal tire．The chain must be moved about whilst being heated，and removed at once when the colour comes． When cool，it must be polished by brushing with a hard brush．

Varnishing Oil Paintings．－The primary object of varnishing an oil painting is to protectit，much in the same way as glass is put over a water－colour drawing ；in fact，valuable or delicately painted oil pictures are often protected by glass，and a lot of future trouble saved． Mastic varnish is used for oil paintings hecanss a thin coat is gencrally sufficient to bring out ull the detail in the dark par＇ts without giving a vulgai gloes．It has very little colour，and can be easily removed when necessary，which is not the case when a＂durable＂varnish，that＇Is，one made from hard gums and drying oil，is used．An oll painting from the artist＇s studio should be carefully
hung up ta lean forward slightly，so as not to cateh ariy dust，etc．，certainly not over a fireplace or near a gers burner．At the end perhaps of about three years the surface dirt，fiy spots，etc．，should be removed with a clean wet cloth（not flannel）and a coat of varnish applied．This will protect the suriace of the picture from future atmosphericinfitences；in Pact，all dirt，stc．，will be on the varnish instead of on the picture．Mastic varnish vill sometimes＂bloom，＂that is，the picture will be coversd with a slight opalescent film．This can be removed by breathing on a small portion at a time and gently rubbing in small circular strokes with a tuft of cotton wadding．Never partially varnish a picture because even mastic will turn yellow with age，and show an objectionable distinction between what is varnished and what is not．
Comparison of Beaumé Hydrometer Degrees with Specific Gravities．－The degrees in the Beaume hydro meter for both heavy and light liquids can be transposed to ordinary specific gravities by the following tables， from the German．The first is for liquids heavier than water：－

B．Degree．	Specific Gravity．	B．Degree．	specific Gravity．	B．Degree．	Specific Gravity．
0	$1 \cdot$	18	$1 \cdot 134$	46	1．434
1	1.007	20	1.152	48	$1 \cdot 462$
2	1.013	22	1.167	50	1.490
3	1.020	24	$1 \cdot 188$	62	$1 \cdot 620$
4	1.027	26	1.206	54	1.051
6	1.034	28	1.225	56	$1 \cdot 58$
6	1041	30	1.245	58	1.617
7	1.048	32	$1 \cdot 267$	60	$1 \cdot 652$
8	1.056	34	1．288	62	1.689
9	1.063	36	1－310	64	1.727
10	$1 \cdot 070$	38	1333	66	1767
12	1.085	40	$1 \cdot 357$	68	1.809
14	$1 \cdot 101$	42	1.381	70	1.854
16	$1 \cdot 118$	44	$1 \cdot 407$	75	1.974

The Pollowing table applies to liquids lighter than water：－

B．Degree．	Specific Gravity．	B．Degree．	Specific Gravity．	B．Degree．	Specific Gravity．
10	1	20	－936	44	－811
11	－993	24	－913	45	－807
12	－986	25	－907	48	－794
13	－980	28	－890	50	－785
14	$\cdot 973$	30	－880	52	$\cdot 777$
15	－967	32	－869	55	－764
16	－960	35	$\cdot 854$	56	－760
17	－954	36	$\cdot 849$		$\cdot 753$
18 19	－948	40	－830	60	－745
19	$\cdot 942$	42	－820		

Phosphorescent Paint．－Luminous palnts require direct sunlight for soms time，and the phesphor－ escence they display in the dark only lasts for a few hours．Luminous paints are usually mads by heating oyster shells in the fire until they become white，aud then placing them in a crucible with sulphur and melt ing．Another method is to mix thoroughly 100 parts chalk and 40 parts flowers of sulphur，and heat in a closed crucible until fumes caase to be evolved．Powder the resldue of calcium sulphide，mix with the smallest possible quantity of gum water or glue size，and use it as a paint；it is said to be not so good if mixed with boiled ail or varuish．Luminous paints can also be made by using strontium carbonate in place of chalk．
Oxidising Steel and Silver．－To oxidise silver chains to a good dark colour，dip them in a solution of potassimm sulphide 24 grains，sal－ammoniac 40 graius，water 1 pt ． For steel chains，dip them in sodium hyposulphite 200 grains dissolved in water l pt．，then rub with sand er a scratch－brush．Repeat till the desired colour is obtained
Meaning of Term＂Ampère－turn．＂－The term ＂ampere－turn＂is applied to winding dynamos and elec． trical instruments．The magnetising effort of a coil carrying a steady electric current depends ou the pro－ duct of the number of the complete turus or loops in the coll and the current in amperes，and the maguetic effect thus produced is measured in ampere－turns．Of course， the cail is supposed to be wound so that the magnetio effect of the turns is in one directlon．Thus，if a coil of sixy complete turns carries a current of 6 amperes，the magmetle effect of the coil is $60 \times 5=300$ ampere－turns．

Incandescent Burner for Oil.-The accompanying sketch shows an ordinary central draught oil lamp argand burnar adapted for use with a mantle. It is so designed that the entirs outside, including mantle and chimney, lifts off fol lightling and trimming, and leaves the wick-tube standing clear. This is not ahsolutely essential, but it lessens the risk of damaging the mantle. The tuhe A fits into the wick-tube as shown, and can be removed if a mantle is not available, and carries with it all the special fittings. Another tube B is attached to A contracted, and perforated at c . On the top a flange D is fixed. Inside B a socket F is fixed to support the disc or "spreader".. . A cone G is attached to the removable part of the burner, from which the wire H rises to support the mantle. When the wick is llghted, and raised about halfway between the top of the wick-tuha and flange D, air enters through the triangular space K (always present in a burner with a conical wick-tube). Part of the air-current goes through the perforations C in B and is slowed down by so doing. It is directed against the iuside surface and edge of the wick, and develops from the wick the gas of combustion. A rapid current of air enters through perforations J, and
by the tightensd nut, makes a sound joint whlch soon hardens. Leather should not he used, but a collar cutout of sheet indiarubber will make an excellent and clean joint quickly prepared. The hole in the rubber over the tail of the cock (inside the boiler) should be a close fit.
Making a Parafin Blow-lamp.-The paraffin blowlamp here shown is used for removing paint from doors, etc. The reservoir A is made of thick sheet brass strongly soldered. It has a hollow B in the top, in the centre of which the burner is screwed, an asbestos washer making all air-tight. A pipe C, about $\frac{1}{s}$ in. bore, is soldered into the buriner, and reaches nearly to the bottom of the reservoir. An air-pump D is soldered or screwed into the reservoir, so as to permit the burner to be screwed in, and a piece of small tuhe k conveysthe air from the pump to the top of the reservoir. The burner consists of a colid brass casting F . the bottom part of which is formed into a hexagon G to fit the spanner, and a screw is cut to fit the screw collar H. A hole is drilled to meet the tube c, as shown by dotted lines at J. and another hole is drilled at K so as to run into J, Two shor't pieces of tube L^{\prime} and L^{2}, about ${ }^{\text {? in., }}$

Incandescent Burner for Oil
rises between cone G and the wick-tube, and carries the flame up from the outside and outer edge of the wick, whereby a blue flame of intense heat is produced. Another current of air rises in the centre of the burner and issues laterally between flange D and spreader E . Thls causes a whirling or eddying motion of the air and the vapour of the oil, ensuring thorough mixture and freedom from soot and smell. It also causes the flame to rise in the form of a long cone, completely enveloping the mantle. Yet another air-current rises through the perforations L and keeps the flame away from the chimney. The air-currents are indicated by arrows without letters appended. A cone outside G, and someWhat higher, may be added, over which the end of the What higher, may be added, over which the end of the mantle is moved about. The wick winder is not shown. Some experiment will be necessary to get the right proportions between the air-currents.

Fastening Range Tap.-To fasten a brass tap that has become loose in a kitchener, the mut on the tail of the tap inside the boiler must be loosened and removed and fresh packing material put around the tail before replacing the nut. The usual packing is a ring of temp, called a "grummet," which has a mixture of red and white lead worked into it, and this, when compressed

FIG. I.
Making a Paraffin Blow-lamp.
are soldered on so as to cover up the holes in F. A pices of tube M, mitred as shown (Fig. 2), is soldered to $L^{\text {i }}$ and L^{2}, the dotted lines showing the position, aud another piece of tube, U-shaped (N, Fig, 3), is soldered to M. A uipple 0 , with a very fine hole in it, is screwed into N, the tube having another piece of metal soldered to it to provide thickness for the screw thread. On working the pump, the space in the reservoir ahove the oil will be pump, the space in the with compressed air, which will force the oil up c, through J and K into L^{2} and L^{2}, round M, then into $~ N$, and out, of the nipple 0 . Some of the oil is allowed to run into the hollow 13 , and is lighted. As soon as the burner gots hot enough to gasify the oil in the tubes the gas will issue from the nipple with a roar, ignite, and, as it passes through the centre of M, will turn the oil therein into gas; and so become self-acting. A nozzle or tube Q is attached as shown to concentrate the flame, and a handle and screw cap for filling must be added. A small air-tight tap must be soldered in the top of the reservoir so as to let the air escape when the lamp is done with. Experiment will show how much oil is wanted. If the flame is too large for general use, or if tho burner gets choked by too much oil, the tube c can be pinched in a little at the bottom, or by making F a little taller a tap might be arranged for. Brass and hard solder must be used throughout.

Cleaning Floor Tlies.-For cleaniny glazed terracotta floor tiles, a ruh with a dry or slightly damped flannel is all that is uecessury. Onglazed floor tiles occasioually present a white scum on the sulface, caused by the evaporation of the lime and cement used in the foundations. In cases where the tiles have been laid on new foundations, this scum may continue lappearing for some months. The floor is not injured by appearing for some months. The filor is notinjured by tiling should be cleaned two or three times a week with soft soap dissolved in tepid water and applied with a hand ecrubbing-brush. Paint spets or similar stains, and also cement marks, may be removed by pouring on them a small quantity of sulphuric acid diluted with an equal quantity of water and allowing it to remain for a few hours. It should then be washed off to remain for a few hours, It should then be washed off appeared. For removing ink stains, use nitrous acid in place of sulphnric acid. Particular care should be taken when using these acids, as they will burn both hands and clothes. A piece of old flannel may be used for washing the acid from the tiling.

Preventing Knots showing through White Enamel. -White-enamelled articles made of cheap wood show the knots and dark parts of the grain. To prevent this, dissolve 2 oz. of pale shellac in $\frac{1}{2}$ pt. of methylated spirit, then mix in some finely crushed flake white. Apply this solution to the knots, etc., with a camelhair brush; several coats may be laid on so long as the solution is evenly distributed. Any harsh edges must be smoothed down with fine glasspaper before applying the enamel, which should not be used too thin.

Fixing Cylinder Pivots in Watch.-The cylinder of a horizontal watch is composed of a thin, polished steel tnbe open at each end. Into the open ends plugs are fitted, and the pivot is formed by turning the plug end smallex, and is therefore solid with the plug. When a smaller, and is therefore solid with the plug. When a pivot is broken, the plug is knocked now with a sheden and the plvot turned and polished to fit the jewel hole. In knocking out the plug, rest the cyliuder on a stake with
copper, 3 parts. Medium : fine gold, 10 parts ; fine eilver, (i parts; copper, t parts. Common: fine gold, $8 \frac{1}{2}$ parts; fine silver, 6 parts; copper, 5 parts. The solder is cast in long lugots, rolled thin and flat, and cut up, or filed into dust, and thus applied to the cleaned joints, using borax as a flux. After the joint has been closed under a blowpipe flame, the whole ring is annealed on an annealing plate to a dull red heat, then cooled, pickled in acid, and polished. The film of grease left on by the polishing process is washed off in hot soda water, and the ring dried in hot sawdust. Hard-soldered rings may be coloured with a film of electro-deposited gold.
Bleaching Bone Grease.-Bone grease may be bleached by adding sulphuric acid and then thoroughly washing in water. Use two tanks, lined. with lead, one ubove the other, and fitted with agitating gear; the lower tank should be fitted with a perforated steam coil. The melted grease is first run into the upper tauk, and for each 10 gal. 1lb. to $1 \frac{1}{2} 1 \mathrm{lb}$. of strong sulphuric acid is added, and quickly agitated with the grease for about half an hour. The grease is then run into the lower tank, in which it is thoroughly washed with several lots of hot water and steamed. After settling, to further clear it the purified grease may be run off into a tank kept in a warm place, or the grease may be run into barrels if the presence of a small quantity of water is not detrimental.
Boehm System of Fingering for Oboe and Clarionette. The Boehm system of fingering, which was introduced about 1846, consists in making the keys (which formerly closed by sprlngs) open automatically, the closing being effected by means of rings round the finger holes. By adopting this device, hơles can be bored in more correct pesitions, and the fingers are not strained by stretching. Bass fingered wood-wind instruments are also made possible. Even in the flute the holes are very far from being in their best position. In the accompanying illustration of a flute it will be seen that the lowest finger hole is too high; if it were in its light place it would be too far for the thind finger to close it, therefore

System of Fingering Flute.

it is brought nearer, and made smaller, the result being that what is gained in convenience is lost in tone. siccama therefore made his futes with open krys for this and the corresponding hole on the middle joint, closing them by leverage, which is brought to an easy position for both of the third fingers. Another advantage of the Boehm systern is the better manipnlation of the fingerings, by which the alternate opening and closing of the holes work the keys which produce the chromatic sounds. In the one-keyed flute, nearly all these sounds must be produced in this way; and even when keys are provided it is sometimes easier to use the fork or cross fingerings. Thus, let 1, 2, 3 represent the right-hand fingers, and all closed holes represent $D, 1$ and 2 closed E, 1 closed F sharp; the fork for F natural would be 1,3 closed, 2 open. Now if hole 2 is bored, so that with bole 3 open it makes a good F sharp, it by no means follo ws that the clesing of 3 will enable the open hole 2 to produce a true F natural. By the use of a small auxiliary hole, and rings round 2 and 3 , both sounds can be made perfect. If the Boehm system could have been adopted in its entirety, self-closing keys would have been superseded by self-opening keys; but that being found impracticable, the system has been modified, and is partially applied to very many instruments, one of the most advantageous being Barre's improvements for oboes and clarionets. It is really a combination of old aud new systems, whereby a lever allows the selfopeuing keys to act, while they are closed by rings round the proper holes when they must be shut.
Solution for Electro-Silvering.-To make a geod silvering solution, procure 2 oz. of the best crystal. lised silver nitrate and dissolve it in 1 qt . of distilled water. Also procure $20 z$. of best potassium cyanide and dissolve it in 1 pt. of distilled water. Add this a little at a time to the silver nitrate solution, and etir well each time with a glass rod until no white curdy precipitate is cuused by the addition of a few drops. Allow the white curds to well settle down, then pour off all the liquid. Pour on clean water, allow the curds to settle again, and repeat the process several times; finally, drain off as much of the water as possible. Dissolve these white curds iu a solution of potassium cyanide and add a little surplus to make it work freely. Une anode plates of pure silver, and work cold in a stoneware or glass vessel with current from two Sinee cells, or from tro or thres Dauiell cells.

Making Portland Cement Wash.-To make a Portland cement wash of a light istone colour, first spread the cement dry on the floor for five or six hours, then well mix with water in a large tub. The con sistency must be judged by the condition of the wall sistency must be judged by the condition of the wall
to which the wash is to be applied. To every 5 gal. add 1 qt . of soluble glass; keep well stirred when using. This will make a grey stone colour, but not that known in London as stome colomr.
Constructing the Corner of a Billiard Table. - Fig. 1 shows the plan of the corner, the figured dimensions indicating how it is produced. The outer lines are at right angles, the inner lines are parallel with it, A being the intersecting point of the inner, and G of the outer. From point G mark off $4 \frac{3}{4}$ in. on each outer line to H, and a line 21 in . long square with it to I. With point a as centre, and the radius AJ, iuscribe the segment forming the inner edge of the pocket-holder F. With point K as a centre and a radius of $1 \frac{8}{4}$ in., inseribe the segment \dot{X} forming the corner.
gradually increase the angle of incidence until the image grows dim. By slightly tilting the nirror the image may be made to pass over every part, and should appear equally though feebly illuminated in every position. Another method is to hold the mirror horizontally, about level with the eye; then, when looking along it at the window, no greyness should be visible. The glass is now ready for polishing. The more thoroughly the fine grinding is done, the less polishing will be necessary and the less injury will be done to the figure in the polishing. What is known as the shadow test is applied continually when figuring and polishing. Sometimes the speculnm becomes tightly locked with the Sometimes the speculnm becomes tightly locked with the
tool during the process of fine grinding, and this may be explained as follows:-As the upper dise moves along the lower one there is a tendency to heap up the emery towards the centre and away from the edges. This makes the convex tool slightly flat, and the concave speculum slightly hollow in the middle, thus leaving an empty space between them. After a time the film of moisture between them becomes excesdingly thin, a

With point L as a centre and a radius of 3 in., inscrihe the are forming the cant of the cushion. B is the cushion, D the rail, F the brass pocket-helder let in flush with the top edge of the rail. Fig. 2 is a section through the rail showing the slate bed and its screw; the cushion B is termed the low cush, the ball A standing well above it to enable the player to strike near the centre. The cord pocket (see Fig. 1) hangs from the holder F on one side and is fixed underneath the bed at the curve E. The cushion is fixed with either screws or glue.

Gas Fire Roaring.-The roaring of a gas fire is generally due to some roughness in the interior of the burner, caused either by a burr in the tube or by an accumulation of deposit, the result of the burner firing brek. This is often found to be a source of the trouble.
Speculum Grinding.-In rough grinding, use flour omery untilall the pits left by the coarse grains are worked out. The surface of the speculum will then appear quite uniform when examined with a magnifying lens of about 1-in. focus. The fine grinding is then commenced. A good way of judging when the process of fine grinding is completed is to hold the speculum in such a position that a gas flame is seen by oblique reflection in it; then
partial vacuum forms in the centre, and the ows discs become locked together. The chances of such mlshaps may he lessened by dividing the surface of tho tool into parallel grooves 1 in. apart and at rion 1 angles to one another. To make these grooves, first mark them out with an American glass-cutter and then deepen them with a steel graver, keeping the part wet with turpentine.
Obscuring Glass with Acid.-Glass may be obscured by first laying it flat and then holding some thin strips of glass 1 in. wide on edge, and painting round with hot tallow. When this sets it will form a wall all round the glass, and keep in the acid; or paint a bank round the glass with two or three coats of hot tallow. Now pour on white acid, and let it remain until the glass is matted.
Bringing Watch to Time.-To bring a watch "to tims" means to nake it keep correct time. To do so with a good watch, the curb pins must first be closed until the hairspring has no play between them. Then regulate by lengthening or shortening the hairspring, the regulator meanwhile being kept in the centre. Shortening the hairspring makes the watch go faster and vice versá. After each alteration of the hairspring, the watch must be set in beat afresh by turning the hairspring collet round a little.

Polishing and Cementing Alabaster, After washlog, melt a little white beeswax, dip a clean cloth in it, and polish the orsaments with the cooth. The best cement for mending alabaster is white gelatine size, mads by melting 1 part of gelatine in about 5 parts of water. Plaster-of-Paris is very often used as a cement, but only in places where the joists would not be seen, and it is not a strong cement.

Making Elight-day Movement for \boldsymbol{a} Lantern Ciock. -I'he frame should be made of hrase plates $\frac{1}{\text { fin }}$, thick, and should measure $4 \frac{1}{s}$ in. hy 6 in. The pillars (four) mnet be $\frac{3}{8}$ in. diameter and lisin. long hetweer the plates. The barrels should be $1 \frac{1}{3} i n$. diameter and lin. long. For going truin, use fusee main wheel of 96 teeth, $1 \frac{5}{8} i u$. diameter : centre wheel of 84 teeth, $1 \frac{1}{8}$ in. diameter, pinion 8 leaves; third wheel of 78 teeth, $1 \frac{6}{1}$ in. diameter, pinion 7 leaves; 'scape wheal of 40 teeth, 1 in. diameter', pinion 7 leaves. For motion work, nse minute wheels of 36 teeth, $\frac{5}{8}$ in. diameter; hour wheel of 72 teeth, $1 \frac{1}{4}$. diameter; minute pinion, 6 leaves. For striking train, use fucee main wheel of 84 teeth, lu in diameter; pin wheel of 64 teeth, $1{ }^{1}$ in. diameter (eight pins), pinion 8 leaves ; pallet wheel of 70 teeth, lin. diameter, pinios 8 leaves; warning wheel of 60 teeth, 7 in. diameter, pinion 7 leaves; and fly pinion, 7 leaves. Either chains or gut lines can be used, but chains are best. The fusess must be cut for sixteen complete turns of the chains. On acconnt of the small size of the movement, it can
then connect the wires to the battery and allow a full current to pass through the solution, from one gold strip to the other, for about two hours. Then take ofr that gold strip which is attachsd to the wire from the zinc of the battary, and substitute a strip of clean German silver. lf this takes on a grood coat of gold la a few seconds, the colution is in workiag order, and the two gold strips may then be hoth attached to the wire from the silver copper, or carbon of the hattery and used as anodes. If the coating is not satisfactory, dissolve some mora of the gold as at first, until the solution will gild well. The same bolution may be made at once by the direct process-that is, hy dissolving toz. of gold cyanide in the hot cyanide of potassium solntion. These gold solutions give good results when worked at a temperatuive of from 140° to $160^{\circ} \mathbf{F}$., and will give a good coat of gold with current from ope Smee cell when an anode (or dissolving plate) of pure gold is employed.
Making a Trougers Fresg.-Figs. 1 and 2 show eleva tion and plan respectively of a simple trousers press, A A being two llat hoards 14 in. wide and about 30 in. long. Three iron bars B are screwed on each board. The bars on the top hoard are hooked at their extremities, as shown in Fig. 2, to allow the board to he removed without taking off the wiag nuts. In Fig. 2 the wing-nuts are removed so as to show the slots. The bars on the under board are not hooked, but have holes at their extremitiea to receive coach bolts, which should be fixed

Eight-day Movement for a Lantern Clock.
carry a light hammer spring only. The pendulum will make 178 beats per minute, and will be or $4: 3 \mathrm{in}$. acting leugth, which, with a 2 -in diameter hrass bob, and allowing for suspension, will measure nearly 6 in . long over all, and just swing clear of the bottom of the case. The pendulum should be provided with the rating nut above the hob, after the usual pattern of English bracket clocks, and thus save the space occupied by a nnt under the bob. The centre pinion, when made from pinion wirs, is thickened at the front end by having the peaves at that part forged up solid. This method will be almost impossible in so small a clock as this, and if pinion wire be used, it would be advisable to drive on a ateel collar to form the shoulder of the front pivot. In the accompanying sketch, $A \Delta$ are the harrels; $B B$, the fusens ; C, centre wheel ; D, third wheel ; E ,'soape wheel; F, pallets; G, pin wheel ; H, pallet wheel; I, warning wheel $;$ and J, fly.
Preparing Creosoted Timber for Painting, Painters' knotting is a good material for coating creosoted poles and other wood previons to painting, hecause It dries quickly and tends to prevent oil or graase oozing through. The best kind of knotting will be that made from sheliac; the commoner material will contain more or less common resin.

Solution for Electro-gilding.-For gilding small goods by the electro process, place a pint of distilled water in an enamelled iron saucepan and dissolve therein loz. of hest potassium cyanide. Heat this to $160^{\circ} \mathrm{F}$. on a gas stove. Get two strips of pure gold and two lengths of No. 22 copper wire, and suspend the gold strips by the wires in the hot cyanide solution;

Trousers Press.
with screw-nuts before the bars are fastened to the board. When the bars are fastened to the boards, the top board can be screwed down with wing-nuts. A sheet of thick cardboard should be placed hetweer each pair of trousers before pressing them.
Golden Brown Paint for Castings.-To obtaia a rich golden hrown colonr on castings, mix the colour with the best copal or carriage varaish, adding gold size. Paint the castings in the usual way, and thea stove them. Or another method would be to paiat them with the colour required rnbbed up in oil and them with the colour required rubbed up in oil
A Bucket as a Photographic Print Washer.To make a cheap syphon washer that will keep photographic prints in circular motion, to one side of a bucket solder a ayphon of ordinary lead piping, the ghort leg inside being lin. above the bottom. At the top of the syphon punch a hole and fit a cork. Fix in a circular sheet of perforated zine iaside the bucket 3 in. from the bottom. At the top of tha bucket opposite the syphon attach another pipe, connected with the ordinary water tap by rubber tubing, through which the water flows. This keeps the prints moving. The contaminated water falis below the permoving. The contaminated water falis below the percorlk of the syphon is in, the washer will run dry, butia use the cork should be removed, so that, in the eveat of any obstruction ol failure of the water supply, the washer will :emain flled level with the cork-hole. The edges of the zinc must be bent downwards, as there must be no sharp edges to come in contact with the prints.

Hard Woods and Soft Woods Clagsified. - It is customary in England to speak of all timber obtained from coniferous trees as "soft wood." Pitch pine is, of course, much harder than a number of the socalled "hard woods," but it would nevertheless be classified as a "soft wood." Much better is the system adopted in some parts of America, where four grades of hardness or softness are recognised-namely: "Very hard "oods," "hard woods," "middliug hard woods," and "soft woods." The names of a few familiar woods will illustrate its application :-

V. H. Woods.	Hard Woods.	M. H. Woods.	Soft Woods.
Hlckory.	Ash.	Pitch pine.	Pine and fir
Hard maple.	Black walnut.	Douglas fir.	Redwood.
Locust.	Beech.	Larch.	Poplar.
Best oak and elm.	Oak and elm.	Sweet gum.	Whitewood.
Persimmon.	Lacewood.	Light birch.	Cypress.

The classification is arrived at by the amount of power required to indent a square inch of the surface of the wood to a given depth.
Centering for Brick Areh.-A figured design of a centre for a seven-ring brick arch of 45 ft . span and 18 ft .6 in. rise, the length of the arch being 17 ft .6 in ., is here given. It is assumed that the centering has only
required to make a standard, multiply 1,440 by 16%, and divide the product by the sectional areain square inebes of the required scantling, the quotient being the number of feet. Taking $9 \mathrm{in} . \times 2 \mathrm{in}$ as exampla: $(9 \times 2=18)$ Then $1,440 \times 165 \div 18=1,320$. The following table includes the most general sizes; others can be worked out as above:-

Size.	Foot Run.	Size.	Foot Run
4×2	2,970	4×27	2,376
4×3	1,980	$4 \frac{1}{2} \times 2$	2,640
5×2	2,376	$5 \times 2 \frac{1}{2}$	1,900 ${ }^{\text {a }}$
51×2	2,160	6×2	1,980
$6{ }_{7} \times 2$	1,827 ${ }^{\text {¹5 }}$	7×2	1,6971
$7 \times 2 \frac{1}{2}$	1,357 ${ }^{\frac{1}{7}}$	7×3	1,131 ${ }^{\frac{8}{7}}$
8×2	1,485	8×3	990
9×2	1,320	9 9	880
9 $\times 4$ $\times 4$	660	10×2	1,188
10×3	793	11×2	1,080
$11 \times 2 \frac{4}{3}$	864	11×3	720

Intensifying Photographic Negatives.-Dulness in a photographic negative is generally due to fog, caused by over-exposure, incorrect development (i.e. using too much No. 2), or accidental exposurs to light. If the negative is fairly transparent, soak it in water for a few minutes, and then immerse it in a saturated solution

Centering for Brick Arch.
to carry the arch bricks. It should be very carefully put together, as there is no surplus strength in an arch of these dimensions.

Refining Impure Tin.-In refining impure tin, melt the metal, well stir it about while in a molten state, and allow it to settle down for a while. Skim the dross from the surface, and remove the top half of the molteu metal with a small ladle, disturbing the lower part of the metal as little as possible; use only the part of the metal removed for the best work.

Tinning Copper Moulds.-A bright, smooth, but very thin deposit of tin upon the interior of an ornamental mould may be obtained by first thoroughly cleaning the mould, then placing the open end upwards in boiling water and lastening it so that the edges are not quits immersed. In sufficient watel to just fill the monld dissolve abont an ounce of cream of tartar. Melt some tin in a ladle and pour it into cold water, so as to obtain it in spongy fragments. Place some of thess in the cream of tartar solution, then pour the mixture into tha mould. Boil the water in which the mould is placed for about an hour; the interior will then be found to have received a fine silvery, though thin, deposit of tin. Probably a bright, smooth surface and thicker coating could be obtained by first tinning the mould by the regular process, and afterwards standing it bottom downwards in Russian tallow, which is kept heated to a temperaturs a little above the melting point of tin; the tin would then probably melt and run smoothly over the tinned surface (in the same way that it does upon tinned iron plates), and leare a surface for polishing of a similar character.
Petersburg Standard of Timber. - A Petersburg standard is $1 c 0 / 12 \mathrm{ft}$. $11 \mathrm{in} . \times 1 \frac{1}{2}$ in. $=165 \mathrm{ft}$, cube. To standard is $160 / 12 \mathrm{ft}$. 11 in . $\times 1 \frac{1}{2}$ in. $=165 \mathrm{ft}$. cube. To
of bichloride of mercury until it begins to bleach to a cream colour. Wash for fitteen minutes, and then place in a clean dish, film up, and pour over it a solution composed of 2 oz . of water and thirty minims or drops of strongest liquor ammonia. The negative will instantly turn black (or it should bs allowed to remain until it does). This operation is called intensifying: it increases the density and contrast of the negative. As the ammonia solution in careless hands is liable to produce stains, due to insufficient washings, some people prefer to use a saturated solution of sulphite of soda, with which very little washing is required between bleaching and blackening; but the density obtained is much less, partly owing to the blue colour of the deposit. Allowance for this should be made by bleaching thoroughly. The following formula may also be used after thorough washing, and gives a red image of great contrast:Uranium nitrate 100 gr , potassium ferricyanide 100 gr , acetic acid $\frac{1}{3}$ oz., water $10 \mathrm{oz}^{2}$. Rinse only and dry. Wet. ting the negative, pressing it between blotting-paper to absorb suliacs moisture, immersing in methylated spirit for ten minutes, and then drying by gentle heat, clears the shadows aud gives greater contrast. Of course, if the dulness arises from a want of sharpness, the above is of no service, and the only remaining plan is to work over it with the retouching pencil, but this is a long and tedious process in most cases.

Cleaning Copper Utensils after TInning.-It is donbtful whether there is any solution that would clsanse both the copper and tin from the dirt left from the tinuing process without injuring either metal. The usual method of cleansing tinned copper vessels is to thoronghly scour them inside and out with sand and water or with any fine gritty substance until the whols of the surface is rendered clean, then rinse in cold water and dry the article in eawdust.

Making a Spill Cutter.-To make the epill cutter here described and according to the dimenslons given in Fig. 1, a piece of wood somg 8 in . by linin. by $18{ }^{4} \mathrm{in}$. must be obtrined, and a groove about $\frac{1}{2}$ in. wide and sin. deep cut along the centre of one of its hroad sides. At ong ard this groove is further hollowed out as in Fig. 2, which shows the shape of the groove and also illustrates the slits, 2 in. long, in which the knife is to he fixed. Now cut from the bottom a strip of wood some 6 in . long and $\frac{s}{\mathrm{~s}} \mathrm{in}$. thick, so as to leave a piace projecting from the under side at the rear end as shown in Figs. 1, 2, and 5. The knife itself is a piece of steel 2 in . long and Inin. wide, into the sides of which two holes have been drilled as indicated in Fig. 3. The edge (see side elevation B, Fig. 3) is ground sharp just like a chisel, after which the knite is placed in the slits previously cut in the block. Then find the correct positions for the holes DD (Fig. 2) in the wood, through

A Handy Spill Cutter.

which pars the sorews which hold the knife securely in its place. At Fig. 4 is given a section which illnstrates the position of the knife, the cutting edge of which is raised about π^{3} in. above the bed of the groove. The cuttsr, being finished, may be put to work. First place the projecting under piece against the edge of the table, as shown in Fig. 5. A piece of straight-grained wood being pushed sharply forward through the groove, its bottom edge strikes against the slightly raised blade, and a spill issues from tha aperture beneath the knife. By means of such a tool, spill making becomes astonish. ingly easy, and a large number can readily be cut in a very short time.
Clip for Engineere' Scribing Block.-The accompanying lllustrations show a form of scribing block clip greatly in favour a few years ago, simply becausa turning, lather than fitting, was principally required. Fig. 1 shows the clip complete in elevation. It consists essentially of thres pieces, the clip itself A, the square washer l, and ths handle C. The clip is shown in
plan by Fig. 2, and in end elevation by Fig. 3 . It may bs
made from square steel drilled with a twist drlll at one end to fit the post, this end, the leit in Figs: 1 and 2, being rounded off to suit. The sides, of these holss haviug been faced on a mandril in the lathe, these edges oan be placed on any true surfacs, and centre lines scribed across at the ends. Or the piece can be placed on a mandril, and, the rounded end being centred, the ends of the mandril resting in V-blocks, the point of a knife tool is set to the mark, the tool point of a knife thool bottom slide only, the piece turned round, and the point of the tool moved up to mark the other end. The top slide muet not be moved in these operations. Of course, the ends should have been prepared for scribing previously by filing and chalking. This method will ensure that the turned and threaded part shall be square with the hole the mandril and a packing piece under the shank end being used in drawing the cross centre lines. The rest of the work presents no difficulty, but the face at D (Fig. 2) should be tarned back jnst pact the hole, a collar being formed at E. The turning down of the

shank at F is for ease in chasing the thread. G (Fig. 3) shows the slots left by ths turning back at D (Fig. 2), Fig. 4 is a plan, and Fig. 5 an end elevation of the washer. The outer suriace of this corresponde with the shape of the large end of the clip, and a recessed hole is bored in it, the larger end fitting on the collar \mathbf{E} (Fig. 2), while the small hole slides over the threaded end of the clip. Ths washer is slit down the centre nearly but not quite to the bottom, $\{$ hole for the scriber having previousiy been drilled across as shown at the top of Fig. l. The handle o (Fig. 1) is threaded to fit the screwed end of the clip. The cross section of the boss and of the handle itself is circular. The washer aleo may he circular instend of rectangular, and will then work easier on the post.

Cementing Amber Mouthpiece. - When a broken amber mouthpiece of a tobacco pipe requires to be jointed, tonch the broken parts with boiled linseed oil, and hold them for a few minutes in a gae flame; place them together, and bind with whre. Lay aside for a few days for the cement to harden, and pare off the excess with a sharp knife.

Giving an Ivory Appearance to Plaster Casts. -Over a slow fire melt $\frac{1}{2}$ lh. of beeswax with 1 pt. of turpentine, and apply to the plaster by means of a soft brush. Several successive coats are necessary to cover the plaster well. If the mixture is too thick, add a little more turpentine. Plaster casts msy be colourad by including a tint in the wax and turpentine.
Making a Fishorman's Landing Net.-The illustrations show a simple frame for a landing net as used by anglers. The two side pieces AA are made of No, 7 B.W.G. steel wire, the outer ends being turned to form an eve. The ends that fit on the stick are bent at right angles for $\frac{1}{2}$ in., as shown at B. One of these shorld be longer than the other, ss they would weaken the stick if they came opposite. A hole c is bored on each side to take the turned ends of the wires, and the stick is grooved so that each wire will fit in tlush. A cord is stretched across between the two eyes, and this completes a D-shaped bow on which the net is thres.ded. To hold the frame on the stick, a loose ferrule D is slipped up, or a lashing may be used instead if preferred. To take the net to

Making a Fisherman's Landing Net
pieces, the ferrule is slipped back to the position shown at \mathbb{E}, when the wires may be removed and the net rolled round them. The stick may be made of greenheart or bickory.

Pattern for a Ship's Ventilator. - To cut the pattern for a ship's ventilator in four pieces, first draw a side elevstion of the required size, then divide the throat curve into a number of equal parts, corresponding to the number of sections required for tho ventilator. Next divide the top curve, forming the top of the ventilator into the same number of equal parts nsed for the throat, and also draw the semicircle A G (Fig. 1). Join the division points on the throat and top curve by straight lines; these would show the four sections whose patterns are to be developed. As the method of working would be the same for axch saction, the method adopted for the section $A G, a^{2} g^{1}$ (whose half-pattern is shown by fig. 2), could be applied for developing the remaining three sections. A very near approximation to an accurate pattern is obtained by assuming that each section is a part of an oblique cone, and if this be done, the semicircle a G (Fig. 1) wonld be the half-plan of the base of an oblique cone containing the first section. Now join $A a^{2}$ and $G^{1} g^{1}$, and also draw a line from g^{1} parallel to $A G$ to cut $A a^{2}$; then this line could be assumed to show the smaller end of the frustum of the cone on the elevation. Draw projectors from $a^{l} g^{1}$ to join AG, and with half this length as radius draw the semicircla $a g$ to show the plan of the small end. Next divide the semicircles into a similar number of equal parts as A, b, c, a, b, c, etc. From the division points B, c, D, E, F draw projectors to $A G^{1}$, and from b, c, d, e, f draw projectors to join $a^{1} g^{1}$. Join $B^{1} b^{1}, \mathbb{C}^{1} c^{1}, D^{1} d^{1}, E^{1} e^{1}, \mathbb{F}^{1} f^{1}$,
and produce these lines to join $a^{2} g^{1}$ at $b^{2}, c^{2}, d^{2}, e^{2}, f^{2}$. Join the division points on the plan by straight lines, and from $b^{2}, c^{2}, d^{2}, e^{2}, f^{2}$ draw projectors to join the lines with corresponding letters on the plan, and if a curve were drawn through the points found, that curve would show the plan of the section of the ventilator on the lice $a^{2} g^{1}$. Join the division points $a \mathrm{~B}, \mathrm{~B} \boldsymbol{c}, \mathrm{C} d, \mathrm{D} e, \mathrm{E} f, \mathrm{~F} q \mathrm{by}$ a series of dotted lines, as shown, and these would be the plans of a series of diagonals joining the points indicsted. Next find the true slants of the stripes and diagonals by drewing lines at right angles to $B b, C$, $\mathrm{D} d, \mathbf{E} e, \mathrm{~F} f$, sud on the lines drawn at right angles mark the upright height $g g^{1}$, as shown. Join the division points on the inner circle to the points marking the upright height, and this would form a series of triangles; the slant length forming one side of the triangle would be the true slant of the line on the cone in each case. Next find the true slants of the dotted diagonsls by the same method, using the same upright height as for the slants. The hypotenuse of the triangle formed in each case would be the true slant of the diagonal. To find the true slants of the lines above $a^{1} g^{1}$, where the projectors

Pattern for a Ship's Ventilator.
drawn from $b^{2}, c^{2}, a^{2}, e^{2}, f^{2}$ join the lines with corresponding letters in plan; draw lines from the points found at right angles to the plan lines, and on these lines mark off the perpendicular height of $b^{2}, c^{2}, d^{2}, e^{2}, f^{2}$ when messured perpendicular height of $a^{1} g^{1}$. Now join b, c, d, e, f to their respective upright heights, marked on each right angle to obtain the true slants of the lines produced to cut $a^{2} g^{1}$. To work the pattern, mark on a straight line the length $A^{1} a^{1}$ (Fig. 1). With the true length of the diagonal joining a to B as radius, and using a^{1} (Fig. 2) as centre, dxaw an arc; with the division length $A B$ as radius and A^{1} (Fig. 2) as centre, cut the are first drawn. Next, with the true slant of the line $B b$ as radins, and using B^{1} on the pattern ascentre, draw an arc. With the division length a o as radius, and a^{i} on the pattern as centre, cut the arc last drawn at b^{1}; this would give the points $A^{1} a^{1}, B^{2} b^{\prime}$ on the pattern. The remaining points axe obtained ly repeating the working for each division, using the slants and diagonals in their proper order for ohtaining the points $C^{1} c^{1}, D^{1} d^{1}, E^{1} e^{1}, f^{1} F^{1}$ to complete the top part of the pattern. Join the points $A^{2} a^{2}, B^{1} b^{1}$, etc., on the pattern by straight lines, and produce them below the inner curve, theu add the length $a^{1} a^{2}$ (Fig. 1) from u^{1} to a^{2} on the pattern. Transfer the true slant of the line $b^{1} b^{2}$ (obtained from the triangle drawn on the plan) to the pattern, marking from b^{1} to give the point b^{2}; transfer the remaining true slants to the stripes with corresponding leiters on the pattern, and draw a curve through these points to finish the half pattern for one section. By repeating the method of working shown for each section, the pattern for the complete ventilator would be obtained. Allowances for hollowing, seams, etc., must be made to the pattern as shown.

Amount of Ralnfall on Roofs.-In eatimating the eize of gutters on internal roots and behind parapet, the amount of raintall should be provided for. An exceptional rainfall is about 05 in. per minute, and this gives about 006 gal . for each square foot of catching surface. An arerage rainfall in London would be about one-third of the above, but for preventligg gentters on internal roofs, or hehind parapet walls, overHowing inside the house, the maximum should he allowed for:
Quantities of Cement and Slag in Concrete.-The amount of cement and slag required for laying 100 super. yd. of floor', in. thick, in the proportion of 1 to 1 , is as follows:-The cubic contents ot the concrete when laid will be 900 super. $\mathrm{ft}^{2} \times \frac{1}{\mathrm{I}} \mathrm{ft} .=75 \mathrm{cub} . \mathrm{ft}$. Thers will be required about 2 cuh. yd. of slag, broken small enough to pass through a $\frac{3}{4}-\mathrm{in}$. ring, and 54 cub. ft. of cement (at 90 lb . to the cubic foot) $=45 \mathrm{cwt}$. This 108 cuh . ft. of cement and slag will shrink to about 75 ft . when mixed and wetted.

Cylinder-tank System Hot-water Supply.-In the sketch, A indicatos the bath tap, B that ior the lavatory, and 0 that for the scullery. The sketch shows a well designed and proportioned apparatus on the cylindertank system. The hoiler (dome-top kind) should be a No. 3. A simaller size would do, but small boilers do

Cylinder-tank System Hot-water Supply.
not take a bufficient charge of fuel, and they therefore need more frequent feeding aud attention than lurge boilers. If hard water' is 'used, the hoiler should have the water-way carried below the fire-bars, and be provided with cleaning holes and lids.
Hints on Enamelling. - To treat white enamel to prevent it setting too quickly, it should be thinned with the same varnish as is used in making it. To enamel successfully, set a good flat ground to work upon, and do not try to improve the work hy giving gecond coat of enamel if the first does not turn out well. Never put a bright on a hright; the correct way is to flaish a gloss on a flat, or a flat on a gloss. In the case of spoiled work, the work should be rubhed down with ground pumicestone, flatted, and then enamelled again. Enamelling should be done in a warm room. All enamels become ropy if exposed to the air ; keep well corked, therefore, and powr out for use only a small quantity at a time.
Painting a Staircase Wall,-In repainting a staircase wall, representing about 120 sq . yd., to a shade of green, if the colour, etc., is procured from a colour mer:chant (not an oil shop) the quantities and the cost will he as follows :-24lb. of white lead, cost 5 s . 2 lh . or patent dryers, cost 8d.; llh. of deep lemon chrome, potent dryers, cost s . 3 . ; of deep brunswick, cost $2 \mathrm{~s} . ; 20 \mathrm{z}$. of drop black, cost 3d., all ground in oil; 3 qt. of inseed oil, cost 1s. 6d.; and 3 qt. of turpentine, cost $2 s$. The white lead, dryers, chrome, black half the green, and 1 at. of oil should be mixed well together, after which small quantities of the reserved green should be added until the desired shade is ohtained. The paint should be mixed lighter than the sample, as it will dry darker. Divide the mixed colour into two equal parts. Thin one part with the oil so that it works iveely, and spread on the
wall evenly; twenty-four hours afterwards apply the remaining portion of the colour, thinning with turpen tine so that it works freely and covers well. The tims is in important item; if the interval is more or less than twenty-four hours the second coat will be eheary-that ls, oright in some places and dull in others. If the last coat is stippled the result will be m better job. To stipple is to dah the suriace all over with a flat brush : this takes out the brush marks. Commence at the top and work downwards, there may be a little colour left over.
Making Imitation Tortoiseshell.-A very good imltation of tortoiseshell can he mads by colouring a portion of the pasty celluloid with a hrown or yellow dye soluble in spirit (aniline colour), and then working the dough along with some nearly colourless celluloid. As the two are not properly amalgamated, streaks aud patches of colour appear throughout. Considerable experionce, however, is required.
Running Return Bead round an Arch.-To work a return head round the arch shown by Fig. 1 , a mould is prepared to the required shape, and flxed to a radius rod, as shown in F'ig. 2. The flat pert of the wall is roughed in, and the head is run in coarss stuff hy the aid of the monld, which a!so works a part of the soffit, the rest of which between the two beads is done with the floating rule. After all the work has been roughed in ready for the fining coat, the mould is readjusted so as to be in position to work the finished bead, which is usually done in Keene's cement. The part of the bead

Running Return Bead round an Arch.

below the springing line is done hy detaching the mould from the radius rod, and using it in the ordinary way; while in cheap work the bead round the arch is sometimes worked without the aid of the radius rod. The walls are then finished off, the bead is run, and the soffit of the arch completed as in roughing out.

Fow to Copy a Glass Positive. - When copying a collodion positive mounted on glass and varuished at the back, the first proceeding is to remove the varnish. It may be possible to do this by placiug for a short time in a dish of methylated spirit and then wiping down with a tuft of wool. Try one edge and see whether the picture is affected. When the varnish is removed, th print or traneparency can be made by contact iu the usual pressure frame. A better plan would be to piu the picture to the wall with drawlng pins, and copy through the camera in the usual manner. To ohtain a copy the same size as the origiual, it may be necessary to make a conical front, place two cameras togethsr, or otherwise increase the extension, which ehould be twice the focal length of the leus. Copying is merely photographing a picture at close quarters. The only photographing a picture at close quarters. is avoid the reflection of bright objects in dificulty is to avoid the reflection of bright ohjects in used, and a strongr pyro-soda developer.

Underglaze Colours for Biscuit Ware.-Underglaze colours are applied direct to the biscnit wave, and are therefore under the glaze that is applied after colouring. The coloured ware should be heated to the eame temperature as in burning for biscuit, hut the dilferent colours may require different times, which will be found by experience'. Time is not very important, however, as the colourrane, to a large extent, fixed by a ehort heating, colourg are, to a large extent fuxed by a ehorts.

Worklug a Ship's Log.-The speed of a ship is ascertained by the "patent log" or by a "log ship" and sand glass, the latter still heing preferred by most sailing ship masters. The "log ship," two forms of which are given in Figs. 1 and 2, is hove over the weather quarter attached to the \log line divided into "knots," a "knot" bearing the same proportion to a mile is the sand glass lulluing in seconds does to an hour. Sand glasses. or " log glasses," are made to run 14 seconds and 28 seconds (the former being for use when fast travelling, and the knots byline have of course to be doubled if spaced for 28 seconde). It must be remembered a nantical mile is $2,027 \mathrm{yd}$., usually called $6,080 \mathrm{ft}$. It corresponds with the minutes of are; thus there are $360 \times 60=21,600^{\circ}$ of arc, or nantical miles, on a "great circle" (or the equator), The number of yards therefore in a "great circle" divided by 21,600 will give the number of yards in a nautical maile. In calculating the length of a knot in feet, the rule adopted is this. To the seconds run by the glass affix a cypher and divide by 6. The remainder when doubled gives the inches. Thus for a 28 -second glass 280 $\frac{8}{6}=46+4$, or the distance between adjacent knots $=$ 46 ft .8 in . This is not correct, but the error is for safety, as the ship, unaffected by favourable currents, will be behind her position by'log or "dead reckoning," as it is called. To calculate the exact length between adjacent
bearing in the back of the meter would be an improvement. Owing to the length of flexible line through which the revolutions are transmitted, the motion is a succession of spurts, but this, however, does not affect the correctness of distance registered in the twenty-four hours.
Ingredients for Seltzogene Charges.-The charges for a 3-pt. seltzogene are tartaric acid 1 oz., and bicarbonate of soda, $1 \frac{1}{1 \pi} 0 z$. Any difference observable in the taste of the ready-charged syphons and of the water from the seltzogene using the charges purchased is probably due to the kiud of water used, and also to the fact that a small quantity of carbonate of soda is added to the water in the syphons, whereas in the seltzogene there will be no soda in the water unless it be put in hefore filling the seltzogene.
Making Billiard Challs,-To prepare green billiard chalks, mix together 5 parts of powdered magnesite and 1 part or' china clay, and add 1 part of mineral green or terra verte; for a blue chalk, substitute 1 part uf artificial ultramuxine. Make the mixture into a very stiff dough with the least possible quantity of water, allow to stand for several days, roll it outinto a cake of the thickness required, then cut it into squares with a fine wire ; impress a hemispherical indentation on each square, then separate them and dry them very slowly-

knots on the line, multiply 2,027 by 14 or 28 and divide by 3,600 . Fig. 1 is the wooden log ship; it is a wooden quadrant about in. thick and 10 in . diameter, the are being weighted with lead to make the log float vertically. The end of the log line L passes through a hole and is secured by knotting at the back, while a wooden peg P is attached to a span 3 from the line L. When the log line is suddenly checked in its running out, this wooden peg withdraws its hold in the quadrant, and the \log ship is hauled in with ease. The canvas log is shown in Fig. 2. The log liue is attached at D to the canvas bag c, at the mouth of which is a span seized to the peg at E, which is pushed into a wooden ferrule W seized to the log lime; when the line is checked the seized wo the log line; when the line is checked the closes, being hauled in bottom foremost. The "patent log," by which name the several revolving logs go at sea, is self-registering, and not hove at intervals as the former kipd. A meter is clamped to the taffrail, showing on its face by three hands the units, tens, and hundreds of nautical miles run since the last sctting, which is done at noon. This meter is a simple train of wheels to which motion is imparted by : threaded pin. At the back of the meter and attached to the pin is a hrass universal joint J (Fig. 3), to which is secured the end of a line sufficiently long to clear the eddies and buekwasli of propellers, etc. At the other end is the spinners, a three-hladed brass fan, pitched to revolve at such a speed that after being towed one mile the unit hand on the meter shall have made one revolution from 0 , to 0 , the intermediates heinc nuarked $\frac{1}{4}, \frac{1}{3}, \frac{3}{8}$. Sometimes a light, fly-wheel is attached to the line just abaft the taffrail, but this is not really necessary. Ball bearings between a cone collar on the shaft und a dished
first in the air, then in a warm oven. If the squares are shaped in brass moulds the material should be made very stiff, almost dry in fact; the chalks will then be harder. If the chalks are too soft, add more china clay; the colour can be made to suit by trial.
Reaovating Old Oil Painting. Tl'o restore to its original colour an old oil painting that is black with age and smoke, wash it with a sponge or soft leather and clean water, and dry with a silk cloth. If the painting is very dirty, take it out of the frame and lay over it a clean damp cloth. Allow the cloth to remain for a day or two, keeping it danxp all the time. Then remove the cloth and place another clean damped one over the picture, and keep on renewing the cloths till the dirt is thoroughly soaked out of the painting, when it may be washed with a sponge and water, Then rub over the picture alittle clear"linseed oil, or give it a thin coat of mastic varnish applied with a clean flat brush till every part is covered, and set aside to dry where no dust will fall on it.
Convertlng Fat into Soap. - In converting a few pounds of fat into a good hard soap, dissolve 1 lb . of caustic soda in 3 pt . of water; then melt down 61b. of fat in an earthenware howl. Bring the temperature of the fat to about $110^{\circ} \mathrm{F}$., and the temperature of the soda lye to about $80^{\circ} \mathrm{F}$. Now pour the soda lye very slowly into the centre of the fat and stir thoroughly with a stick, so that the lye becomes amalgamated with the fat as fast as it is poured in, and the two form a perfect emulsion. Now wet a large piece of cloth and place it in a box so that the whole of the wood is covered; then pour in the mixture just made, cover the box, and place it in a warm place for twenty-four hours. The somp is then ready to be cut up and used.

Cleaning White Marble.-To clean white marble that is much discoloured, make a thin paste with fuller's-earth and water to which has been added 25 per oent, of liquid ammonia. Spread this over the marble with a brush, allow it to remain twenty-four hours, then wash off. If all the stains are not removed, repeat the operation.

How to Make a Bevel Set-square,-Fig. l shows a side clevation of a carpenter's bevel set-square of suitable dimensions for setting out dlminished stile doors constructed of plank widths; but a much smaller tool would be more handy for general purposes. The tool consists of two parts : a skeleton set-square made of steel or stont zinc, the former preferahly, and an adjustable stock working in a slot which is about two-thirds the length of the long edge of the square. The stock is very similar to that of an ordinary bevel, except that it is in two parts which are connected at the ends by means of clamping Which are connected at the ends by means of clamping
set-screwn, as shown in the end elevation (Fig. 2);
it is applled. The tool can easily be changed Into a perfectly true mitre square by fixing the stock at equal listances along both edges from the angle, or it can be used as an ordinary hevel. A wooden instrument hased on the same princlples is used by some joiners, but it is a clumsy article, and cannot be finely adjusted. The tool can be used as a set-square, or, by clamping down the stock in the position shown by dotted lines in Fig. I, as a try-square.
Particulars of a $\mathbf{1 0 - f t}$ 6-in. Split-cane Fishing-red, -The handle of a split-cane fishing-rod, 10 ft .6 in .10 g , which is to he made in three lengthe, should be of cedar or walnut 16 in. long and $1 \frac{1}{s}$ in. diameter at ths largest part; butt, $\frac{1}{3}$ in. diameter above the handle, tapering to tit a ferrule of $\frac{3}{-i n}$. bone; total length of butt, 3 ft . 6 in . Second joint, $\frac{8}{8}$ in. diameter at the counter, tapering to fit a $\frac{1}{2}$-in. ferrule at the top; totallength, 3 ft. 6 in. Top, $\frac{1}{2} \mathrm{in}$. diameter at the counter tapering to $\frac{1}{10}$ in. at the point; total length, 3 ft . 6 in . The number of pieces in each

How to Make a Bevel Set-square.
the tool can thus be adjusted to almost any position. Fig. 3 is a part elevation of a diminished stile door, shown in order to explain the application of the tool in setting-out the shoulders of the joint. This is shown in detail at Fig. 4. The dotted lines on the part A are the setting-out lines for the rail, and those on the part B are the setting-out lines for the stile. Figs. 3 and 4 should be compared. The rail and stile are shown separated in be compared. The rail and stile are shown separated in using the square. Fig. 5 shows another joint where the tool can be applied with advantage. Fig. 6 shows the tool being uged as a pitch-board; it can be worked from either edge of the string, and although it does not do away with the wooden pitch-board itself, no sliding slip is required, while its thinness and metal edges enable a much cleaner job to be made with the striking-knife. Fig. 7 shows the tool applied to roofing. A number of raiters can be laid side by side, and the length squared across them with a line at both ends. The stock of the square is then set to the pitch of the roof, and both bevels are obtained at once; no awkward moulds require to he lilted up and down, and both the bevels and the square are comprised in the same instrument. Fig. 8 shows a mitred joint of two difforent thlcknesses of wood; the thick lines show the edges of the square when
part will depend on the thickness of the cane; but the butt may be built up with six regments, each oue made up of two thicknesses of cane, making twelve pieces in all. The second joint and the top shonld each be made with six pieces of cane. A good iron-faced plane, file, piece of glass, brace and bits, hammer, and glasspaper are the tools actually required.
Making an Enlarged Photegraphic Negative.Any of the methods employed for making a bromide enlargement may also he used for making an enlarged negative, that is, by replacing the emall negative by a positive trankparency and eularging this on to an ordinary dry plato. For cheapness, and with some subjects, bromide paper may be used for euch transparency, developing rather dense with a strong but well-restrained developer, and, when dry, waxing the print and heating over a lamp. The hebt kind of transparency to use is one by the carbon procees, as these are most free from grain and give the best grudation. As the emulsion used on dry platee is considerably quicker than that used for bromide paper, and is coneequently more liable to fog, it is advisable to use an enlarging camera where the plate is enclosed in a sllde. Dnlargemsnta are best made by daylight, otherwise there is a tendenoy to harduess.

Reproducing Photographs by the Half-tone Process.-Photographs are reproduced for printing by what is known as the half-tone process. Line blocks giving merely the outlines are produced in the same giving merely the outines are produced in the same plant is required to do the work thoroughiy. A negative showing strong contrasts is taken on a photo-mechanical or wet collodion plate, a screen of sheet glass, ruled with a' network of five lines, being interposed between the lons and the plate, The screen usually contains about 120 crossed lines to the screen usually contains about 120 crossed lines to the inch, but for work on tine surface paper 240 lines to
the inch can be used. This screen breaks up the shadows into fins dots of varying size. A sheet of zine coated with gelatine or fish glie, and sensitised with bichromate of potash, is then placed in contact with the negative. The parts exposed to light become insoluble in hot water, as in the carbon process. The unexposed parts are washed away, leaving the zine bare between parts are washed away, leaving the zine bare between which etches it or cuts into it. It is then mounted ou a hlock of wood or metal to hring it level with the type.
Comparative Designs of Girders.-Assumingtheload is 10 tons distributed over a span of 18 ft ., the calculations will be as follows. (l) Fliteh beam : $W=\frac{d^{2}}{L}(C b+30 t)$; whers $W=$ breaking weight in ewt. in centre ; $d=$ depth in inches $; L=$ span in feet $; C=$ constant $=3$ for Memel $; b=$ total breadth of timber in inches; $t=$ thickness of fitch plate in inches. Factor of safety, 10. One or two trial designs may be necessary before finding asuitahle one, when fig. 1 may be decided upon. Ten tons distributed $=5$ tons
reversed. The film will probabiy expand readily, and if thisis objected to, it should be brushed over with collodion before stripping. Contraction could also be obtained with methylated spirit, but would be difficult when dealing with so thin a film. Remove the brokeu glass and iusert a sheet of waxed tracing paper underneath the film. Coat the new glass with thin gum (filtered), and lift the tracing paper by the two ends with the film lylng on it, and lay down on the glass; it may then be worked into position, driving out air bubbles with a pad of wool.
Reducing Flint to Fins Powder. - Flint may be ground to a fine powder by first raising it to a red heat and quenching it in cold water, then grinding it either under edge runners or in a hall mill. The edge runners are two large granite roliers mounted on a horizontal shaft and revolving within a circular iron pan; for extremely fine grinding, water may be mixed with the flint. The ball mill is a cylindrical vessel built up of iron or steel plates, and baving a number of rests or shelves of the same metal. Around the mill there are holes; below wbich are fitted tine sieves, and steel balls are placed inside the mill. Surlounding the mill is a sheet-iron cover, terminating below in a hopper. As the mill revolves the steel balls are carried up on the shelves and plunged down on the material below, while the pulverised material gaes through the sieves into the outer casing of the mill, and is withdrawn from the hopper.
Making Harness Composition, - A good harness composition may be made by mixing llb. of bees. wax, 6 oz . of soft soap, $\frac{4}{4} \mathrm{lh}$. of ivory black, and 1 oz. of Prussian blue, with 2 oz . of linseed oil and

In centre multiplied by 10 for breaking weight $=50$ tons $=1,000 \mathrm{c}$ wt. Breaking weight $=\frac{14 \times 14}{18}(3 \times 14+30 \times 13)=$ $\frac{98}{9}\left(42+52 \frac{1}{2}\right)=\frac{98 \times 94 \frac{1}{2}}{9}=1,029$, or a triffe in excess of the strength required. (2) Cast-iron girder : Dèpth, sny, onetwelfth of the span $=18 \mathrm{in}$. Stress in bottom flauge $\frac{\mathrm{W} i}{8 d}$ $=\frac{10 \times 18}{8 \times-1.5}=10$ tons. Allow $1 \frac{1}{2}$ tons per square inch in tension; $\frac{15}{1 \cdot \tilde{0}}=10 \mathrm{sq} . \mathrm{in}$. Make top flange same size to allow width for building upon and possible tension in top thange from ends heing built in, so that the section will be as Fig. 2. (3) Wrought-iron plate girder : For the same depth the stress in bottom flange will be as found above $=15$ tons. Allow 4 tons per $6 q u a r e$ inch on the gross sectional area $=3{ }^{3}$ bq. in. Say, one $\frac{1}{2}$ in. plate 8 in. wide for each flange, with $2 \frac{1}{-}$-in. hy $2 \hat{1}-\mathrm{in}$. by $s_{1}-1 \mathrm{in}$. angle irons, and $\frac{1}{4}$-in. web, and stiffeners every 4 ft ., as in Fig. 3. Rolled steel joist: By reference ta Dorman Long \& Oo.' Rolled steel joist: By reference ta Dorman wong a Co. 6
bection book, a 12 in. by 5 in. by 32 lb . rolled steel joist will carry 10 tons distributed over a spau of 18 itt. ; but oin. is narrow to build upon, and a $\frac{s}{s}$-in. top plate would be a desirable addition, as in Fig. 4.
Removing Crystoleum Picture from Broken Glass, -One means of removing an expensive crystoleum picture from eracked glass is to use hydrofluoric acid, but much depends on the rrocess by which the pieture was produced. Soak the broken glass and picture in water for some little time, then pour off and cover with a 5-per-cent. Golution of hydroffuoric acid. After It has remained about a minute, stroke the extreme edges of the glass and gently coax the film to frill, when it may be rolled off the glass. Care must be take. to unroll the film in the same way, or the picture will be
$\frac{k}{2} \mathrm{pt}$ of oil of turpentine; heat on the hob or in the oven till melted and thoroughiy incorporated, taking care that the vapours do not catch fire. Or melt together 202 . of mutton suet and 6 oz . of pure besswax, then add 6 oz . of fine powdered sugar candy, 2 oz . of soft soap, 2oz of lampblack, and $\frac{1}{2}$ oz. of indiga in fine powder. When thoroughly incorporated, further add 1 pt . of oil of turpentine. Keep in pots or tins. Lay a thin quantity of either on the leather, and polish gently with a brush or cloth rubber.
Distillation of Resin.-Resin is distilled by heating it in large iron retorts, when gases, water, acetic acid, resin spirit, resin ail, and resin pitch are left as a residue in the stills. The crude resin oil imported is too impure to be used except for the preparation of cummon lubricating greases. To purify the oil, it is first treated with sulphuric acid, washed with water, treated with soda, and again washed with water. lt is then heated in a still and may be separated into portions of different gravity by collecting the portions distilling at different times in separate receivers. To do this, a hydrometer should be Hoated in the oil in the receiver, and the receiver changed as soon as the oil in it has riseu to the gravity required. 'l'he next portion passing over will be collected separately and will have a higher gravity than the first one.
Particulars of Bates' Saccharometer. - Bates' saccharometer is used for determining the gravity of a wort or the percentage of sugar in a solution, in a similar manner to the Sikes' hydrometer. A weight must be placed on the stem of the hydrometer to sink the instrument so that it floats with only a portion of the scale below the surlace of the liquid. The reading on tre stem is added to that on the weight, and refereuce must be made to the book of tables supplied with the instrument to determine the gravity or pelsentage ot sacibarine matter.

Feight and Width of Internal Doors.-The rule riven by Vitruvius for determining the height of internal doors, and the ordinary rule when the width of the door is known, are the following. For Doric temples, the aperture of the door is determined thus: The height from the pavement to the lacunaria is to be divided into three parts and a half, of which two constitute the height of the door. The height thus obtained is to be divided in to twelve parts, of which five and a hall are given to the wldth of the bottom part of the door. This is diminished tuwards the top, equarl to one-third of the dressing, if the height bs not more than 16 ft . From 10 ft . to 2 fit . the upper part of the opening $i s$ contracted one-fourth purt of the dressing. From 25 ft . to 30 ft . the upper part is contracted one-eighth of the dressing. Those that are higher should have their sides vertical. . If the doors are lonic, their height is to be regulated as in those that are Doric. Their width is found by dividing the height into two parts and a half, and taking one and a half for the width below. The diminution is to he as in the Doric doorway. . . If the doors are folding, the height remains the same, but the width is to be increased. If in four folds the height is to be in. creased." Adarns: Quarter height of room $+44 \mathrm{ft} .=$ height of door ; height of door $+4 \mathrm{ft} .=$ width of door. When width of door is given the ordinary rule is to add 4 ft . for the height.
Portrait Enlargements in Oll.-Painters of cheap oil portraits geuerally trace the outline with a pantograph or other similar appliance. Better class artists make a bromide enlargement on thiu paper, rub the back with chalk, and trace through with a stylus. Such methods only give rough outlines. Of course, it would be possible to cast a shadow by means of the optical lantern by showing the object by reflected

How to Obtain a Reflected Image. ${ }^{\prime}$
light, but it would be much less trouble to hare a quarter-plate negative mado. Fix this negative in one eud of a box and adjust a lens at the other end at a suitable distance. Block up with brown paper a welllighted window and place the box, negative side outwards, in an opening cut in the paper. If the canvas is supported on an easel at a proper distance opposite the negative it, will recelve the enlarged shadow. To obtain a retlected image, make a box A (see diagram) and attach the photograph at B. The lantern with the lens removed is placed at c. The rays are collected by the lene D and projected on to the canvas E. As only a small proportion of the light will be rettected, a powerful light will be neoded. Two lanterns would be far better. It might be possible to use two incandescent or duplex paraffin lampe for a slight enlargement. Any lens of ghort focus and large diameter conld be used.
Making an American Breast Collar for a Horse.In making an American breast collar for a horse, assuming thyt the trace buckles are $1 \frac{1}{2} i u$. wide, the body ol the collar cut straightshould he 31 in . wide and 3 ft . long, the lay lot in. wide to fit the buckles, with the ends turned in tor chopes so that the front ot the buckles will be level with the end of the body. Put a liniug in the chapes and two good loops, or one long loop, behind the buckle; the lay can theu be cut of a wavy pattern from loop to loop in the centre, or it can be left straight. Then make fonr bearers the same as for breeching, but When make four bearers the same as for breeching, but rings; -In . buckles will do for them; put ons on each side between the buckle and loop, and the two others 4^{\prime} in. Hrom them towards the ceutre of the collar, and stitch the lay, hoops, and bearers down. Now cut two or three thick nesees of thick fawn serging or piece of thick telt and cover it with thin patent cowhide or basil, and see that it is the same size as the body both in leugth aud width, j ining the cover in the centre undernerth and turning it in at the euds, then stitch to the body all along both sides; or stitch in with the lay and
do awry with this second stitching. Now cut the shoulder strap to hold it up 2 ft . 10 in . long and slit it 1 ft , at each end; finish up and punch the slits, and put two rings or large dees on each side of the centre close by the end of the slits tor the reins to run through for driving purposes. If for cart work, it muct be made stronger all throngh and coarser. The sizes giveu ale for gig purposes; for a pony, the measures mnst he altered in proportion. If necessary, a small dee can he placed in the centre of the collar for putting a martingale billet in, the other end going to the bellyband between the horse's legs.

Strength of Flitched Beam.-Supposing a warehouse floor is to be supported by flitch beams, 10 ft . ceutre to centre, the span of the beam being 20 ft . and the load to be supported being 3 cwt . per supericial foot, the size of the beams and ths thickness of the flitch may be arrived at as follows. Formula for flitched beam $W=$ $\frac{d^{2}}{\mathbf{L}}(\mathrm{C} b+30 t)$. Where $\mathrm{W}=$ breaking weight in cwt. in centre; $b=$ total breadth of timber in inches; $a=$ depth of timber in inches; $t=$ thickness of flitch plate in inches; $L=$ length of epan in feet; $C=3$ for Baitic fir. From the question, $20 \times 10 \times 3=600 \mathrm{cwt}$. to be carried by each beam. Factor of safety, say, 6. Assume $b=12$ and $t={ }^{\prime} 75$,

$$
\text { then } \begin{aligned}
600 \times 6 & =\frac{d^{2}}{20}(3 \times 12+30 \times 75) ; \\
3600 & =\frac{d^{2}}{20}(36+22.5) ; \\
d^{2} & \left.=\frac{3600 \times 20}{58 \cdot 5}=123\right) .
\end{aligned}
$$

This is evldently very wide of the mark, and an ordinary flitch heam will not meet the case. Assume oak timber

Strength of Flitched Beam.
($\mathrm{O}=37$) in three flitches, each 6 in. thick, and two flitch plates, each lin. thick, then

$$
\begin{aligned}
3600 & =\frac{d^{2}}{20}(3 \cdot 7 \times 18+30 \times 1 \times 2) ; \\
3600 & =d^{2} \frac{126^{.6}}{20} ; \\
d^{2} & =\frac{3500 \times 20}{125^{\circ} 6}=568 ; \\
\text { whence } d & =\sqrt{616}=23.83 ;
\end{aligned}
$$

so that 24 in . deep would do, and the whole section would be as in the accompanying figure. If the question was cor rectly copied from the examination paper, it is clear that the examiner was wanting in a practical grasp of the conditions, as flitched beams are never used of such a size.

Painting Venetian Blinds, -Venetian hlinds, if uew, may be painted in the following mauner. Remove all dust from the lathe with a brush, and glve the knots two thin coats of patent knotting. Beat up stiff in a pot 21b. of genuine white-lead ground in oil with 40%. of patent driers, using linseed oil and turpentine in equal proportion as thinners. Thin one-fourth ot this with linseed oil for the prining coat. Add to the remaining three-fourths the pigments for staining the colour with which it is intended to flnish. Take about two-thirds and thin with one-third lingeed oil sind twothirde turpentine for the second and third coats; the remaining colour should be thinned with good carriage varuish for the final coat. Any colour pigments required should be bought ground in oil, and not in the form of powder. Strain the paints through flne muslin befors using ; allow plenty of time to dry between the succeasive couts, aud rub down lightly with fine glasspaper. A much quicker method is to use colour rnixed with spirit varuish, but the work dono in this way does not stand so well as by the method described above. Do the painting in a warm room.

Dyelng Ostrich Feathers.-To dye feathers bleck, soak them in nitrate of iron liquor at $70^{\circ} \mathrm{B}$. for twelve hours, moving them well about; remove and wash, hours, moving dem whe about; renove and wash, of quercitron or sumach in 1 gal. of water ; remove, Wish, dip in an emulsion made by ehaking a bolntion of pearlash in water (10 o. to a pint) with an equal measure of olive oil, and then swing the feathers aboutin a warm roors, or pin them to a llne to dry.
Wainut Stain for Light Wood.-A good walnut stain may be made hy mixing vandyke brown into a thin paste with liquid ammonia, and thinning out with water till the desired tone is gained by at least two applications. The colour is euriched by a trace of red or black as may be desired in the polish.
Making a Smoker's Companion.-If it is to be painted and anamelled, white pine is about the best wood and easiest to work; but if it is to be polished, good hard kauri pine or American basswood will suit. If care is taken to select good stuff, either of these woods is easy to work, gad will finish with a very good surface. The wood should be $\frac{1}{3} \mathrm{in}$. thick. For the back, a piece 17 in . long hy 11 in , wide will be required. It should be sheped at the top. something like the illustration: a hole is bored with is lin. centre-bit, cutting from either side into it with a fret- or bow-sew, and finishing off with spokeshave, rasp, and glasspaper. The rack at the top should be 163 in. long by 24 in. wide, and have nine openings for pipes. To make these openings, bore nine holes with their centres la in. from the front edge. The first three should be bored with al-in, cantre-bit, the next three with a $\frac{s}{8}$-in., and the last three with a $\frac{1}{2}$-in. centre-bit. Now cut into these from the front edge at a slight angle with a fiue saw, thus making openings of the shape

A Smoker's Companion,
shown in the illustration. The edges should be rounded with a wood file and glasspaper. The middle shelf is $16 \frac{1}{2} \mathrm{in}$. loug by 4 in . wide, and the bottom shelf $16 \frac{1}{1} \mathrm{in}$. long by isin. wide. Both these shelves have a ledge round the fronts and ends, fixed $\frac{1}{4}$ in, from the edge. The ledge should be made by btriking a $\frac{\pi}{1-i n}$. bead on a piece of the stuff that is left, and carefully on a plece of the struft that is left, and carefuly bottom of the back, the middle shelf $4 \frac{1}{2}$ in. above this, and the rack $2 \frac{1}{2} \mathrm{in}$. above tha middle shelf. The shelves should be screwed from the back with long fine screws such as $1 \frac{1}{4}$ in. No. 5 . Two small ears should be screwed on the back for fixing to the wall.
Cemonting Catches, etc., on Brooches.-Shellac is ueed for fixing the fastenings on brooches mitde of jet, shell, pearl, wood, or stone, A moderate heat only, is required to unite them. In some casee "Coaguline," a cement obtsinable of chemists, is used. Silver brooches can he repaired with ordinary tinman's solder, For a grold or gilt brooch, ss well as silver ones, "hard" solder, purchassible under the name of "silver solder " or "gold solder," is preferable. 'I'hese solders run at a red heat. The heat required to run tinman's solder does not injure gold or silver plating.
Hardening Axle Arms and Boxes.-To harden the iron arms of cart sexles, place them in an iron box about three times the size of the proper box, sealing up the front end quite close ; pack up the space between the axle and box with crushed bones and shreds of lesther, close up the back end with clay or othersubstance so that it is air- ight, and place iu a fumace witha good heat for about oight hours, when the bone and leather should be consumed. Alluw to cool. fill up the space with powdered potash, replace in the furnace again until it is consumed, then take it out, and allow to cool until black hot, when it should be cooled out in a tub of strong salt and water. To harden the insides of boxes, make them fairly hot, charge the insides with potash, sud revolve them until the

In Moxon's "Mechanical Exercises" the method of casehardening is thus described : Take cow-horn or hoof, dry it thoroughly in an oven, then heat it to powder : put to it an equal quantity of bay salt, and mingle them with white wine vinegar. Lay some of this mixture unon loam, and cover the iron all over with it; then wrap the loam all about it, and lay it on the hearth of the forge to dry and harden. Put it into the fire when dry: when it attains a blood-red heat, withdrew, and allow to cool out.
Removing Paint or Varnish fron Furniture.-The following is a method of removing paint and varnish from furniture without using glasspaper or a burning lamp. To each bucketful of freshly slsked limewash add 2 lb . or 3lb. of common washing soda and a pennyworth of rock ammonia. Apply liberally by means of fibre brushes. For carved portions, make the solution thicker by adding more lime or sawdust. Scrape off the varnish as it softens: several applications may be given. Swill off with plenty of clean water, and brush over with common vinegar before applying any stain. For delicate and turned work, a solution of hot borax water and rock ammonia will generally suffice. Or make a pickle as follows- $\frac{1}{2} \mathrm{lh}$. of American potash, $\frac{z}{2} \mathrm{lb}$. of soft soap, $\frac{1}{2} \mathrm{lb}$. of rock ammonia, 1 lh . of washing scda, and 1 gal. of weter.
Particulars of Hydraulle Ram. - The adjoining illustration gives a disgrammatic section of a hydraulic ram. A is an air vessel, B and C ball valves, D a delivery pipe, and E the supply pipe. Above the valve B is an opening, and the water, in running down from a small fall at E, passes through this outlet until the velocity is sufficient to close B. This, of course, suddenly stops the stresm, and the outlet valve C is forsed open owing to the grest increase of pressure in

Section of Hydraulic Ram.
the ram. Through C the water passes into A and up the delivery pipe D. This releases the pressure and the valves B and C fall and the operation is gone through again. In some cases an ordinaly lift or a fap valve, which must be weighted to exceed slightly the static pressure of the supply stream, is placed between \mathbb{E} and C. . Obviously, a portion only of the suppiy water from a small fall' is delivered to a greater height, and the average efficieucy ci the ram is probably not more than 50 per cent.
Removing Varnish from Old Oil Painting.-In removing cracked varnish from an old oil painting, gently lub the eurface of the painting with the dry fingers. By continual rubbing the varnish will come off in the form of fine dust. Experts sometimes spend days or weeks over a single canvas. Spirit of wine or turpentine may be used to dissolve hard old varnish, but both will attack the paint as well as the varnish if the action is not stopped in time by applying pater freely. A weak solution of ammonia or reduced alcohol is also used to soficen the surisce, which is then slowly scraped away.
Strengths of Metalb.-From the following list, which gives the average breaking stresses in tons per square inch, the relative strengthe of cast iron, cast steel, gunmetal, and brass may be obtained. In tension: Cast crucible steel, 45 tons; mild steel, 35 tons; steel for castings, 30 tons; gun-metal, 12 tons; brass, 11 tons; and cast iron, $7 \frac{1}{3}$ tons, In compression : Cast crucible steel, 80 tons; cast-iron, 45 tons; gun-metal, shout le tons; and brass, about 11 tons. In shear : Cast erucible steel, about 30 tons; steel for castings, ahout 20 tons; gunmetal, about 8 tons; and cest iron, ahout 5 tons.. The safe stresses for live loads are as follows. In tension : Cust crucible steel, 8 tons; steel for castings, 5 tons; gun-metal, 2 tons; brass, $1 \frac{1}{2}$ tone; and cast-iron, $1 \frac{1}{2}$ tons. In compression : Cast crucible steel, 8 tons; steel for castiugs, 5 tons; gun-metal, 2 tons; brass, $1 \frac{1}{2}$ tons; and cast iron, 4 tons. In shear: Cast crucible steel, 5 tons: steel for castings, $3 \frac{1}{2}$ tons; gun-metal, $1 \frac{1}{2}$ tons; brass, 1 ton; and castiron, 1 ton.

Methods of Cleaning Garments. - It must he first ascertained whether the garment to hs cleaned is liable to shrink, and also whether its colour is fast. Small paint or grease spots may bs ramoved by rubbing with a rag on which a little benzine has heen poured. Grease marks may often be removed by putting a piece of hlotting-paper undex a warm iron and pressing. Trousers of a light woollen nature, if soilsd to any extent, are best washed in warm water, and dried in the open air. They should not be ecrubbed or wrung out. Garments of a dark colour and all black cloths should be cleaned with a bolution of liquid ammonia, about two teaspoonfuls of the latter to a pint of tepid wnter: if the water is too hot, the ammonia will evaporate quickly, and the cleaning power of the solution thus decrease. A brush should be use, and the garment rubbed from top to bottom, not crosswise but with the warp of the material. After the garment is cleaned it should be ironed and pressed.

Rules for Window Area for Room. - The rules for window area are as follows. Sir W. Chambers: $\frac{\text { depth of room }+ \text { height }}{8}=$ width of window ; height $=$
2 to 2λ times width. Gwilt: 1 It. euper. of light in a vertical wall to every 100 cub . ft. in room. R. Morris: square root contente of $100 \mathrm{~m}=$ super, area of window; sill 2 ft . 6 in . to 3 ft . from floor; head as high as possible. J. S. Adams: square root (height window ${ }^{2} \div 2$) $=$ width or width = side of square whose diagonal is the height. Sir Douglas Galton: 1 ft . super. window space to cvery 100 cubft . or $225 \mathrm{cub} . \mathrm{ft}$. contents of room in dwellinghousen ; 1 ft . guper, to 50 cub . ft . or 55 cub . ft. in hospitals.

Umbrella-maker's Stock Knife, -Fig. 1 shows a side view of an umbrella-maksr's atock knife, A being the cutting edge of the blade, and B the handle. An ordinary eye-bolt is put through the bench in a con venient position and secured by a nut undernenth The hook 0 (Fig. 1) fite into the eye of the bolt. A piece
bismuth 3 parts; while J. Richards recoramends aluminium 2.0 par'ts, zine $25^{\circ} \cdot 25$ parts, phosphorus 25 parts, and tin 72 parte. Other alloye for this purposs are aluminium 1 part, tin 9 parta; or cadmium 5 parts, zinc 2 parts, and tin 3 parts. Also phosphor tin (in variable proportion); or tin 20 parts, and zinc 1 part; or tin 99 parts, and copper 1 part; or tin 90 parto, copper 9 parts, and biomuth 1 part. Any of these can readily be fused with a copper bit, which, to ensure success, should be of a wedge shaps bent round to, roughly, a quarter circle. Ito edge is then at right angles to the aluminium, znd, by lightly moving the bit backwards and forwards whils in contact with the aluminium and flowing solder, the impure film is rgmoved. The coated surface can then he soldered with an ordinary shaped copper bit. Phosphor tin prohably owes its adhesiveness to the affinity of phosphorus for oxygen, a molten alloy containing phoophorus placsd on aluminium tending to absorb oxygen from the impnre film as well as from the surrounding air. When soldering, everything should he perfectly clean, the soldering being verformed quickly, as if the surface is zot coated at the first attempt the aluminium surface is injuriously affected, and good soldering becomes almost impossible unless the affected surface is removed by seraping or filing.
Iniaying Stringing in Cabinet Work,-When inlaying stringing round drawer fronts or on taper table lege the mode of procedure is as follows. From a bit of hroken bow-saw, or a bradawl filed to width, make a steel cutter to the width of the stringing. The cutter A in the illustration is secured by a screw B in a saw kerf c, an ordinary gauge being used to hold the cutter, which protrudes as much as the thickness of the stringing. Satinwood or boxwood stringing can geuerally be ohtrined from cabinet makers. Set the gaugs to the required margin round the drawer fronts, or from the edge of the lega, and ecratch the channels for stringing. The gauge is held as in ordinary gauging. To make a clean job, where the channels for stringing

of hard wood should be fltted to take the cutting edge of the knife. Fig. 2 shows the shape of the knife handle. This tool is used for cutting the ende of sticks to tit the ferrules, which should always be shouldered on.

Black Fillings for Headstones.-The following is a recipe for a bright non-staining black for monumental work. Dissolve in a bottle by the aid of heat black sealing wax in methylated opirit, and keep the bottle near a fire for one day, shaking it at intervals of about one hour. This mixture will not crack when it gets hard. Thin it with methylated spirit and apply with a brueh. Thin it with methylated spirit and apply with a brush. To Hil lettering on monumental work, use equal parts asphaltum and guttapercha, dissolved in a tin can. Hot asphaltum used alone is too brittle, but the two together make a first-rate filler. To fill lettering to resemble lead, make up some Parian cement with water, stain it with lampblack and a dash of blue, fill in the letters when dry, and clean off the surface.

Lecipes for Aluminium Solders. - The difficulty in getting bolder to adhers to aluminium is cansed by a metallic film (probahly an oxide) which forme on the surfac of ths metal while heated, and which prevents ordinary soft solders alloying to form a grong joint. A fiux might be used to render the strong joint. A fiux might be used to rencer the operation, or the film might be removed by mechanical means, or a solder devised that would dissolve, or combine with the film on the suriace of the metal while both solder and aluminium were heated. The compositioo of a really reliable flux for solt soldering has not heen made public, consequently either of the two latter methods must he adopted: for working with a tinned copper bit the bolder should melt at a moderate temperature, and should contain only small proportions of hrittle metals, solders containing much brittle metal usunlly showing decreased malleability and ductility. Alloys of an easily fusible uature are recommended for soldering alaminitu by the following authorition. Frishmuth, of Philadelphia, 6 ys: tin 95 parts, and bismuth 5 parts; or tin 97 parts, and

Gauge for Inlaying Stringing in Cabinet Work.
crose the grain of the wood, cut two liues with a knife, and then rout out the wood with a emall chisel or with the cutter. The various lengths of atringing may then bs fitted into their channels. Where the stringing intersects at the corners it must bs mitred. Next take each length and put on the glue by running it against the glue brush over the glue pot. Press the stringing into the channel by the aid of the face or the back of the hammer. When the work has had time to dry, bey in ahout twenty-four hourr, the joh may be cleaned upand glasopapered.
Dyeing Leather for Gloves,-Leather is sometines dyed in the vat and sometimes by simply brushing over with the dye liquid. F'or instance, a leather may first be tanned and then transferred to a vat coutaining pine and elder barks to give it a tan or russet brown colour. Browns and yellows are obtained by damping the leather and brushing over it a decoction of saffron, annatto, a mixture of brazil wood dscoction of sairion, annatto, a mixture of brazil woon andiline dye, as picric acid, phosphing, Bismarck brown, or acid brown. Other suitable dyes are magenta, methyl violet. Russian green, brilliant green, methyleus blue, crysoidine, nigrosine, etc. Blaoks are usually obtained by brushing over with a decoction of galle aud, aiter drying, a solution of copperas or pyrolignite of iron. Alter dyeing the leather and drying, it should be rubbed. up with a waxed cloth to impart a dull polish. Many of the aniline dyes are beat fixed hy an after treatment with a decoction of nutgalls. Picric acid may also be used for fixing purposes, but it yields compound shades.
Black Stain for Wood.-To ohtain a dense black stain for wood, hoil together in an old iron pot 1 gal. of stroag vinegar, 2 lb . of extract ot logwood, $\frac{2}{t}$ lh. of green copperas, 2 oz. of China blue, and 2 oz. of crushed nutgalls; then add $\frac{1}{2} p \mathrm{t}$. of acetate ol irou, made hy stesping lusty nails or iron turnings in common vinegar. Apply liberinlly with a brush. The wood nust be periectly free from grease and glus, and should be hiunded as littie as possible.

Making Pressed or German Yeast. - Pressed or co-called German yeast is made in a similar way to ordluary brewer's jeast, but it is the yeast derived from the fermentation of a mash which is aftervards distilled for whiskey. The yeast is collected from the surface of the fermented liquid by a scraper; and is then put through a filter press which presses out the greater part of the water, leaving a stiff, pasty mass which is cut up into 7 lb ., 14 lb ., or 28 lb . lumps and sewn up in bags.

Taking off Bevels for Rafters.-An explanation of how bevels for rafters are taken off the drawing and put on the stuff to be cut is here given. Set out for the bevels as shown at Fig. 1; the bevel at A being for the vertical cut, aud that at B for the bevel to be applied at the edge of the rafter. The hevels can bs set from the drawing as shown at Fig.l. Fig: 2 shows the bevel B (Fig. 1) applied to the top edge of the lafter, and Fig. 3 shows bevel A (Fig. 1) applied to the side of it. This will perhaps be more clearly understood from the
place must be rubbed with a rag wet wlth cold water, otherwise a white mark will appear, which will not be easily removed. Strong muriatic acid, or spirit of salt, applied with a piece of rag, and afterwards well washed off with water, will remove stains from boards. To remove stains from silver or plated articles without injuring them, make a little chloride of lime in to a paste with water and ruh the stains until they disappear, and afterwards wash the articles with soap and water. Stains can be taken out of coloured tablecovers by dissolving a teaspoonful of oxalic acid in a teacupful of hot Fater, and rubbing the stained part well with the solution. To remove stains from white cloths, put a little powdered salt of lemon on the part affected, damp it, allow it to remain about five minutes, and wash it out with soap and water, wheu the stain will disappear.

Figine for Pile Driving, -The illustration shows the general arrangement of a small vile engine worked by hand power; larger ones are on the same prinoiple. The boiler and winch will depend upon the money available, but a vertical boiler with small winch engine attached will prohably be suitable. Oblique piles are driven by canting the pile-engine; the blow of course loses in efficiency according to the amount of

Taking off Bevels for Rafters.
isometric view given at Fig. 4, which shows the application of the bevels. The form of the cut (Fig.1) is the bevel for feet of rafters.

Brass-plating Solutions.-The following are brassing solutions. Water, 160 parts; copper cyanide, 2 parts; zinc cyanide, l part; and potassium cyanide, 15 parts. Or water, 250 parts ; copper sulphate, 1 part; zine sulphate, 8 parts; and potassium cyanide, 18 parts. Watt's solution is made by dissolving as much sheet brass as possible in warm dilute nitric acid, the fumes given off being poisonous. Next add this solution to water in the proportions of 2 oz . of brass per gallon of water, and add strong liquid ammonia until a deep blue colour results. Add strong eolution of potassium cyanide until a pale yellow colour is obtained. Filter this, and finally add water so that the proportion is 1 oz. of hrass to 1 gal. of the solution. This solution, which can be used hot or cold, shonld be kept some hours before use.
Removing Ink Stains fram varions Articles.-Ink stains may be removed from a mahogany table by tonching the part stained with a feather dipped in a mixture of a few drops of spirit of nitre and a teaspoontul of water. Immediately the ink stain disappears the
cant. : For moving the pile-engine about a joh on shore, it is usual to lay down a pair of rails and to prise the engine along them. For transportation by water, a harge is the best means, but if by road a lorry, lurrie, or low trolley is usual, the engine being carriod erect, if there are uo bridges to pass under; and being made fast hy guy ropes from the top to the angles of the lorry.
Working Leaves in Wrought Iron.-The process of cutting out and shapiug leaves in wrought iron is hriefly thus. The pattern of the leaf required is traced trom the drawing gummed on to a suitable piece of sheet iron, which for hammered work may be of the best quality Lowmoor, though Swedish iron is preferable. The outline ot the leaf is then carefully cut out with a steel chisel, after which the leaf is heated all over to a uniform temperature and hammered into the required shape on the beak iron of the anvil or the swage iron. As the parts of the leaf are shaped they may be cooled by dipping in water, or water may be poured on, leaving only the uushaped parts red hot. Hammers of various sizes and with different shaped ends will be required, and also flat-, square-, and round-nosed pincers. A very useful tool is a thick cast-metal block, on the suriface of which have been sunk'the shapes of the leaves that are required. Into these moulds the red-hot metal may be heaten and worked in to shave, after which the leaves may be re-heated and bent with the pincers or hammered with round- or oval-faced hammers, so as to give a different effect to each leaf.

Composition for Casting Ornaments in Rellef, A composition in which to cast a panel (eay) of blrds, modelled in low relief, nay conslst of 71 h . of glue, 31 b . of resin, 1t pt. of linseed oll, and about $2 \mathrm{p} p \mathrm{pt}$. of water. Steep the glue in water and melt in the usual way ; then melt the oil and resln separately, and pour into the glue. Next add well-powdered whiting till the mass is of the consistency of thick dough. Well knead the mixture till the whole is emooth and plastle. Press the composition into the mould, which should first oe well oiled. To extract the pressing from the mould, reverse the latter on a damp board, to which the comporition will adhere, and so enable the mould to be pulled off. This composition sets extremely hard, and may be glued to any panel desired. Another suitable composition consists of fine glue 3 parts, isinglass 1 part, dissolved in water till the mixture, when cold, is like jelly. Gently heat this and mix with fnely sifted sawdust till the whole is sufficiently thick to be workable. Press the composition into the mould, place a weighted hoard over it, and set before the fire to harden and dry.
Pressure on Retaining Wall.-The following is the method employed in computing the pressure exerted by earth on a retaining wall of any thickness, with the earth at a given angle of repose. The earth above the line of repose adheres to that below, and the angle of revose if only reached after a long period of exposure to the weather, so that there is no tendency for the whole mass to move at once. The bisection of the angle of repose with a vertical line gives
facing may he dlspensed with, the wet print being mersly squeegeed down on the chalked glass and treated as already describso. Embossing is done by means of a prese, ohtalnable of most photographle dealers. The raised portion ts then flled in with wadding, the print belng attached only at its edgee.
Applying Bromide Solution to Paper.-The method of applylng the bromide solution suggested by Captsin Abney is an excelleut one, and coneists of spraying it wlth a sort of wash bottle made as follows. Fit a cork to a l-in. bore teat tube or a small wide-mouth bottle. Tako a length of glase tubing, and separate it into two portions about 3in. longer than the extreme depth of the bottle by gently heating in a spirit or gas fame, keeping it revolving all the time until the glass softens, when it may be pulled steadily apart as shown in Fig. l. If the tube is wetted or breathed on, it may crack. Warm again in the same manner, and bend to the shape shown in Fig. 2. Cut away the closed portion Prom the other plece by scratching with n file and snapping off. Then bend as shown in Fig. 3, melt the end A to soften off the edges, and, whilst soit, squeeze fatter with the pliers, pressing very gently. Now bore two holes straight and parallel through the cork, a little smaller than the tubing; a rat-tail file can be used if a borer is not avatlable. Insert the tubes in the cork, ind the cork in the test tube. Strip off the extreme end or tip B, which will give a tiny hole. It will then present the appearance shown in Fig. 4. The part A should be put in the lips, and a gentle current of air forced through, when a fine spray

the line of rupture, and the wedge of earth between the line of rupture and the back of the wall is considered to be the amount pressing on the wall, or where fracture would originate if the wall ylelded. Let A B O be this wedge of earth, ΔB a vertical line at the back of the wedge of earth, $A B$ a vertical line at the back of the
wall, Δ. C the line of rupture and $\mathrm{c} g$ the centre of gravity Wall, A c the line of rupture, and co the centre of gravity of gravity touching the line of rupture and equal in length on any given scale to the weight of the wedge of earth. At its base draw the horizontal line marked T, which will be at one-third the height of the wall, and cut it off to the length shown by a llne from the upper extremity of W parallel to the slope of the line of rupture. Then T will equal the thrust on the wall by the earth at the back.
Use for Broken Band-8aws, - An advantageous method of disposing of broken band-saws is here suggested. Place the broken saws in a fire, and well heat them. When cold, the pieces will be very soft, and will be much better than hoop-iron for binding shafts in be much better than hoop-iron for binding shaits

Enamelling and Embossing Photographs,-To produce the permanent enamel seen on photographs, thoroughly cleau a sheet of plate-glass nnd dust over it a little French chalk, every trace of which should afterwards be removed by careful polishing. Next coat the glass with enamel collodlon and allow it to set. The wet print is then laid face down on the collodion surface and well squeegeed to remove air bubbles, and afterwards set up in a warm room to dry. When nearly dry, a piece of waterproof backing paper is fastened over the hack of the print, using stiff starch paste. When thoroughly dry, a knife elipped round the edge Whould he sufficlent to cause the print to leave the glass readily. The collodion fllm is used for the purpose of supplying a glaze to matt or albumenised papery; but if P.O.P. (which is already glazed) is used, the collodion
will result. For coating the paper a trough will be necegsery; or a dish may be used, set at an angle as shown in Fig. 5, and supported by a block 0 . On a glass rod or a length of glass tubing, roll some lengths of chemically pure paper to about in in. thick, and glus down. This will make a roller about $1 \neq i n$. thick, the thiek part to be shorter than the dish. Now wind upon it as tightly ss possible, coated side outwards, some Rives or Saxe psper of suitable width, and fasten with a rubber bsnd at the extreme edges. Construct a tank of metal (see X, Fig. 5), the pattern of which is shown in Flg. 6, and bend on the dotted lines and solder together. The two ends of the tubing are now placed through the cuts $Z \mathrm{z}$, bringing the tubing are now placed through the cuts z \&, bringing the paper with below the sides of the dirh. Now fill the lower into the porcelain dish, which should be free from erscks. Unwind the paper slowly, passing it through the smulsion. Withdrawing the paper rapidly gives a thicker coating. The paper as coated should be drawn over laths placed above the tank, and allowed to dry spontaneously in a well-ventilated room free from dust.

Chimney-cleaning Materials.-'The recipes for the compositions which, when placed on the fire, causs the soot to he removed from the chimney, are trads secrets. By one plan the fre is got into a bright condition, then a very thin layer of small coal is put on. On top of this is laid a whole sttck of sulphur' ; this measures about 7 in . long by litin. dlameter, and is perhaps better known as brimstone in the stick form. The stove is then closed up and the damper opened full. This method is of use with closed stoves only; it also answers toextinguish u chimney fire. With open grates some form of blower must be employ'ed to make the draught aufficiently strong, but this is a necessary condition fliso wlth the packets of materials before reperred to. The efficacy of the sulphur is saild to be improved by placing with it one or two raw onlous on the fire.

Removing Silver Staing from a Negative.-Rusty brown stains on photographic negatives are caused by damp, and are known as sllver stains. If the stains are old, it is, ab a rule, impossible to remove them, but either of the following methods of treatment will make them fainter. Soak the negative and immerse for a short time in sulphocyanide of ammonium 1 dr. , water 1 oz ., and transfer to nitric acid 1 dr ., water 1 oz ., without any washing. Or try the following. Thiocarbamid 6 gr., citric acid 10 gr., chrome alum $20 \mathrm{gr} .$, water 20 z . Allow the negative to soak in this solution, and the staine will probably be reduced. In either case, the removal of the stains will be greatly assisted by a little gentle friction with a tult of wool.
Artificially Seasoning Small Lumber.-A very effective and simple apparatus for artificially geasoning small and short lumber can be put up wherever a small quantity of steam-from the boiler or exhanst of a steam engine, say-is available for use. The naterial to be treated is placed, preferably on end, in a large steam-box or barrel; and allowed to become thoroughly saturated with the steam. This will take from two to ten hours; according to the kind and thickness of tha wood. No pressure is required, but the top of the barrel should be closed with a lid. The apparatus should not be kept inside a building on account of the eacaping steam. A false hottom of wire netting or something similar is placed across the barrel at F B (see eketch) to keep the materlal being treated away from the bottom proper

Apparatus for Artificially Seasoning Small Lumber.
and allow the steam to become evenly distributed. After it is taken out the wood is piled under cover in the ordinary manner and allowed to dry; this, in small thiu material, usually takes three weeks or a month. The drying time might be considerably shortened by utilising thespace above the boiler as a drying loft. A temperature of l 20° to $180^{\circ} \mathrm{F}$. (obtainable above most boilers) would get the drying over in a day or two, but the material should not be transferred to such a position direct from the steambox ; let it have a few days' ordinar. drying first. The apparatus is quite suitable for steam-bending purposes, butfortreating rimsand sticks for lawn-tennis and lacrosse rackets a long horizontal box, as used by boatbuilders, should be made, having as small a capacity as possible consistent with the work it will be required to do. The steam pipe should be introduced at about the middle of its length, and the material inserted from the end. If no boiler from which steam could be drawn is accessible, the cheaper plan would be to forward a parcel to a drying-kiln proprietor and have the drying done by contract.

Pneumatic Key Actions for Pipe Organs. - In amall organs the closer the connection between the player's fingers and the pipe valves the better, becnuse the staccato and legato touch can be more easily made to respond exactly to the player's fingers; he cau ir he wishes open and close the valves gradually, but with pneumatic sactious the pallet is always made to open and close as rapidly as posaible. A pneumatic action opens a small bellows instead of the pallet leading to the pipes. The movable part of the bellows is made to work theaction, which remains nearly the same as before.

A tubular pneumatle action has a bellows at each enu of a connecting tube; compressing one bellows dlstends the other, which becomes the motive power to open the pipe pallets. Trackers, squares, rollers, etc., are thus readered unvecessary. In electric action an electromaguet is generally used to open the valve nesrest the finger or to compress the bellows in the tubular pneufinger or to compress the bellows in the tubular paeucontact and break it. One way in which this is done is by a U-shaped wire staple in the underside of the key, whlch, when depressed, enters two small cells of mercury into which the ands of the connecting wires are lad. This action is not genarally used apart from the pneumatic action, because if independent tbe electromagnets would require to he inside the wind-chest, and this would be incouvenient, when adjustment became necesssry.
Determining the Sizes of Gange Boxes for Compo. -The following instructions are for determining the areas of square gauge boxes of four different sizes. No. 1 , to measure $1 y d$. of sand, being given as 3 ft . square and 3 ft . deep; No. 2, to measure $\frac{1}{3}$ yd. of sand or cement; No. 3, to measure $\frac{y}{}$ d. of cement and No. 4, to measure $\$ \overline{\mathrm{~d}}$. of cement. It is supposed that all the boxes are to be of the same depth, and so it is only necessary to find the lengths of the respective sides. To do thie, find the area in each case, and the square root will give the length required. The area of

Determining the Sizes of Gauge Boxes for Compo.
the first box being 9 ft ., the area of the $\frac{1}{2-7 d}$. box will be 4.5 ft ., the area of the $\frac{1}{3}$-rd. box will be 3 ft ., and the area of the $t-y d$. box will be 24 ft . ; therefore, extracting the square root in each case gives $1 / 4 \cdot 5=2 \cdot 14$ or practically 2 ft . $1 \frac{1}{4}$ in. ; $\sqrt{3}=17$ or practically 1 ft . $8 \frac{7}{8}$ in. ; $\sqrt{2} 2 \overline{25}=$ 1.5 , or practically 1 ft .6 in., which gives the length of the sides in each case. To determine this by geometry, let A B C Drepresent the area of the larger box, drawn to scale. Now, on the side $B C$ construct a semicircle, and bisect $B C$ in E, and draw E F perpendicular to $B C$; then joining B Fives the side of a square half the area of the square A BCD. Next divide OD into three equal parts, as shown, and on it construct a femicircle and draw II K perpendicular to CD; then joining $D K$ and $C K$ gires sides of squares one-third the area and two thirds the area of the larger square. The construction of the quarter srea of ABCD is simiarly shown at $O L$.

Diameter of Rivets for Boilers.-A list of diameters of rivets to be used with boiler plates of given thickness is bere presented. The diameter of the rivet may equal 1.2 times the square root of the thickness of the riveted plate. On this basis the following is a list such as is

 $\frac{1}{8}$ in. diameter; $\frac{5}{8}$-in. plate, $\frac{10}{10}$ in. diameter ; $\frac{2}{8}$-in. plate, $1 \frac{1}{1}$ in. diameter; $\frac{7}{6}$-in, plate, $1 \frac{1}{3}$ in. diameter; and 1 -in. plate, $1 \ddagger$ in. dismeter. The following has been given as the practice of Lancashire boilermakers. For $\frac{7}{T}$-in. plates, $\frac{s}{4}$ in. diarmeter ; for ${ }^{3}$-in. and ${ }^{\frac{1}{1}-i n}$. plates, $\frac{1}{1} \frac{7}{n}$ in. diameter; for $\frac{1}{1}$-in. and $\frac{6}{8}$-in. plates, $\frac{7}{6}$ in. diameter; and for $\frac{3}{8}$-in. and $1-\mathrm{in}$. plates, $\frac{1}{5} \frac{5}{6}$ in. diameter.

Relaxing Bird Skins. - For relaxing bird sking, line the inside of a wooden box with a 1 in. layer of plaster-of-Paris, well mixed. When dry, the box is ready for use. Pour vater inside sufficient to eaturate the plaster, and, after turning out the surplus water, place the skins inside. Cover them with a damp cloth and close the lid, which should fit well. Now place the box in a damp shady place (euch as a cellar) until the skins are relaxed; this will be known by the feet, wings, and tail being soft enough to opread out with gentle handling. Another method is to half fill a box with silver sand and well damp it. Wrap each skin in a piece of rag and cover the whole with more damped sand. The rag will keep the feathers from actual contact with the sand, but will allow the moisture to penetrate. The average time for amall birds up to the size of a thrush will be about twenty-four houre; for grouse size, about two days; for heron size, three days; for eagle aize, four daye. When the lege will boud a little, work them about till they bend easily.
Scrateh Plane for Working Beads and Mould-Ings.-Fig. l is a perspective view of a acratch plane for working beads and small mouldinge, and Fig. 2 is a

日o. Should any gediment be thrown down, indicating the preseuce ol impurities, the bath should be diecarded. Thoroughly wash the printe, which must not be in an acid condition. It is advisable to pase them through a 5-per-cent. bolution of carbonate of coda (loz, of washling日oda in 20 oz. of water), and agaln waeh before toning It is difficult to tell when the prints are correctly toned until experience is gained, but they ehould not be tened louger than five minutes in winter and rather less in summer. When toned, place in a 21 -per-cent. solution of common salt, which stope the toning. Thoroughly waeh and fix for twenty minutes in hypo 2 oz., water 1 pt. or a and fix for twenty minutes in hypo 2 oz, water 1 pt. or a the operatione the printe should be kept well separated, hence it io advieable to tone only a few at a time and to use two diehes of hypo and traneler from one to the other. The same plan should be adopted in washing, if unprovided with a washing tank. The above is epecially recommended by the Britannia Co. for their Ilford printing paper.
Sail Plan for Model Yacht.-Accompanying this sail plan is a scale in feet and inches for a 10 -ton model yacht 59 in .10 ng over all, water-lipe $40 \mathrm{in} .$, beam $7 \frac{1}{3} \mathrm{in}$. depth 12 in., with a $26-1 \mathrm{~b}$. lead keel, and from the plan ail measurements required can be taken. The foresail

Scratch Plane for Werking Mouldinge, etc.
view of it upside down. For the steck, a piece of birch or beech ahout 10 in . long is used, and a saw kerf A (Figs. 1 and 2) is cut nearly the whole length ; the cutter B , op sheet or broken saw eteel, is placed in this slot and kept secure by the screws c. Fig. 3 showe the cutter shaped for making a couple of beads D (Fig. 1). The cutter may be made to the desired shape with a file, the edge of the cutter being kept flat like a scraper. It is then finished with an oiletone slip of the reverse shape-that is, round. In working, the scratch is moved forward or backward, and is held by the right hand at the right end, and by the left hand at the left end of the job, the atock heing kept well againgt the work. Hoving ecratched the mouldinge, next clean them up with sandpaper, wrapped about a piece of pine, aay 3 in . long, 2 in . Wide, and $\frac{1}{4}$. thick, the edge being the reverse ghape to the bead or hollow. Fig. 4 shows a cutter for another pattern of beads.
How to Make a Platinum Toning Bath.-When using a chloro-platinite of potassium toning bath with Ilford P.O.P., print acarcely so far as for treatmeut with ordinary gold and sulphocyanide bath. Dissolve lagr. of potiaseium chloro-platinite in 15 dr . of distilled water, label this "Stock platinum solution, 1 gritin lin 1 dram." Ae it is liable to change-the platiunm being precipltated-if exposed to light, it should be kept iv it dull light or preferably, in the dark room. For tolifug one sheet of paper, make up the following : Dissolve 50 gr . of chloride of Bodium (common ealt) in 10 oz. of distilled water and add 100 gr . of alum, and finally 2 dr . 2 gr .) of stock platinnm solution. The bath is ready for immediate use, but does not keep eatiafactorily more than a day or
ohould have a light boom laced to ite foot. Rig lightly, and with no unnecessary gear.
Removing Dente from Brass Musical Instruments. -To remove dente, with at blowpipe or Boldering bit carefully eolder in the hollow a suitable braes plug. When cold, take hold of the plug and pull the dent carefully out. Then unsolder the plug, and wipe off the melted solder with cotton waste or rag. With very fine emery cloth remove every trace of solder. To remove dirt, etc., use turpentine applied with a rag; afterwarde, rottenstone and oil, or tripoli and oil. Finish off with list and dry powdered lime.
Asphalt for Damp-proof Course.-Agphalt for a damp-proof course may be prepared by boiling, for a few minutes only, coal-tar (about 24 gal.) and pitch (1 cwt .) in an iron boiler, thinning with 2 gal. of creocote oil. Brush the footinge clean, sprinkle a little eand on, and with a trowel make a little ridge of mortar along each edge of the brickwork to prevent the melted tar and pitch rumning off. Then pour on while hot from a ladle or a bucket.
Particulars of Vulcanite,-Vulcanite is made by heating indiarubber with about half ite weight of sulphur, and ie coloured by incorporating with it mineral pigments-lampblack for black, antimony aulphide or vermilion for red, zine white for white, ete. In making plates on which artificial teeth are fixed, the vulcanite, while hot, is pressed to shape in moulds, the teeth being previourly fixed in the moulde in the positions they are to oceupy.

Converting Boat's Sall into Waterproof Cover for Boat.-Presuming that a can vas sail is to be turned into a Boat,-Presmming that a canvas sall is to be turned into a cover, fore and aft resting on the hreast hook forward, and the stern aft. The cover must then be made, if possible, in such a way that the seams will be athwartships, i.e. at right anglee with the ridge over which it will be stretched, and secured by lacing through eyelet holes worked (or clinched, if metal) in every seam through the double part. For waterproofing use ordinary paint containing ochre, or one of the earth pigments in preference. Lampblack is also good, but does not refiect the sun's rays as do lighter colours. For the first coat use equal parts of boiled and raw oil and a little turps, and allow plenty of time to dry; omit rav oil in the last coat, and omit the pigment in the first. If it is not possible to make the cover with seams athwart, let them pessible to make the cover with seams athwart, let them be fore and s.ft

Staining Kid Gloves and Shoes Brown.-For a light brown stain, use Bismarek brown or aunatto; a light brown stain, use Bismarck brown or aunatto;
for a dark brown, use acid brown. Make a strong for a dark brown, use acid brown. Make a strong to make them penetrate the leather better, and brush on. Gloves should be fixed on a wooden hand and dried on it. Boots that have been polished will not take the stain; they should firet be thoroughly cleaned with turpentine.

Cage for Starling or Song Thrush. - The cage ahould be 2 ft . long, 18 in . high, and 11 in . wide, and provided with a false bottom covered with zinc; water and the scrubbing brush can then be nsed at cleaning time. There should always be plenty of sand on the bot'som. In the accompanying sketch, the ends of the cage are of wire; at one end a food box or hopper

Cage for Starling or Thrush.
is placed, and at the other end is a similar box containing the drinking vessel. These boxes should be made partly of glass, so that their contents can be seen without lirting them down. The door is in front. The position of the three perches is also shown. If the ends are of wood, both food and water vessels would be placed in front, one on each gide of the door. This form of cage is better for keeping away draughts. In either case let the top project well over the ends and sides, say abeut l $\frac{1}{2}$ in. Give three coats of oil paint outside, and limewash the inside.
Brewing Ale.-If it is required to brew about 9 gal. of ale, take 401 b . of malt aud 10 gal . of water and raise nearly to the boil in a copper; alter about an hour, run through a fine sieve into a large bowl. At the same time boil litlb. of hope in about $\frac{1}{2}$ gal. of water in an enamelled or earthen ware pan for an hour, strain, and add to the malt infusion. Allow the liquid to cool down until it is hardly warm (i.e. to 70° F.), then take out about a quart of the liquid and stir it with about a pint of fresh brewer's yeast ; add tue mixture to the liquid in the bowl, stir well, cover, and allew to stand for twenty-four hours; then strain through a very fine hail-sieve, to remove the yeast, and bottle up, leaving it for a week or two to brighten and become brisk. Salt may be added after boiling, say $\frac{2}{2}$ oz. to 1 oz . Sugar is not needed unless very strong ale is required, and no finings are necessary unless the materials are bad or the brewing carelessly done.
Dyeing Sheepskins. - The following are instructions on dyeing sheepskins black, grey, and brown, After the skins are dressed and softened they ghould be placed in the hot dye, wool downwards, and s.llowed to remain for an hour or two. They fhould then be washed in cold water, and laung up to dry till the next day. They should then be put into the hot fixing solution, allowed to remain an hour or two, washed in cold water, and hung up to dry. Asit is only necessary to immerse the wool in the solutions. some strips of wood can be placed along the bath containing
the dye to prevent the skln sinking. Take great care that the solutions are hot when used, and, during the drying, frequently shake the okins and rub them to pre veut them drying hard. For a black, boil 4 lb. of copveras, 2 oz . of sulphate of copper, and llb. of cream of tartar in 1 geal. of water. This is the fixing bath. The dye is made by boiling 5 lb . of logwood in 1 gal. of water. For a grey dye, boil ${ }^{3} 1 \mathrm{lb}$. of logwood in l gal. of water; for the fixing bath, boil 2 oz. of copperas in 1 gal. of water' To make a brown dye, boil 1 lb . of catechu in 1 gal. of water; and for the fixing bath, boil $\frac{1}{2} l b$. of sulphate of copper in 1 gal. of water. These proportions may be varied according to the tint desired. The operations may be repeated if the colour is not intense enough. Experiment first upon a piece of skin.
Distilling Lavender Water.-In distilling lavender Fater, a copper or glass still and a condenser will be required. The lavender flowers should be placed in the still, covered with water, and then hoated; the water dictilling over will contain the essential oil of lavender, and may be used as lavender water. The water may be cleared by shaking it with a little fuller'searth; allowing the lafter to settle out, and then decanting from the deposit.

A Cheap Photographic Shutter,-The following instructions are on making a cheap photograuhic shutter for a quarter-plate stand camera. in a piece of wood. (A, Fig. 2) cut a hole B to fit the lens. This may be made to tit directly on to the lens tube with the hood removed. Cut from thin. perfectly flat metal a piece of the shape and size of Fig. 1, and make in it small holes C, D, E, and a large opening F. Cut and turn up a piece at G to form a hook for the elastic band H . Fasten this to A by a pin through E , and

A Cheap Photographic Shutter.
place a stop-a triangular piece of wood-at I and through it a hook of wile K. Now form the catch shown in section in Fig. 3, and fasten firmly with a staple at L. 'lhe lower part acts as a spring and keeps the point M (Fig. 3) tight in the hole D. To set the shutter, pall it round till the point M catches in D, as shown in Fig. 2. To release the shutter, press the spring catch. If the opring is lightly pressed, the point m will be arreeted by the hole C, and the shutter will stop half-way for a time exposure. For different exposures, di-ferent bauds must be used to vary the strength of the pull.
Softening a Goat's Skin.-An Hungarian goat's skin which has been cleaned, but has dried very stiff, may be softened by the following method. Well damp the skin on the flesh side and, when thoroughly soft, stretch it in all directions; then hang it up to dry in the shade. After an hour or so, take the skin down, give it a good shaking, and well rub it (similarly to washing clothes), then haug it up again, but by a different part to which it was previously hanged. After another hour or so, repeat the rubbing, shaking, etc.; then hang it up again. The more thoroughly the rubbing and shaking are done the softer the akin will be. When nearly dry, hand-rub the skin till dry, and it should be as soft as chamois leather.
Making Liquid Gum.-Liquid gum is often put up for selling in peuny bottles. For this purpose gum arabic, costing sixpence and upwards per pound, is suitable. Gum dextrine may be used, but a large quantity is required to yield a good gum solution, and, moreover, it is usually dark coloured. A good gum may be made by dissolving 11b. of gim in 2 lb . of water; a poor gum by using 4lb. of water. The former would yield 460 z . (or forty-six penny bottles), and the latter $760 z$. (or seventy-six penny bottles), allowing for waste. The addition of a few drops of carbolic acid prevents the gum becoming mouldy. The gum should be covered with the water, and stirred till dissolved, no heat being required.

Making Flat-bottomed Punt.-To bend the sides to make them mest the atem- and stern-poats of a flatbottomed punt, 17 ft . long, and supposing the sides to be 18 in. deep, boards of that width will sutfice, to be 18 in. deep, boards of that width will autfice, as the deaired aheer and rocker whil ha gained by the are mors or lese inclined. Having ghaped the two sides allke, mark acourately the centro of each and drew a line through thess and aquare with the edge. To this line screw the mould, keeping the edges of the boarde quite level. Get four piecea of wood 2 ft . long and about 2 in . by 2 in . ; use two of these a.t each end, placing them outside the boards vertically ; lash the projecting them outside the boards vertica, across the pronecting euda of these buttens together acrosi the punt. By
tightening at top or bottom, the desired shaps can bs gained. A amall tackle is handier than lashing, but in bither cass it is well to keep a loop of stout rope round the ends during the process (lf at either end the boards are to be drawn up close), to prevent personal accident, should the battens slip off or tackle or lashing break, etc.
shed for Storing Cyclea.-Fig. 1 ahowa the plan of a shed for atoring about twenty cyclea, Fig. 2 is a croas section, and Fig. 3 is a portion of the front. A aimple

almost as long as before. If plenty of aoda gulphite is used in the developar (that la, mixed with the pyro and not with the goda, as often recommended), there should be no fear of yellow stain.

Partioulare of Potaeh.-There ie, properly apeaking. only one kind of potash, and thia la the oxide of the metal potassium. The name potash was first applisd to the ashss formed by burning plants, this being done in pots; after purification by disaolving in water filterlng, and evaporating to drynees, the product ia known as pearlash, and is an impure kind of carbonats of potash. American potash is really i. pearlash, and is used with vandyke brown for brown atains. The name potarh is ofteu applied to caustic potash. Thers are several aalts of potash used for ataining purposes; blchromate of- potash is uaed for ataining mahogany durker, chromate of potash yields a yellow mahogany durker, chromate of potash yields a yellow
atain, permanganate of potash a brown atain, and ferrocyanide of potagh (yellow prussiate) with an iron salt yielde a blue stain.

Caloulating Strength of Strute.-Gordon's formula. is the best in a general way for calculating the area of atruts or pillars in Iron or wood: $f=$ intensity of presaure to crush ghort column of the material in tons per squire inch; $a=$ conatant deduced from experiments on actual breaking weight of long experiments on actual breaking weight of long $l=$ lengti of pillar or atrut ln inchea; $P=$ total pressure on pillar in tons; $p=$ pressure per unit of gectional area tons per equare inch; $S=$ total sectional area in aquare inchea; $p=\frac{f}{1+a\left(\frac{l}{l}\right)^{2}}$, or $P=\frac{f s}{1+a\left(\frac{l}{h}\right)^{2}}$. Factor of
asfety, gay, from 6 for ahort pllare to 10 for long pillare; $f=36$ for cast-iron, 16 wrought-iron, 26 mild ateel, $2 \cdot \overline{6}$ fir timber, 3 oak timber; $a=$ for timber $\frac{1}{\pi_{k}}$ for square or rectangular gectiona, rif for circular aections merely

Shed for Storing Cycles.
urrangement for keeping the cyclea in position by means of two inclined pieces of wood is ahown at 0 (Fig. 2). An alternate arrangement for hanging the cyclea on two hooks is also ahown. To support the hooks, two pieces of wood about 3 in . by 3 in ., going the whole length, must be fixed to the raftere, as ghown at A and B (Fig. 2). These would require supporting by two pairs of uprights for the length of the ghed, otherwise the weight of the cycles would aoon make the roof aag. Wood 3 in . by 3 in. will be found most aerriceable for the general framing, and $\frac{1}{4}$-in. matchboardiug for the sides and ends. The roof may be buarded and felted, or covered with corrugated iron.

Printing Qualities of Photographic Negative.Rapidity of printing is governed firgt by the density of deposit on the piate; secondly, by the colour of the deposit. Thia difference in the printing rapidity of negatives exercises a great influeuce on the toue or contrast of a finiahed print. A yellow negative gives a much harder result, whilat it is impossible to get a rich purple tone from a thin bluigh nesative. A bluiah uegative, or fresdom from stain, ghould be aimed at. Yellow stain is due to ths oxidation of the pyro, and may be removed immadiately after fixing by plncing for a few minutes in a b-per-cant. solution of bydrochloric meid; afterwards, as this has a tendency to cause flilling, passing through the alum buth. This treatment is, however, useless after the negative has once dried. In this ouge thiocarbamid may be tried, or the negative may be intengified with mercury and soda aulphite. The negatlve will, however, with the latter treatinent take
flattened at ends take $\frac{3}{3} a$ in the formula, when roundert one end and fixed the other take tita, and rounded buth euda $\ddagger a ; a=$ for wrought-iron or mild ateel, son for solid

 rolled joist aection where $\delta=$ sum of tlange areas and b $=$ area of web; when rounded or jointed at ends take $\ddagger a$; $a=$ for cast-iron, ${ }^{\frac{1}{1}}$ for round hollow pillins euda that
 will be found of service to pot an approximate saction first, and then to calculate by the formula to ascertain if it is strong enough. For this purpose a fir post may be considered capable of augtaining safely 4 owt. per square inch, or failing with 2 tons per square inch, and an oak post 6 cwt . and 3 tons respactively. A round castin on hollow column with es thickness of to dianeter may iron hollow column with of thickness of ${ }^{2}$ dianneter may be eafely londe 1 to 5 tous per $8 q u a r e$ inoh up to 15 to $2 n$,
diamsters long, 4 tons from 10 to 15,3 tons from 15 trom 2 tons from 20 to 25 , $1 \frac{1}{2}$ tone from 25 to 30 , and $\frac{4}{4}$ toh from 30 to $\begin{aligned} & \text { ̄. } \\ & \text {. }\end{aligned}$
Mixing Oxide Paint for Briakwork-Red oxide for painting on outgida brick walla should be mixed with raw llngeed oil and n little patent driers: 888 that the walle are thoroughly dry before paintligg them. Boiled linseed oil should not be used, as it tends to become brittle in tims, and the moisture in the bricks would make it peel off. It would perhaps be best first to cover the brlckwork wlth raw linseed oll only, ao as to get a grip and to atop the suction, then finieh with the oxide paint.

Proventing Lamp Wicks from Charring. Stemp's patent wick is said to be practically fireproaf, and not to char. To produce this wick, to every gallon of water add 214 oz . of boric acid and 3.22 oz, of strong liquor ammonia. Dip the new wick in the mixture, and dry. A little dye added will enahle the dipped wicks to be distinguished from the undipped. By another method a piece of carbon is fixed on the top of the wick. The cotton wiek supplies the ail to thecarhon, and the latter is lighted as usual; and, obviously, cannot char. File a small piece of carbon to flt the wick tube of a flat-wick burner with as little shake as possible; attach a piece of olean cotton wick to the carbon, and try the effect.

Centre for Clrcle-on-circle Arch.-A circle-on-circle arch is false construction, and should only be adopted in exceptional cases. When it is a case of necessity, a semicircular arch of 3 ft . spau may be turned in a 7 -in. stons wall curved to a radius of 4 ft . 2 in . A
may be prepared by dissolving 6 oz , of washing soda in 30 oz . of water. For lise, take loz, each of No. 1 and No. 2 and add 3 oz. of water. This is sufficient for a whole plate. When using the alum solution, fill the dish to within about $\frac{1}{2}$. of the brim; this may be used till it becomes discoloured (suy for five or six plates). The same quantity of fixing solution will fix three or four plates. It is not advisable to use it for a greater number, because the hypo becomes charged wIth silver and does not do its work so rnpidly nor so well.
An Easily Made Kitchen Table.-The kitchen table here illustrated is made without mortising. It has detachable legs and a solid top, the latter being made detachable legs and a solid top, the latter being made into 4 ft . lengths, which, when tongued, pjaned, and glued together, make a surface $4 \mathrm{ft}^{2}$ by 3 ft . 6 in . (see Fig. 1). A floor board, 14 ft . by 6 in. wide and 1 in . thick, will be required for the framework underneath. The board is cut lengthwise into two pieces 4 in. and

template ABCD (Fig. 1) should be set ont on the plan for the base of the centre, and the outside BC being a semicircle the framing may be set out as in Fig. 2, being flat on face like an ordinary centre; allowance io made for the thickness of the laggings, which are 3 ft . over all. The back A D will be the same haignt (18in.), but only 2 ft. 6 itin. wide, and therefore elliptical, (18 in.), but only 2 ft. 6 in. wide, and therefore elliptical, a flewing surface upon which the voussoirs or bricks may be laid. The supports for the centre would be the usual ones, the overhang not heing sufficient to necessitate any exceptional course being adopted.

Keaping Qualitiea of Photographic Developer.Pyrogallic acid and soda carbonate solutions will not keep many minutes; decomposition sets in directly the two are brought together. The pyro solution (No. 1) prepared with nitric acid and a small quantity of water will keep good for several months, but the acid should be added first. Sulphite of soda may also be added to the pyro as a preservative, as follows. Take 8 oz . of sulphite of soda (a fresh sample should be used, as after slight exposure to air it becomes sulphate and is useless) and dissolve in 30 oz . of hot water to which has been added twenty drops of nitric acid. The soda solution (No. 2)

An Easily Made Kitchen Table.
2 in . wide, for the sides B and the cross-pieces, or stays, C (Figs. l and 2). The 4-in. picce is cut into two pieces 3 ft . $6 \frac{1}{2} \mathrm{in}$. long, four pieces $1 \mathrm{l} \frac{\mathrm{in}}{} \mathrm{in}$. long, and tour pieces 8 in . long. The 2 -in. piece is cut into two pieces $3 t \mathrm{in}$. long, and two pieces $41_{4}^{\frac{3}{4} \mathrm{in} \text {. long. A set of }}$ th-in. table legs, four table screws, 4 in . iong, fitted with washer and screw-plate, two dozen itin. and one and a half-dozen 2 -in. screws, are all that are necessary in addition to the two drawers, which can be made from a second-hand hox, to fit the spaces left in the Irame, to complete the table. To put t.ae tahle togethar, first rebate together the two side pieces B and one end of each of the four end pieces B^{\prime}, as shown in Figs. 1 and 2. Then the other ends of the pieces B'are cut as shown in Fig. 2, to fit the ends of the long cross-pieces C, which form the bearings for the runners of the drawers; 2 in. of the projecting half is cut off to allow for the drawers. Then fix together by glue and screws, and place the two long cross-pieces in position, and insert the two short cross-pieces in the sides to the extent of about $\frac{1}{2}$ in., as shown in Fig. 3. The legs E, which are 2 in. square, are secured by means of four table screws and the are secured by means of fieces d, as shown in Fig. T. The drawers are 14 in. long by $11 \frac{1}{t}$ in. wide, and run on pieces of wood 14 in . loug and lin. square.

Marbling a Stone Mantelpiece. -Wish the mantel with a mixture of lime water and common washing soda, to remove any trace of grease or smoke. Swill off with clean water. For white marble, apply one or two coats of quick-drying white paiut. The dark veins may be put in with sticks of willow charcoal, or with thin black paint anit a camel-hair brush, the ol with thin black paint and a camel-hair brush, the over while still wet with a badger softener or clean soft dusting brush. An alternative plan is to apply over the veinings a very thin coat of white paint, having just sufficient body to make the veins appear underneath. A vory pale varnish must be used. For hlack marble, quick-drying black must be applied for the groundwork; the veins are of a green and whitish-green tone: and the colours are blended together by passing the badger softener across. Ordiuary oak varnish will do for the latter class of work. For better-class work, the colours should be worked up thin and scumbled on with a piece of sponge; spotting being done by taking up plenty of colour in a brush and tapping it against a stick; the colours should be nicely blended and all harshness avoided.

Making a Portable Book-rest. - The book-rest here illustrated can be set at any angle desired; when closed, it resembles a bottomless box, except for the ledge E . The following pieces of woed will be required. I'wo pieces (B, B), 12 in. by 2 in . by $\frac{1}{8} \mathrm{in}$.; three pieces (C, C, and D), 9 in. by 2 in. by $\frac{3}{8}$ in. ; one piece (E), 121 in. by 2 in. by ${ }^{\text {in in }}$; one piece, for the support (shown dotted), 7 in . by 2 in , by $\frac{3}{2}$ in.; and one piece (A), $12 \frac{1}{2} \mathrm{in}$. by 9^{2} in, by sin.; these are all finished sizes. A brass
soil pipes the back sides are tinned with a copper bit, and also corresponding parcs on the pipes. The astragals are then tolded about three parts round the pips, and 9 in. apart, and "sweated" on by means of a blowpipe. If this is neatly done, no solder will be visible. The tacks, if plain, should be cut out of 8 jb . sheet lead, about 9 in. square, the edges trued and trimmed, one end soiled 3 in . and shaved lin. wide ; corresponding spaces for a pair of tacks, prepared on the soil pipe, between the astragale and soldered seams, are then wiped or fleated with metal and a plumber's iron. Cast-lead tacke have an advantage, as the nail holes are strengthened by having an extra thickness of the matal round them.

Removing old Paint from Venetian Blind Laths, Whis is a cheap method of removing old paint from Venetian blind laths. Place 1 stone of well-burnt lime in a large loncket and slake with hot water; add 7 lb . of common soda, and stir the whole together until the soda is dissolved. Lay this solvent over the laths about i in. thick, and allow it to remain about two hours; the paint can then be easily scraped off. Thoroughly wash of with cleau water and dry. Coat the lathe with vinegar before re-paiuting.

Determining Centre of Circular Arc.-The accompanying illustration shows one method of finding the contre of a circular are where it is possible to strike arcs for intersections on one side only. A, B, and C are any points on the curve. Then with any radius in the compass, and with centres at A and C, striks arcs that intersect at D. Similarly, with another radius,

book and screw eye, three pairs of lin. hiuges, and a tew round-headed brass scress will also be required. First cut the pieces B and C to the shape shown (cutting pieces out of B to receive the rack D), and dovetail together. The rack D must be notched out ins shown to receive the end of the support, which is hinged abont in. from the top of A. The hook-rest (A) is hinged to the front piece B. The ornamental ledge is secured to the front of a by means of glue and screns.
Welght and Covering Capacity of Granite Macadam. - The weight will depend upon the specitic gravity or the granite, and the closeness with which the material is packed together; as oldinarily thrown together alter breaking, the voids will be from 25 per cent. to 33 per cent. of the whole, and the weight of a cuble yard will be from 273 cwt. to 30 cwt. A waggon 12 rt .8 in . by $\overline{\mathrm{ftt}} 8 \mathrm{in}$. by 1 ft . 10 in . will contain $48 \mathrm{cub} . \mathrm{yd}^{\circ}$. or from 68 tons to 7s tons. The probilble welght may be ascertained by filling a water-tight box with the macadam, and pouring in measured quantitiss of water until all the voi 18 sre full. The cubic contents of the water + cubic contents of the box $=$ percentage of voids. The weight per cuhic foot of the granite being known, it is easy to calculate the weight of a cubic yard of macadam.
Soldering Astragals and Taclis on Lead Soil Pipes.-For the astragals, a pattern or the design is first made in wood, and frum this a print is made in damp, loamy sand, in which molten lead is poured to form a casting. If many are required, the wood pattern shonld be sent to a foundry, and a thask made in gun-metal, from which any number can be cast. These do not require so much cleaning up to make them look smart as those cast in sand. For fixing them to the lead

Determining Centre of Circular Arc.

strike ares that intersect at E. Similar intersecting arcs at I and G may also be drawn, n-ing C and B as the centres; then a line joining Fand thand produced, if necessary, will cut the line joining F and G produced, if necessary, in H, the centre required.
Removing Oil Stains from Stone Step.-If the stains rre but surface ones, make a paste of fuller's earth and paraffin oil, and lay this in a thick coating upon them; allow it to remain a short time, then wash off. Should this treatment not remove the stains, rub them with fine sharp sand and water, using a piece of hard wood in the sane way as a brush cuntil the stains disappear.

Shadlng Marqueterie Inlays. - To produce the shading seen in Sheraton inlays, very fine sand is heated in an iron pan placed upon the top of a stove, the heat being slightly greate: than can be borns by the fingers, but not so hot as to char the vener rs. Practice is required to prevent an abrupt edge, the gradations of tone being gained by holding one end of the veneer in the sand longer than another part. As the sand is generally bottest in the middle of the pan, the dark or nearly black tones are gajned by placing the veneer in the sund at that polnt. If the veneer is small, it ehould be held with a pair of pllers or tweszers. The work must be done before the marqueterie is made up. The foregoing is an old-time method, and is now being supplanted by pyrography or poker worlk, which is closely akin to etching, as it allows the work to be touched up alter the veneers are fixed into position.

Depthing Watch Lever Escapement.-Escapements are "pitcked" by putting the escaps wheel and ihe pallets in a "depth tool" and adjusting them until correct, then transferring the depth to the watch plates by means of the compass points of the tool, and plates by means of the compass points of the tool, and roller depth is pitched hy placing the roller on a small turning arbor in the depth tool with the lever. The pallet depth is correct when the wheel teeth inst fall upon the locking faces of the pallets. If the tecth fall upou the impulse planes, the depth le shallow. This

Depthing Watch Lever Escapement.
depth can be tested in the watch by holding the movement in the left hand with the tip of the forefinger on the balance. In the right hand hold a sharpened watch peg, with which press gently on the 'scape-wheel teeth, urging the wheel forward. With the forefinger of the left hand, slowly lead the balance round untila tooth just drope. Immediately let the balauce go, and, if it bas locked properly, the lever will be drawn sharply up to the bropery, the if it is too shallow, the lover will go back and the watch will tick rauidly. This requires some practice to test, but perhaps the ahove sketches will be helpful. A shows a tooth locked, having just dropped on to the pallet, and a correct depth. B shows d shallow depth, the tooth just missing the corner of the pallet and falling on to the impulse face instead. d shows a deep depth, the tooth falling too far on the locking face.

Heating a Small Greenhouse.-In heating a 10 -ft. by 7-it. span-roofed greenhouse, if an oil stove will not do, recourse must be had to a small boiler and hot-water pipes. Such an apparatus is made by nearly every boiles maker. It consists of a boiler just let into the wall of the house below the glass, the back of the boiler showing incide the house. The accompanying sketch shows such a boiler in section, and it will be seen that the flue pipe connection, and both feeding aud stoking doors, are all outside the houce, while the pipe connections are inside. The pipe connections and joints are simply made with rubber rings, and they terminate at the other extremity

Section of Greenhouse Boiler.

in a box-end, which acts as a supply cistern, support for the pipes, and air vent.
Making a Papier-mâché Mask.-In making a papiermache mask, tear in to pieces about 3 in. square some good porons brown paper and soak the pieces in cold water. Then make eufficient good flour paste, mixing with it a little hot glue. When the paste is cold, it should be thick and tenacious. Wheu the puper has been well soaked, squeeze the water out of it, paste the paper on both sides, and lay the pieces together in a heap to keep them sides, and lay the pieces together in a mask are usually inde from a plaster-of-Paris moist. Masks are usuany made from a plaster-orst lined with pieces of oiled tiseue paper to keep the papier-miche from eticking to the plaster; the paeted brown paper is then pressed into the mould piece by piece until the desired thickness of the mask is obtoined. When partially dry the mask iclifted out, and when thoroughly dry it is ready for painting. Any number of masks may be made from the same mould. The model from which the plaster mould is made is generally cut from a wooden block, or it may be moulded in clay, or a cast may be
taken from another mask. Place the nodel, previously rubbed all over with sweet oil, in the centre of a square wooden box large enough to allow 2 in. of plaster all ronrd the model, and pour in the liquid plaster until the box is full. When the plaster has set, lift out the mould and touch it up if necessary by scraping with a sharp knife,

Determining Contents of Egg-ended Boiler: When determining the contents of a boiler egg-ended as shown, it must be remembered that the boiler being circular in cross-section, the contents consist of a central cylindrical portion 26 ft . long, and two hemispherical ends that together make one sphere 6 ft . tn diameter. The area or cross section of the cylindrical

Determining Contents of Egg-ended Boiler.
portion is found by squaring the diameter (that is, unltiplying it by iteelt) and then multiplying by 760t. The contents will then be found if the area be multiplisd by the length. Ot course, all dimensions should be taken in like units, that is, in inches or in feet. Nhus, in the example, the area of cross-section of the central portion will be $6 \times 6 \times 7854=22 \cdot 27$ sq. ft., and the contents will bs $22 \cdot 27 \times 26=579 \mathrm{cub}$. ft. The contents of a sphere can be determined by cubing the diameter (that is, multiplying the diameter by the diameter and the product by the diameter) and multiplying by 5236 . Thus the contents of a sphere 6 ft . In diameter will be $6 \times 6 \times 6 \times 523$ $=I 13$ cub, ft., so that the total contents of the boiler will be $579+113=692$ cub. ft. Since 1 cub. ft. of water contains 6.28 gal., the contents will equal $692 \times 6.23=$ 4,311 geui.

Distance of Stop from Lens. -The correct distance at which a stop should be placed from a lens is that which would give the maximum of covering power with a minimum of distortion. If a cardboard stop is placed close against the lens and moved gradually from it the best position will readily be found, for it will be seen that as the stop recedes from the leus the sharpness spreads to the edges, but straight lines coming near the margins are bent outwarde in the centre. The accompanying diagram shows another method of working out the correct position of the stop. Construct a square A GCP, the sides of which are equil

Distance of Stop from Lens.
to the focus of the lens. Draw the diagonal B and a line H equal to the focus. At the end of this line draw D D equal in length to the dlameter of the lens. If lines are now drawn from F and G throngh F and D, the point where they meet X is the position for the stop.
Imitation Earth for Cases of Stuffed Birds.Blocks of peat roughly cut to shape are fastened in the case with glue and nails. The whole is then covered with whiting made with thin glue instead of water. It is coloured with oil colours, and grasses, etc., are fixed. Another and better method is to form a light foundation with strips of wood, to which are attached cardboard and brown paper, and the spaces filled with shavings. small pieces of thin paper being pasted over all joints and augles. By this means the ground work can be built to any shape or size, and there is less likelihood of introducing insects. The groundwork should be left for a day, then covered with glue and whiting. When dry, it is covered with thin glue and fine sand forcibly thrown on Lastly, it is coloured to taste by flooding on thip paint.

A Metnod of Soldering Aluminium.-First procure a small piece of thin sheet aluminium, say about 1 in . square, and roll it iuto a little coil; next prowne a wooden penholder and place the roll of atuminium in the hollow end of the penholder, leaving abont one-bali out, and give the end that is out of the holder a light blow or two to flatten it. Clean the iluminium article at the place of the joint by rubbing with fine emery cloth, or by acraping with a kuite ; heat the article to be soldered to the melting point of the solder in any convenient way, Bay on the top plate of a kitchen range, ol' over a Bunsen burner. with a piece of sheet iron placed thereon. Then place it on the table or work-bench on sheet asbeetor to prevent burning the table; and when hot, spriakle on the flux and rub with the little alnminium tool, which tine the surface very easily. While the article is atill hot apply the solder, and guide the flow with the narrow edge op the theol; then, remove the article and allowit to cool to produce a very strong and perfect joint. No boldering iron, blow pipe, blow-lamp, or special apparatus is required by this method. Here is a recipe for a special hard aluminium solder for cycle, or any special work. Aluminium, 70 per cent.; tin, 20 per cent.; and silver, 10 per cent. This hard eolder is worked with the same process as that described above, but requires a little higher temperature.
Re-seating Chairs with Rush or Cord Bottoms.First carefully remove the four thin batten which are nailed on the edgee of'the seat, and pull off the old rush, nailed on the edgee of the seat, and pull oft the old rush,
dust, etc. The eides of the seat frame are slightly eunk dust, etc. The eides of the seat frame are elightly eunk below the colners, so that the work will be flush with aud proceeds from one corner regularly round to othere

Re-seating Chairs wlth Rush or Cori Bottoms.
in succession, terminating in the centre, so that all four sides are worked together, as will be explained in the above illustration. A, B, C, D, are the sides of the seat frame. Have a good coil of cord on a stick, and make the end fast to the leg E (right-hand hack corner), pass the coil up and out ovel A. then up and out over B, over C and up and out over A, theu over D and up and out over C , etc. I his will he quite clear frum the cord Bhown loose in the illustration. When pulled up anug and tight and as the work proceeds it will have the appearance at each corner of that at the corner F. Any joining of the cord or rushes must, of course, be done after a back turu, so that it will come underneath. Stuffing can be pushed in between the uppr and lower lajers of cord as the work proceeds, and the end which is first hitched to the leg can be knotted and anterwarde cut off.
How to Work up Bromide Enlargemente.-For working up bromide enlargements the following articles itre required. A No. 2 or No. 3 sable bruah, blue and ivory black moiet water-colomre, a tuft of cotton wool, ivory black moist water-colonre, a turt of cotton wool,
a few paper etumps, some powdered blacklead '(the block used for eharpening the retouching pencil upon answers very well), a emall piece of opal fol the palette, and a stick of ink eraser. Place a small quantity of ivory black on the palette, mix well with a tiltered solution of gum arabic in water, and add a trace of blne to match the colour and surface of print, the surface being usually a little glossy. Firrt careiully spot out all the large 1 atchesand defects. Remove any black spote by soraping with the retouching knife, the edge of which should be exceedingly keen, but blightly turned over. Proceed then to model up the face-that is, to soften or brighten the light and shade, toning down defects, heightening the lighte on certain good features, or those requiring greater prominence. The lightening is doue by rubhing with the eraser, or by scraping with the knife
and flning up with the brush and colour. The lights generally require bringing up to a focus. Improving the expression must be done very skilfully, or ie better left undone. Keep the paint on the palette m ist and the brueh eufficiently full, and work with long, eweeping strokes across the muscles. 'The deepest shadows in the dress, etc., generally require strengthening, but outlining, etc., should be avoided. Never work without a guide (i.e. a print from the megative before retouching). The background chould be kept subdued, any obtrasive lights may be "hatched" out with the brush, or rubbed out with powdered lead or chalk (or both mixed) on a stump. Lantly, if the picture is a vignette. it is often advisable to work in a cloudy eftect around the head, as the vignette, even when akilfully made, with a light hackground, is apt to show too decided a shape. To do thie, take up some powdered lead on a tupt of wool, and rub hard on a sheet of rough on a tuit of wool, having got it to work emoothly and free from grit, rub all round the vignette until it eolitens off, eo that ite shape could not be determined. Clouds may then be scraped in with the eraser.

Boller System for Steam Cooking. - The sketch herewith showe a boot boiler, such as would go at the back of a range fire. All the fittinge are on it, namely, eafety vaive (set to blow off at 5 lb . to 7 lb .), automatic water inlet valve with atone float, watergauge, and the oteam supply pipe that conveys the steam to the hot plate or other utensil. The watersipply valve must be ted by a water service having a witer prespure in it exceeding the ateam preseure named; Wiater prespure init exceeding the steam preseure named; be ai least 18 ft . to 20 ft . above the boiler, otherwise, although the valve may open at the proper moment, no water whll enter if the steam is strong enough to hold it

Boot Boller for Steam Cooking.
hack. When the boiler has to be receased out of aight behind the range covings, recourre is had to a eupply cistern to carry the fittiags. This cibtern has a steamtight lid, and all the fittings are puit on it an a rule, though some still prefer to put the safety valve on the boiler and bring it to the front by means of a short pipe. Between the boiler and the cistern are two pipes, one above and one below water level. The latter is the cold supply, while the former is an equalising pipe to prevent the steam emptying the boiler by forcing the water back into the cistern. The steam service is taken direct to the hot plate, risingas far as it can, then (it necessary) falling the rest of the way. There must not be any dip which would harbour condense water. The utensil must have a cock to discharge the condense water as it collects. This cock is at the bottom of the water as it, while the steam supply is unually taken in at thensil, While the steam eupply is unualy taken goode and the boilers do not as a rule figure in makers liste, as they are almost invariably made to order to meet customers' requiremente as to ménsuremenis, etc.
Galvanising Iron and Steel.-In the earlier processes of galranieing iron and eteel the zinc was deposited upon the metal by electrolysis, but the lot-bith procese in most gal vanising establishmente bas entirely -aperseded the electro proceas. In the so-called galFanlaing proce日日, the iron is firet immerbed in hydro. chloric acid to render it perfectly clear and free from scale. It is then immersed in molten zinc, the surface ur the molten metal belng kept covered with powdered sal-ammoniac, this salt possebsing the property of dissolying the oxide from the surface of the molten zinc, and aleo aiding the adhesion of the molten zinc to the i'on blrface. If the iron has a alight coating of tin, and is then conted with zlac, the zinc coating is adid to adinere more flimly and does not scale when the metal is being worked.

Simple Hot-water Apparatus. - The dimensioned sketch shows a simple hot-water apparatus, with cyliuder, to meet only a moderate demand for hot water to supply bath, lavatory, and two sinks, such as exist in a moderately small house a saddle boiler in a 9 -in. fire (boiler ahout $11 \frac{1}{2} \mathrm{in}$. wide), with a 20 -gal. cylinder, should be large enough. The accompanying sketch shows the other particulars. If a stopceck is put

Simple Hot-water Apparatus.
in the cold-water service it must have a full-way through it. The small draw-off below the cylinder is an emptying service.
How to Build a Small Brick Kiln.-A brick oven about 5 ft . by 4 ft . by 4 ft, , conforming to the sketches below, may be built of fre-bricks, with walls 6 in, to 9 in. thick, puddled with fireclay and covered either with stone slabs or with a corrugated iron sheet. If withe stane are used, then two openings must be cut to serve as chimneys for the escape of steam and hot gases. One end of the kiln should be left open for charging purposes, and a temporary wall may be built before firing and removed again aifter the bricks are burnt. Iron tie-rods should be used to keep the
are not localised by it. The smoke test is far prefer. able, as hy it defects are more readily traced to their position by the senges of sight and smell.

How to Change Plates in a Hand Camera.-One of the most convenient methods of changing plates in a hand camera is to have a double chamber. In the top chamber B a magazine A moves backwards and

Arrangement for Changing Plates in a Hand Camera.
forvards by rack C and pinion D over an opening E in the floor F , through which the plates may be dropped for exposure in any order. The openimg is covered by a sliding piece k, pulled ont irom the side. The magazine consists of a grooved box made in zinc, with ar sliding lid or bottom G. It is inserted into the top chamber through a light-tight door \dot{H}; the lid underneath, which is bolted to the fleor at I, 60 that as the magazine is racked forward towards the opening the lid is pulled off. Strips J are placed at the sides to guide the plate and keep it in correct register. After exposure the camera is turned upside down, and the plate falls back into the magazine. Numbers corresponding to the grooves, or plates, are placed along ons side of the magazine, and may be read of through a little

How to Build a Small Brick Kiln.

Kiln in shape. There are four fire-holes in the kiln, two on sach side; the firebars are fitted at the level of two on each side; the fire barg are fitted at the level of and the ground mist be excavated along each gide of the kiln so as to reach the ash-pits. The firebars are placed at the level of the ground so as to get efficient heat at the bottom of the kiln, and the bricks mnst be so set in the kiln that they teud to carry the flames to the centre of the kiln as well as up the sides.

Pneumatic Test for Drains.-The pnoumatic test for drains was introdnced in the early ${ }^{2}$ eighties, and consiste of plugging all the drain openiogs and filling them, us well as the manholes and suil pipes, with air under a slight pressure. The test is troublesome to sapply in a thorough manner, and defects and leakages
ruby glass window at the side. Focussing may be done hy opening the door L and pushing the screen M into register. The only objection to this pattern is its bulk.

Lettering in Relief with Gold on V ire Blinds.-

 The raised effect is obtained hy gesso treatment. generally with the aid of stencil plates cut from millhoards. Alabastine is probably the safest material to use, although the relief may he produced by a mixture of plaster-of-Paris and weak size. Of course, the surface must be rubbed down and prepared in the usual manner with gold-size before gilding.Powdering Brass Spelter.-To powder hrass spelter. either grannlate by pouring the metal into is f treain of water running at high pressure, or pound in a mortar quiokly while the spelter is just under its melting point.

Preparlng Lavender Water．－In making lavender water，the lavender flowers are placed in a still with water，and heated．The water which distils over carries with it the essential oil，which is theu separated from the water．To make lavender water，the oil of lavender is dissolved in spirit of wine in the proportion of about $\frac{1}{2}$ oz．to the pint．A large quantity of the flowers is required，and unless the work is to done on a hig scale． it will be better to buy the oil and dilute it as described above．

How to Make a Small Wheelbarrow．－The barrow here described is shown complete by Fig．l， Fig． 2 being a plan of the bottom frame．The ash hales $I I$（Fig．2）are 3 ft ．lin．long and $1 \frac{5}{6} \mathrm{in}$ ．deep by $1 \frac{1}{2}$ in．thick．The handles rise $3 \begin{aligned} & \text { 条in．above the level }\end{aligned}$ of the under side of the hales．Leave not more than解in on the faces of the hale tops，or they will look heary．Dress out $\frac{s}{\text { 星 }}$ in．on the face of the hales，and in． under the hales．The cross－pieces in the frame must be of onk，with the edges dressed off underneath．Let the hind piece tenons，ganged $\frac{1}{2}$ in．thick，come through the hales for lifin．to support the legs as shown by Fig． 2. The hales and crose－pieces，when finished，should bs pinned tight with $\mathrm{I}^{3}-\mathrm{in}$ ．wood pins．Then put on the legs， splayed at the top；they are lin．square，and stand lit． below the hales to suit a wheel lit．high．Fasten showing ontside．Not more than a i－in．shoulder must be made on the lega，us the front hoard can be levelled sideways only．Four stays must be used for the legs， two to go under the hales，as shown by Fig．1，and two under the hind cross－pieces．Then put in the
ants，cover some plates with a syrup composed of sugar and water，and place these plates in the infested places； destroy any ants found upon them hy dipping the plates and contents into boiling water．When they are some－ what thinned by this means，try one of the methods given ahove；or place a mixture of sugar，beer，and arsenic on plates．Fly papers might also be tried．

Making Sallor＇s Canvas Bag．－In commencing to make a canvas bag as used by sailors，a donble geam is sewn down the side of the bag，and it is then a canvas cylinder．To get the radius of the circle for the canvas bottom，measure the width of the bag while tlat on a table and add 2 in．，and divide by 3 ． Make a loop of twine to this size，stick a sail needle into a piece of canvas，and with pencll and twine describe a circle about 2 in ．greater in diameter than the bag．Now shorten the twins 1 in ．and make another circle，cut out the canvas bottom to the outer circle，turn in in．of the edge of the bag and sew a round seam with needle and twine，keeping the doubled edge to the inner pencilled circle；turn the hag inside out，and flat－seam the bottom edge to the side；this makes a neater job，though the one seam alone will suffice．For securing the top of the bag，sew a leather strip on the top edge of the canvas just as braid is put on cloth；then to the side seam，just below the leather，sew a strap to encircle the neck tightiy and

bottom board，of $\frac{1}{2}$－ \ln ．red deal，as shown by Fig．2．All joints should be painted．The bottom board overhangs the front cross－piece by $\frac{5}{8}$ in．for a $>$ dressing．Fit the sides to the hales；the front may lean beyond the square sides to the haleg；the iront may lean beyond the square mark by ${ }^{3 s}$ in．The the hind ends to 83 in．deep．The side front ends are $>$ edged．Run a ${ }^{3}$ i－in．or k in．bead on the edge；then tit the front hoard on top of the hales and bottom board． Let the front board，of 4 －in．red deal or elm，rise in a curve $1 \frac{1}{4}$ ．ahove the sides．When fitted and dressed paint the joints，and nail the sides to the front hoard with $1 \frac{1}{3}$ in．cut nails：then screw on the $\frac{7}{8}$－in．hoop iron，with g－in．round－headed screws．Theiron that fastens the wheel to the harrow hale is $\frac{3}{4}$ in．broad by $\frac{1}{8}$ in．thick，and long enough to go past the front cross－piece by 2 in．or 3 in． The ash or oak axle for the wheel is $8 \frac{1}{i n}$ ．long by 24 in．， turned down at the ends to $1 \frac{1}{2}$ in．for a ferrule lin．long； －in．round pins，driven in the axle ends，stind out lin． to enter the eye of the iron screwed under the hales． Theres are eirht oak spokes $\frac{3}{4}$ in．broad by $\frac{1}{2}$ in．thick， with four ash felloes lizin．square and bevelled to suit a $\frac{\pi}{3}$－in．by $\frac{1}{8}$－in．hoop，rounded on the insides．The four dowele for felloe joints are $\frac{3}{4}$ in．diameter．The wheel and barrow inside are painted red，and the barrow out－ side is painted light green，lined witnlighter colour and blark．
Ridding a House of Ants．－In ridding a house of arts，discover the nesta，and on the mouths of these drop some quicklime and wash it ill with boiling water．Or camphor may be dissolved in epirit of wine， then mixed with water and poured upon the haunts． Tobacco water has also been found effectinal．To drive the ants out of the cupboards，camphor，tar，creosote，or chloride of lime may be employed，but these substances cannot be used in the pintry．The shelves and floor should be scrubbed with carbolic suap．Lo eatch the
fasten with a padlock，the strap being furnished at its ends with hasp，etc．，to take the padlock：the leather edging cannot be pulled under the strap．Another plan is to sew a tabling or hem round the top edge，then sew canvas heckets about 6 in．apart round the neck，and through these pass the strap and lock as beiore A piece of hrass chain is sometimes used in place of the strup， the end links taking the lock．A strap with buckle can， of course，be used if a lock is not wanted．
Painting and Varnishing a Pony Cart．－The gloss on a pony cart is ohtained by applying one or more coats of varnish after the colour and linea are put on， according to the quality of the work．For ordinary work，the body is prepared by lead colour and flling up，and rubbing down with pumice－stone and water，then giving a coat oi light lead colour，which is faced down very lightly to takeout the brush marks．The workis then ready for either two or three coats of ground colour，the first coats being made to dry medium quick，the last coat having a good portion of varnish added．Allow to stand for a couple of days to harden，then fint dowu with pumice－powder and a cloth pad，using sufficient water to make it work freely．This will leave a good surlace for lining out on．After the lines are dry the first coat of varuish may be put on．Before doing this， see that every particle of pumics－powder is washed off， freely using n water tool to clean out the corners；thendry off thoroughly．Varnish iu a dry，clean place，fres from sudden draughte and kept to a temperature of 75° F．If a secoud coat is to be put on，the first one should not be too lull，but sufficient to form a good foundation for the next one．After the work has been allowed to atand three days，it is flatted down in the same manner as the varnish colour，and auother cont may be given to finish the jols，putting this on as heavy ns possible wlthout getting rins or thick edges．

Balanced or Dancing Stens of Staircase.-The term balanced or dancing steps is applied to a geometrical staircase, where the nosings of the winders are so placed as not to converge on the same point, but each directed to a different point, so that the inuer edge

Balanced or Dancing Steps.
of tread is wider than it otherwise would be, and the steps are thus intermediate in shape between tlyers and winders. This allows of a better curve being given to the inclination of the handrail. In the sketch, the first four and the last three steps are ordinary parallel flyers, and the remainder are "balanced" or "dance," as described.
Finding Circular Curve when Centre is Inaccessible. Three points on the circumference of a circle being known, and the centre being inaccessible, the curve is drawn by the following method. If it is for workshop uee only that the curve is wanted, cut a triangular template (Fig.]), two of whose sides touch the outer points AC and meet on the inner point B. Then pins being inserted at A and C, and a pencil or scriber at B, the template may be shifted round to describe the curve. if it is for work such as railway, curves, let ABC (Tig, 2)

8 in . by 6 in . or 10 in . by 7 in ., and solder the angles. Take the thread off two l-in. No. 8 brass screws, to form the pins A. Drill a hole in the top and in the bottom of the frame $\frac{s}{3} \mathrm{in}$. from the edge, and countersink these holes on the inside to receive the heads of the screws.

Tell-tale Mirror.
Fix the latter with solder. Now cut in the piece of silver plate, and bed it in the frame with red-lead putty, making the joint watertight. Place over the back of this a piece of two-ply Willesden paper and a piece of deal board. Cut in between the frame a piece of zinc, and solder round the joint, makiug all level. Paint the frame black. To fix it on the windowframe, get two small brass angle brackets and drill holes in them to receive the pins on the frame, and fix as in them to receive the pins on the frame, and fix as shown. Any angle required can he obtained, hut it
must be tested when fixing. Fig. 1 is an elevation, and Fig. 2 a sectiou of the mirror.

Repairing Cheap Brooches.-For coldering catches and joints to cheap metal brooches that have been silver-plated or gilt, ordinary tinman's solder is used. Both catches and joints can be cheaply purchased, hardsoldered on to small plates, square, oval, or crescent shaped, to suit all kinds of brooches. Take one of these and hold it with an old pair of soldering tweezers in the flame of a spirit lamp, and give it a coating of solder on its under side. First wet it with the flux (hydrochloric acid killed with zinc, as used by a tinman), and then place a small portion of solder on it, and hold it in the flame until it flows all over the plate. It can be assisted to flow evenly by a copper wire, which is also useful to apply the acid flux. Having "tinned" the catch, clean (by scraping bright) the brooch, and place the catch in position. Direct a gentle blowpipe flame to it until it is seen to settle down and the solder flows. Then wash it immediately in warm water to remove the acid and dry in sawdust, kept in a warm place. Use as little solder as possible, and only clean the brooch where the solder is required to ruu. Attention to these points will ensure a neat job.

How to Make a Cheap Drilling Machine.Fig. 1 is an elevation of a drilling machine complete. The two wrought-iron uprights A should bs itin. wide, like the rest of the framework. Bend them first, care being taken to get the feet at right angles, and then cut them to length. Mark off the holes, two T^{7} in, in diameter for sin. bolts for the cross-bars. In one upright an extra hole must be drilled $\frac{h}{g} \mathrm{in}$. in diameter to take the hand-wheel shaft. This ghould be about midway betwe $-n$ the ${ }^{3}-\mathrm{in}$. holes, though the exact position depends on the diameter of the bevel wheels. Drill two re-in. holes in each foot for the holding-down bolts. The cross-bars B and C have $\frac{6}{6}-i n$. holes through the oentre to take the spindle F. The key-way in the latter can be cut by a sin. cross-cut chisel, and afterwards cleaned out by a small squire file. Next obtain a pair of hevel wheels the teeth iu ths other. The wheels should be drilled in., the key-way in the small wheel on the vertical spindle being parallel, that in the wheel for hand-wheel Bhaft E being slightly taper depthways. One end of the
for a clock, first calculate the number of beats per minute that the pendulum is reqnired to make. To do this, multiply together the number of teeth in the centre wheel (that carries the minute hand), the third wheel, and the 'scape wheel. Also multiply together the number of leaves in the third-wheel pinion and the scaps-wheel pinion. Divide the product of the wheele by the product of the pinions and multiply the result by 2. This \&ives the number of beats per hour. Divide it by 60, and this will give the number per minute. The length of a pendulum to heat 60 per minute (the seconds pendilum) may for convenisnce be takeu as 40 in . The length of a peudulum to beat auy other number can bs found from it hy simple proportion, remembering that ths length will bs inversely as the square of the number of vibrations. Thas, for a pendulum to beat 100 per minute: as $100^{2}: 60^{2}:: 40 \mathrm{in}$. to 144 in .
Sstting Out Heavy Waggon Whoels.-In setting out the hind wheels of a heavy waggon to rin in line with the front onee, the heignt and dish of the wheels

Fig. 2
How to Make a Cheap Drilling Machine.

Setting Out Heavy Waggon Wheels.
horizontal shaft must have a $\frac{3}{5}$-in. key-way, and the wheel shonld be knocked on and then keyed up bya small key, preferably with a head. At the other end, the handwheel, from 8 in . to 10 in . in diameter, is attached either by a screw or by a square on the shaft. The wheel on the spindle F must work easily when a small parallel key is placed in the slot. The frame being bolted up, make the upright stay D so that it will just go between the two cross-bars; drill a $\frac{7}{18}$ in. hole at each end, and put ths stay in position. Now with the spindle in position, with the wheel on as in Fig. 1, and with ths other wheel in gear but off the shaft E, the s marked off, and also the holes in the cross-hars B and C. For the feed gear, a piece of hrass or wrought iron may be cut to shape (Fig. 2), and two $\frac{3}{7}$-in. holes and one $\frac{x_{1}}{}$-in. hole should he drilled through it, the $\frac{8}{3}-\ln$. hole being cut out afterwards. Round the spindle is coiled some brass out afterwards. Round the spindie is coils also being wound round the two studs which are fastened to the top crose-bar by ${ }^{g}-\mathrm{in}$. nuts. The two studs are screwed throughout the lengths. The feed is put on by a wing-nut on the centre stud, the epringe bringing thespindle back when the wing-nut is released. A coat of black enamel over the fixtures will greatly improve the appearancs.

Determining the Lengths of Pendnlum Rodg, When it is reauiras to ascertain the length of pendulum
must be known. To enable these to be worked out a sectional elovation is given of a $4-\mathrm{ft}$. 6 -in. whee with $1 \frac{1}{4}$-in. dish, the dotted lines A A being the tyre, and also showing the pitch out of the wheel, which is mors or less according to the dish. To work to the wheels, put up a drawing of ths hind wheel, mark in the bottom spoke B, and square up from the ground line. Ai 0 mark off the dish of the wheel ; from the face of spoke at D intersect the mark at C, making the outer line A, which gives the correct position of the wheel. From the centre of the stock at the back E draw the vertical line F; flog the same point draw the pitch lins G, which is parallel to A. At H mark in the helght of half of the front wheel, given in the sketoh as 1 ft. $9 \frac{1}{2}$ in. Measure the distance ath from the vertical line F to the pitch line G; this will show how much less the front wheel outs q; this will show how much less the front wheel under in its height than the back one. Double axle bed compared to the front one.
Removing Dent from Brass Kettie,-Io remove a dent from a brass kettle, insert the head of a small round-faced hammer through the cover hole, and knock the dent outwards; then hold the face of the hammer up against the bruised part, and go over the outside lightly with a flat-faced hright hammer until the metal ie quite smooth.

Folding Leaf and Supports for a Kitehen Table.The sketch explains how to fix a folding leaf 9 in . wide to an ordinary kitchen table and how to hinge the supports to the table top. Use the best white deal or ping both for the flap and supporte. The flap should be attached to

Folding Leaf and Supports for a Kitchen Table.
the top by means of two or three 2-in. " back-flap hinges," as shown. The supporte or brackets can be made out of board of the same thickness as the flap, and shaped as shown, taking care to keep the grain of the wood horizontal, as indicated. The brackets can be fixed to the legs by two 2 -in. butts. It will be noticed that the illustration shows the right-hand bracket opened out and supporting the flap, while the left-hand one is shut back ready for the flap to be dropped.
Making Enamel Paints.-Enamel paints are made by grinding the colours either with copal varnish or with hard spirit varnish; copal varnish yields the finest and most durable paints, but for a brittle film use spirit varnish. The dry colours are, perhaps, the best for grinding with the varnish, but the grinding must he very thorough.
Folding Gaff for Salmon Fishing.-A pocket telescopic gaff for salmon fishing is shown by the accompanying sketches, in which A is the gaff extended for use, B folded up, sand C oue of the spring joints. The joints are made similarly to the joint of a $2-\mathrm{ft}$. rule, with the exception that a spring D is provided to hold them when open and that sockets are on each end into which the wooden portions of the handle are fitted.

Repairing Cut in Canvas Roof.-On a close-boarded roof, if the slit is horizontal, cut a piece of canvas $\frac{1}{s}$ in. wider than the slit (say $3 \underset{\text { in }}{ }$ in. square), then push the point of a trowel or something similar into the slit and upwards to fuee the canvas from the boards for a few inches. Give both patch and torn part a coat of thick paint, and push the former about halfway under the upper edge of the slit. A few taps of the hammer will make the patch lie flat and close up to the corners; then nail the edges down with copper tacks lin. apart, and paint again. If the slit is vertical, make a horizontal cut acrose the
top 3 in. long, forming a T. Paint and tack the vertical portion and proceed as described above, making the patch long enough to cover the lower end of the slit.
Hot-water Towel Airer.-The accompanying sketch shows a hot-water towel airer with three rails, but of course the number of rails, the dimensions, and the design of the airer can be varied as desired. The airer is made of 1 -in. iron tube and fittings, and any threads that are exposed must be soldered up solid before painting. Some fill up the exposed thrests with putty,

The handie ohould be of lancewood or greenheart the top bockets $\frac{3}{3}$ in. diameter, and those of the lower joint ${ }_{18}^{7}{ }^{3} \mathrm{in}$. diameter.

Making Olled Fabrics.-Lay the material-silk or cambric-upon a board, and coat it ou both sides with boiled linseed oil, then hang up to dry. Laige balloons are made of oiled cambric or cotton: the joints are made gas-proof with a coating of linseed oil. Allow the joints to overlap, stitch them on both sides of the overdapping part, and apply a coat of boiled linseed oil over the stitches.
but, needless to say, this often proves a failure. It will be necessary for some of the tubes to be connectora, and the backnuts are made by cutting short collare from a socket and cleaning them off neatly. The ordinary wrought fittings do not look nearly so well as the globeshaped malleable fittings (elbows and tees). Connect the airer to a flow pipe wholly, neither connection being put to a return pipe. The connecting pipes can be $\frac{3}{3}$-in. ; eveu din. will do if the length is ghort. A stop-valve can be used if desirable. The dotted lines in the sketch indicate that conuections to the rail may be made above or below the floor.

Refining Serap Grold.-One method is to dissolve the scrap gold in a mixture of 1 part pure nitrio aoid, 3 parts hydrochloric acid, and 1 part pure water made warm lu a porcelain hasin and placed in a good draught to carry of the poisonous fumes. Drive off excess acid by heat, dissolve the resulting red salt in pure water, and carefully decant or filter to remove silver chloride. Add a solution of protosulphate of iron until all gold is thrown down tue a browu powder. Decant off all iron and copper solition. Well wash the gold several times iu hot water, and dissolve to form the gilding bath, or dry and fuse with borax in a fireclay crucible. Another method io to With borax in a freclay crucibe, Another method is a large bone ash cupel and keep op the heatin the open air until all copper and other base metals have been oxidised. Then fuce the button of gold with two and a half times its weight of pure silver, and dissolve out all silver in wariu nitric acid.

Design for Iron Roof. - The accompanying design for a steel roof truss of 3 -ft. span, with lantern lirhts, showe elevation of one trues in the cross-section through roof, and the plan ehows the arrangement of the hipped
the twelfth remain about two minutes. To obtain twentyfive copies, proceed as follows. T'ake the tirst ten or twelve impreseione quickly, and directly they have been smoothed lift them over the graph. Then allow each succeeding paper to remain rather longer on the graph than the one preceding. By writing with Judeon'e violet dye, sixty perfectly legible copies can be obtained. Not more than thirty coples can be expected from an original written with Stephens liquid ebony stain, and it ie well to limit the number to twenty-four or twentyfive. Always write the original on thick, smoothsurfaced paper. Paper of a spongy texture must not be used. Keep a good supply of ink alwaye in the pen, which should have a very fine point; Perry \& Oo.'s ladies' pens, fine points, are recommended. Firm, thin linee give begt results. Put a sheet of clean paper on the graph, and pass a fint stick overit to make a perrectly smooth surface. Dipectly the writing loses its wet appearance, place it face downwarde on the graph; he certain that every portion of the writing comes in contact with the composition, and leave it so from ten to fifteen minutes. Thie length of contact while traneferring does not apply to gelatine graphe, into which the

ends. The truss is arranged in three baye of 11 ft .8 in. and the truesee will be that distance apart. At each hip there will be two part trueses formed like one side of main truss to meet the main truse at end of lantern.

Making and Uaing Graphs for Copying Written Matter.-The ingredlente (4 parts of whiting to l part of pure glycerine) must be thoronghly mixed. Reduce the whiting to a fine powder; mix half the required quantity with all the glycerine, and beat up thoroughly. About twelve hours later, add the remaining powdered whiting. Spread out the composition in a dish or tin. If the giycerine comes to the surface after standing a short time, eprinkle a little powdered whiting over it, roll up the mass, thoroughly knead it, and again spread it ont smoothly. Repeat until the composition is firm, but not absolutely dry. The copier will be ueeless if the glycerine absolutely dry. The copier will be ueeless in the glycerine keep the copier well covered; and if the top is too wet for use, do not remove the moisture, but beat up the whole of the composition, and spread it out evenly again. If it is too dry, add a little glyccrine. Graphs on which the orlginal writing is transferred cannot yield a number of copies all equal in strength, as with ench impression the quantlty of ink on the graph decreases. Therefore, the quantity of ink on the graph decreases. Therefore, if twelve copies are required, let the first few sheets of seconds; gradually increase the time of contact, letting
ink rapidly ainke, whereas in the one under discussion the ink is inclined to get to the surface. The ink will not tranefer so readily if dry and hard when pleced on the copier. Get ready the eheets of paper whereon the impressions are to appear; gently remove the original from the graph; take the firet copy quickly, and exaniue it closely to discover faulty words cuused by air bubbles or depreseions forming on the surface of the graph. or depreseions forming on the eurface of the graph. Note the exact position of the fault on the composition, the graph, press gently on the defective parts with a knife handle or other hard, emooth substance. This will evel the composition. When sufficient impressions have been obtained, wash off the writing with a wet cloth or eponge. Remove any excess of water with clesn white pnper. Avoid using blottiur-paper and like substances for this purpose. To gain experience for taking impressioue of a larger size start w.th something of a postcard size. Put a strip of paper at one end of the graph as a guide for placing the sheets of paper evenly over the writing. Let one edge of a sheet lie level with the guidiug strip, and draw a hard wooden ruler or other smooth piece of hard wood over the top of the paper to ensure every part touching the writing with equal preseure. The writing may be in two colours, and preesure. The writing may be in two colours, and copied simultaneously, but it is more diffioult to time separately.

Preparing Fulminate of Mercury.-The following directions for preparing fulminate of mercury are taken from Bloxam's "Chemistry, Inorganic and Organic." "Dissolve 25 gr . of mercury in halli a measured ounce of ordinary concentrated nitric acid ($6 \mathrm{p} . \mathrm{gr}, \mathrm{l}^{\circ} 42$) in a $\frac{1}{2}-\mathrm{pt}$. beaker and cover with a dial-glass; the solution may be allowed to take place in the cold, or it may be accelerated by, gentle heating. It contains mercuric uitrate, nitric acid, and nitrous acid. When all the mercury is dissolved, remove the beaker to a distance from any fiame and pour into it, at arm's length, 5 dr . (measured) of and pour (sp. gr. 0.87). Very brisk action begins, and the fulminate separates as a crystalline precipitate; deuse white fumes, having the odoure of nftrous ether and aldehyde, pour over the sides of the beaker; they contain mercury compounds and hydrocyanic acid also, and are very peisonous. When red fumes begin to appear abundantly, some water is poured in to stop the action (which occupies only two or three minutes), and the fulminate is collected on a filter, washed with water as long as the washings taste acid, and dried by exposure to air."
Ventilation of Photographer's Dark Room,-So much depends on the situation and surroundings that it is difficult to give particulars of a method of ventilating a photographer's dark room without seeing a sketch of the rooin, The following plan, however, may be tried. Cut an opening near the bottom of the door and screw over this opening on the inside a box with a partition, formed as opening on the inside a box with a partition, formed as shown in Fig. l, and coated inside and ont with a dead A similar opening and box may be made for the top of
part-of the work is done, the easier will be the next steps. When no mors can be done with the silver sand, rab the specinısn with a piece of second grit-stone, to remove all scratches made by the sand, and then ruh with a piece of snakestone or water-of-Ayr stone. The suríace should now ba periectly smooth, but miuus a gloss or brightness. To impart this, rub it well with a damp piece of an old stocking on which has been sprinkled a few grains of oxalic acid. The surface of the specimen should now have a dull face; to finish, a little putty. porder and a very little salt of gorrel are used in the same way as the acid. Marble polishers nse polishingfelt instead of the old stocking. Marble may be polished in the same way, but some varieties will require spirit of salt to be used with the putty-powder instead of the salt of sorrel.
Shop-door Electric Alarim,-The shop-door alarm for electric bells hsre described rings the bell during the whole time the door is open. There are two separate pertions-the "contact springs" and the "separator". or "insulator." The two springs are screwed, as shown by Fig. I, to a block of hardwood abont 1 in . by 1 in . by $\frac{1}{2}$ in., well suaked in paraffin wax- The springs may be made from an old clock spring straightened out, one end of each being filed au shown in Fig. 2, and about 4 in . from this and a piece of platiuum foil may be soldered or riveted. The springs should be bent as in Fig. I, so that the platinum points will be pressed well tagetuer. A binding screw and an ordinary brass sorew, $\frac{1}{2}$ in. or i^{3} in. long, should be sufficient for each spring. The "separator" is a wedgeshaped piece of hardwood, with an extension for

Shop-door Electric Alarm.
screwing to the upper part of the door. It should be well soaked in melcad paraffin wax. The contact-spring block is serewed to the lower edge of the door-frame, just above the door ; and the ingulator is fixed to the just above the door; and the inculator is fixed to the springs are wedged apart. The alarm is next connected up to the bell and battery, one wire from a binding sorew of the bell to a binding serew of the alarm, another connecting the second terminal of ths alarm and one pole of the battery, and a third lead joining the free terminals of bell and battery. By the interposition of a switch in the circuit, the door can be opened by the occupants of the house or shop without the bell ringing.
Toughening Potters' and Modellors' Clay. Newly dug clay is generally wanting in ts nacity, and ware made from it is much more liahle to crack than if the clay had been "weathered." Weathering, or exposure to the weather, will toughen the clay. The clay, when dug, is laid in heaps and occasionally turned over. The water and oxygen of the atmosphere and the influence of frost disintegrate, wash, and purify it, influence of irost disintegrate, wash, and purify it, ened by being well worked or kneaded. For modelling purposes there is nothing like old clay-that is, clay that has been repeatedly used; and consequently, when a mould has been made from a clay model, the clay is thrown back into the biu, becoming taugher and mors ductile by this continual usage. Clay may also be toughened as follows: Spread out a small lump of it on a hoard: Mix together a tablespoonful of sulphuric acid and linseed oil, and spot this here and there over the exposed surface. Roll up the clay and well work it together.
Dry Process of Cleaning Skins.-The slcins may be soaked in patroleum ether in a closed tank or pan for two or three dayb, removed, wrung out, dried, brushed, and combed: or they may bs well brushed all over with a mixture of bran and benzoline, and, after drying, brushed and combed. Another method is to brush the skins with a solution of olive-oil soap in methylated spirit. followed by sponging with clean methyiated spirit.

Hardening and Softening Copper.-The difference between hard-rolled and special soft copper is caused by the methods of annealing. Hard-rolled copper can be rendewed soft and dnctile simply by placing it over a fire or stove until well heated, and then gradually allowing it to cool. Copper may be hardened by well heating and then plunging it for a moment in eold water, afterwards allowing it to steam dry. If kept submerged until cold the metal will prove exceedingly brittle. In repousse work soft copper will oruck whenever the tool is applied too forcihly; these cracks may be repaired by soldering from the back.

Building a Dutch Barn,-Fig. 1 is an end elevation, and Fig. 2 a little more than one-fourth of the side alevation, of a Dutch barn that is 40 ft . long, 18 ft . wide, and 16 ft . to eaves. Fig. 3 shows the form and construction of the trusses. It will he noticed that purlins, not rafters, are used, so that the boarding can be fixed running down, as shown. The wet can be better kept out hy weathering the boards, as Bhown at Fig. 4. Oak will be best for the posts, which should go into the
along with it and float on the surface of the liquid, After all the water has distilled over, the "break" occurs, i,e. distillation slackens until the temperature rises and the distillation proceeds agaln. The different fractions are told by the smell, by gravity, and by the temperature in the still at the time, a thermometer being flxed in the still for thle purpose. The flrst runnings pass over below 110° C., and their specific gravities are less than $1 \circ 0$. The light oil passes over from 110° to $120^{\circ} \mathrm{C}$., and itt gravity is about that of water $=1^{\circ} 0$. Carbolic oil or middle oil passes over between 120° and $140^{\circ} \mathrm{C}$., and its gravity is over $1{ }^{\circ} 0$. Creosoteoil passes over between 140° and $170^{\circ} \mathrm{C}$.; it is heavier than carbolic oil. Anthracene oil passes over last. The residue is pitch, which is soft or hard, according to how far the distillation has been pushed. The different fractions can be told hy pourlng a few drops of the oil into water; the first runnings float on the surface, the light oil will float anywhere in the water, whereas the carbolic and other oils sink; this test will tell when to change the receivers, but the temperature test is best. The first runnings and light oil are rectifled by distillation with

Design for a Dutch Barn.
ground about 4 ft . or 5 ft ., and be well rammed in. Deal will probably be good enough for all the other parts. The boarding (lin. thick) to the ends and sides may be grooved and tongued, or lapped similar to the roof. To keep the structure rigid, it must be braced with 4 -in. by 3-in. braces, as indicated by the dotted lines on the boarding at Figs. 1 and 2.
Staining in Marqueteric.-Red and blue lines as seen on old Sheraton inlaid work are gained by inlaying narrow stringing, stained before insertion. It Is not worth the expense to stain them wlth acids if only a small quantity is required, especially as good results can be obtained hy the use of aniline dyes, which should be mixed in hot vinegrar. If the work is imitation stained marqueterie, use aniline dyes dissolved in spinits, with the addition of at least a quarter of its bulk of polish or spirit varnish.
Distiliation of Tar,-When coal-tar is heated in the still, there is a large amount of frothing due to the distillation of the ammoniacal liquor; it is therefore necessary to slake the fire to prevent this; if any tar hoils over, pour water on the still head. After a time the mass "bumps" vigorously and then "rattles," owing to the escape of the water. As the water distils over, the flrst runnings pass
"close " or "open" steam Yielding-(1) Up to $103^{\circ} \mathrm{C}$, 65 to 70 per cent. beuzol; (2) up to $110^{\circ} \mathrm{C}, 30$ per cent. benzol; and (3) up to 130° C., a benzol none of which distils at 100° but 60 per cent. passes over at $120^{\circ} \mathrm{C}$., this being usually put back with another charge : and (4) ahove 136° C. yields "solvent" naphtha. The 65 to 70 per cent. benzol is agrain rectifled into two fractions called 90 benzol is again rectifed into two fractions calisd

Cleaning Mosaic Floors.-For cleauing tile mosaic floors, use muriatio acid (spirit of 'salts) dlluted with: water (the requisite strength may be found by trial), well ecrubbing the floor with an old brush, and washing off with clean water. For marble mosaio flools, use a bleach conslsting of, say, 7 lb . of American potash dissolved in a pailful of water, and made into a paste by adding whiting, or, better stlll, newly slaked lime. Apply this like whitewash with an old brush to the floor. Let it remain on for a day or two, and then wash off with clean water. Repeat the application until the stains are removed. The hands must be protected when using the bleach, as the potash is so caustic ar to be dangerous to fingers and nails. If any of the liquid gets on the hands, they should be at onoe well washed in water containing a few drops of vinegar or acld to neutralise the alkali.

How to Make Cheap Paste.-For a cheap paste that will not turn cour or go bad, mix torether 1 lh. of common flour, $i \mathrm{lb}$. of alum, and 1 qt . of water to msike s smooth cresm ; hoil 3 qt. of weter in s pan, and while hoiling add the other ingredients in a thin stream, stirring all the time. Continue boiling for a fer minuter, then remove the pan from the fire. Oil of cloves may be added as a preservative.
How to Nake a Mallcart.-Figs. 1 and 2 show a useful mailcart. To make this, first get out the shafts from a piece of stuff, $4 \mathrm{ft}$.4 in . by 8 in . hy 14 in . preferably of ash (Fig. 3). Saw with the grain of the wood, following the sween as nesrly as possible. The finished shatits are 4 ft . 4 in . long, $1 \frac{1}{2}$ in. deep on the straight part, and $1 \frac{1}{4}$ in. thick at the centre bolt hole, and tapering in thickness to $\frac{1}{2}$ in, at the front ends and 1 in. st the handles, which are shaved up to fancy. The shafts are bolted on so that, hy taking out the centre holt, the handles can be raised to B height more convenient for an adult, the bolt fastening through the next rail above. For one side, seven pieces are required. The two upror one side, seven pieces are required. 26 in. long, $\frac{3}{4}$ in. thick, and about lig. Wide, with edges hevelled as shown, and five rails are $1 \frac{1}{2}$ in. wide and bare $\frac{t}{2}$ in. thick. The top rail is 26 in. and hottom rail 31 in. long. The rails sre fixed inside the uprights with $\frac{1}{4}-\mathrm{in}$. bolts, and the two sides of the cart
to be polished ehould be covered with the French stain, which, when dry, is a blue black, aud then with plaster-of-Paris mixed with water to the consistency of thick cream. When nearly dry, ruh off as much as possible, learing the surface clean, the grain only being filled with the paste. Linseed oil is next applied with e piece of old rag: $\frac{4}{}$ oz. of spirit black is then dissolved in 1 gill of button polish, and applied in the usual way with a cotton-wool ruhher. A little linseed oil must be used on the rubber to make it work freely. When a good hody has been obtained, any parts which are ropy may he levelled with a piece of old, fine glasspaper and a little linseed oil. The wool rubher is then covered with a piece of old linen and the finsl coat is given, using as little oil as possible on the rubber. When a satisfactory surface has heen ohtained, the linseed oil remsining in the polish must be killed, otherwise the work will have a dull appearsnce. Make $日$ new rubber with cotton-wool and a piece of clean linen, and damp the rubber slightly with methylated spirit, snd use the rubber as when giving the final coat. If too much spirit is used, all the polish will be taken off. lf the above instructions have been carefully carried out, a highly gloesy finish will be obtained.
Flat Colours Flashing or Patchy.-The ceuse of an interior wall surface finished in flat colours dryiug

Fig. 3

How to Make a Mailcart.

are held together by the seats (with hack) and the steps, which are 4 in. wide and $\frac{1}{2}$ in. thick. The peiat hosrds are 9 in. wide and full $\frac{3}{\frac{3}{5}}$ in. thick. For the seat back, the two upright pieces, seen endways in Fig. 2, are 14 in. long, l_{1} in. Wide, and full $\frac{z}{2}$ in. thick, and the two rails which connect them together are oval in section, the top one being $2 \frac{1}{2} \mathrm{in}$. and the lower one $1 \frac{1}{7}$ in. wide, and both about $\frac{1}{2} i n$. thick at the centre. When together, the cart, outside the uprighte, is 19 in . wide mt top and 12 i in. at hottom. A pair of 22 -in. rubher-tyred wheels with axle will, of course, have to he purchased. The spriuge, which fasten the wheels and axle to the hody, aud which raise the steps 5 in . from the ground, can be made of 1 -in. iron ahout 1 in . thick, the ends heing fixed with small coach screws either to blocks fixed inside the lower rails, or under the seat hoards as seen in Fig. 2. In finishing, round off all the corners and edges with eandpaper; black enamel the ironwork, and give the wood two or three costs of good oak varnish. Almost any kind of wood might he ueed, walnut end birch being the most serviceahle snd deal the cheapest.

Black Polish for Shop Fittings, etc.-The method of producing the glossy black polish generally seen on jewellers shop cases and on the frames of mirrors is as follows. Thepartis to be polished must be cleaned up with fine glasspaper, all unevennesses, such as marks of the plane-iron or other tool, being carefully removed, as no polish shows defects more clearly than black, especially on flat surfaces. The ingredients required for polishing are French etain, lingeed oil, plaster-of-Paris, spirit hlack, button polish, and methylated spirit. The parts
hright in patches may he that the under colour was not quite dry in places; or perhaps the flatting was not evenly distributed over the work; or the colour may have commenced to set on one lan before there was time to follow on; or, yet again, the hrushes may not have had all the oil colour thoroughly washed out hefore being put into the flatting colour. To ensure perfect work, the under coats should he brought up well, be the flatting is only for a final dead effect. Should the walls he of large area, at least three men should he em-ployed-two to lay on the colour without intermigsion, and one to follow immediately hehind with the stippler, doing the work without a hreak until the wall is finished. The wood work, being of smaller area, may or may not be stippled. The room Ghould be cloeed during the operation, but opened afterwsrds, and the sir allowed to enter freely until the work is dry.

Wax and Varnish for Fish Hook Bindinge.To make a material for whipping fish hooks, melt over a slow fire in an earthenware pot for ten minutes $\frac{1}{3}$ lh. of heat white resin and $\frac{1}{2} \mathrm{oz}$. of white wax; add $\frac{1}{2}$ oz. of tallow or fresh lard, and simmer gently for a quarter of an hour. Pour the mixture into a hesin of water, and work between the fingers till white and pliable. After tying, the whippings should he varnished with the following:-Crush a little bealing wax of the desired colour and dissolve in methylated spirit; or, if transparency is desired, use shellac instead of the wax. Apply with a camel-hair brush; give two or three thin coats, taking care to allow the binding to dry well between each coat.

Liquid Gold for Ghlding without Battery.-Gold is couverted from a solid to a liquid by dissolving the motal in a mixture of nltric and hydrochloric acids. This liquid will deposit metallic gold on baser metals, and it forms the basis of nearly all pilding liquids. Added to a solution of caustic potaeh, carbonate of potash, and cyanide of potassium, it forms a slmple gilding solution, used at a boiling temperature. Deprived of its excess acid by heat, then dissolved in distilled water and mixed with a eolution of carbonate of potash at a boiling temperature, it also furnishes a simple gilding liquid.
Repairing Pewter Articles.-Perter vessels, etc., are repaired by soldering. Pewterers ${ }^{2}$ folder is composed of 2 parts of bismuth, 1 part of lead, and 1 part of tin. When making the alloy, melt the lead first, then add the tin and bismuth: sprinkle a little resin on the surface of the molten alloy to prevent oxidation, well stir it, and then pour the metal into an iron mould. When nsing the alloy, first well clean the article where it is to be soldered by scraping with a sharp knife, then rub a little tallow over the cleansed part. Melt a small knob of solder from the stick: place the knob on the part to be soldered, and. with a fine jet from a blowpipe, blow gently upon the solder until it flows over the part to be repaired and adheres to the pewter; smooth the edges of ths patch of solder with a smooth fils, and finish off with a burnisher.
Sail Plan for Model Yacht.-For a model yacht of the fin-keel type 3 ft long, $8 \frac{1}{2} \mathrm{in}$. beam, and $11 \frac{1}{2} \mathrm{in}$. deep with
get a good sffect. Finally, the spaces between the veining should be filled in with the lead colour, using a litch for the purpoae. When diy, glve two coats of varnigh. White marble must be done on a white ground whilet the paint is still wet. Rub up on the pallet a little blue-black with a little white, and lay in the veins as described for the black, but the whole must be softened in with a hog-hair softener while wet. Use all the colours rather thin.
Foundation for Chimney-atack.-The concrete for the base of an 80 -ft. chimney-atack should be formed of good Portland cement and ballast, or stone chippings, in proportion by measure of 1 cement to 2 sand or fine chippings, and 5 large gravel or broken stone. A block ot concrete, 13 ft . square by 5 ft . deep, would require about 130 bushels of Portland cement. The materials for the concrete should bs mixed dry, about half a cubic yard at a time, and then thoroughly re-mixed while being watered tinrough a rose, so as to moisten the being watered trrough a rose, so as to moisten the then be wheeled to the trench and tipped in, spread level, and gently beaten on top to consolidate it. Often the building commences directly the concrete is all laid, but it will be better to leave it for a week to harden. Any part projecting above ground should be suppurted by boards until well set.
Crab and Labster Pot.-Herewith is an illustration of a crab and lobster pot, whica consists of in openwork wicker basket, about 30 in . in diameter by 20 in . high, with
fin, the sail plau here given will probably be euitable if the bulb on the fin is in the usual position. The boat will require about 7 lb . of lead.
Drawing a Pivot Hole in a Watch.-A pivot hole is drawn in a Geneva or other kind of watch by pressing a pivot broach against one side of the pivot hole only and revolving it; this is continued until the original round pivot hole is drawn oval. Then broach it out round and bush it with a watch "bouchon," and open it ont to fit the pivot once more.
Renovating old Qak Furniture.-The following instructions are on renovating an old oak bureau or similar piece of furniture. Place apt. each of methylated spirit and turps in a stone jar, and heat in a saucepan of water to blood heat. Be carefnl that it does not take water to plood heat. Be carefn that it does not take the softened varnish with coarse reg or can vas; repeat as often as reqnired till a perfectly clean surface is gained. To fetch ont the figure of the wood, wipe all over with raw linseed oil, rub down with fine glasspaper over the oll, then wlpe off all dust. The work should now present a clean, level surface, suited for finally finishing by wax polishing, French polishing, or spirit varnishing.
Painting Stone Mantelpiece to Represent Marble. -These instructions are on painting two stone mantel-pieces-one in imitation black marble, with gold lines, the other to represent white marble. If'the mantelpieces are porous, coat wlth whiting and size, and thoroughly rub down berore painting. If the mantel ls to bs finished black and gold, 1 t should first be prepared black. Place on a pallet a little senetian red, ochre, white, and a little lead colour. First dip the pencil or a feather into the red, and imitate a few velns by scumbling the colour on to the mantel. Follow with the ochre, occasionally adding a little white to produce variety. Very fine lines should break away from the larger ones in fine lines should break away from the larger ones in

Crab and Lobster Pot.
a strong bottom. At the top is a funnel 6 in. deep by 8 in . diameter on the outside, tapering to 6 in . on the inside. Stones are lashed to the bottom, inside, to sink the trap, and a strong line with cork floats, fixed at intervals to denote the position, is attached to the side.
Making Rugs from Raw Hides.-The treatment of skins with alum and salt, or "tswing," as it is called, is more often resorted to than tanning for the dressing of skins for making rugs. The skin should be thrown across a bench, and the adhering flesh and fatty tissue either cut or scraped away with a shsip knife. The flesh side of the bide may next be treated for a week or two with a bran mash, which, by a process of fermentation, softens the inuer intognment, and allows it to be removed. This may prove useful in softening the inner membrane of tough skins, and after* wards allows it to be separated with the knifs. The object of this treatment is to remove all material that may afterwards tend to putrefy. Next treat the skin with a tepid bath of $7 \frac{1}{3} \mathrm{lb}$, of alum and lb. of common salt to 3 gal . of water. A portion of this solution should be made slightly warm, and then well rubbed into the skin with a brush. The skin should be allowed to remain damp for a few days, then pinned down tightly stretched on a board, and placed in the sunlight to dry. For tanning skins, it matters very little what proportions of material are used. Half fill a copper or earthenwars material are used. Hall fill a copper or earthenwar water; keep simmering for a few hours, then strain. Place the skin in the infusion as soon as it becomes tepid, and allow it to remain for at least three weeks; remove, shake well, peg on a board, and allow to dry. The length of time required in tanning a skin depends upon its thickness and upon the strength of the solution. With a strong solntion the time is lessened; but it is not advisable to use a strong infusion at flret, or the skln may be only superficially tannod. Treating as has been described, three weeks is a falr time to givoit.

Castings for Lead Toys.-For casting toys in lead, the moulde are made of cast iron. The metal used for these toys is an alloy composed of bismuth 8 parts, lead 5 prits, and tin 3 parts ; this melte at a low temperature (202' F.) and expands on cooling, and so fills all the fine lines of the mould, giving a sharp, clean casting. The mould should be brushed over with blacklead aud warmed before it is used.
Potters' Clay for China and Porcelain.-If the objects to be thrown on the wheel are of ordinary earthenware, the clay may be "hall" clay. This clay is found in Dorsetshire, and is used in its natural state without further preparation. If the articles are of fine china or porcelain, the clay is specially prepared. Kaolin, or china clay, is found in Corawall, and is produced by the decomposition of a variety of granite called pegmatite. In the manufacture of porcelain, this clay may be mixed with calcined hones, flint, etc. These materials are weighed and measured, and placed in large vats filled with water, in which they are thoruughly stirred up and mixed together. The nixture is then run into troughs and passed through fine siaves of lawn, and afterwards left till the superfluous moisture has evapoTated. It is then "wedged," or repastedly cut up, and it is them ready for the thrower.

Setting a Lever Watch in Beat.-The easiest way to tell whether a lever watch is in beat is to wedge the fourth wheel to take off the power, and allow the balance to come to rest in its natural position. The lever should then be exactly in the centre, between the banking ping or studs. To set a Geneva lever in beat, turn the hair-
ally it is necessary to cause another liue to cross the triangle to check the measurements. The triangles are plotted by the length of their sides and checked by the crossing of the additional lines at the points indicated in the field book. Outside each external line will be an offeet piece between the chain line and the boundary; this is plotted by co-ordinates-that is, distances and offsete. For example, the field book shows one of the lines thus:

meaning that it is line 3 , and the approximate direction is down to the right after leaving line 2. A station occurs at the commencement of the line shown by a circle with a dotin it, the same station having previously occurred at $2 \cdot 40$ on line 2 , and the boundal'y is on the left of the line at a distauce of 7 links square to the chain. At $0: 50$-that is, 50 linke along the chain line-the boundary goes out to 19 links, at $1 \cdot 20$ (\mathbf{l} chain 20 link \mathfrak{k}) it comes in to twelve links, then goes out again to lo links

Plotting a Survey.
spring collet round upon the balance staff by inserting the thin blade of a watch oiler or something similar in the slit in the collet. Being out of beat would not cause the watch to lose, but it might be caused by the hairepring having too much play between the curh pins. If it cannot be traced to this cause, the hairspring must be shortened by re-pinning in the stud, and the watch again set in beat.
Bending Copper Pipes.-The following is one of the best methods of beuding copper pipes of $1-i n$. and $\frac{7}{2}$-in. diameter. First carefully anneal the pipe by heating it to a cherry-red. When the pipe is cold, tie brown paper round and over one end, insart this end in sand, and pour molten lead into the tabe until it is quite full. If a firmly fixed beuch is available, cut a hole in this a little larger than the tube, and charnfer the sharp edge off around the hole. Remove the paper at the end of the tuhe, and pass the tube through the hole in the beuch to where the bend is to occur. Grasp frmly the top end of tha tube, and pull it over against the rounded shoulder at the top of the hole; pass the tube a little farther through the hole and again bend, and repeat this operation until the desired curve is imparted to the tube. Should there be any bruises in the thioat of the bend, work these out with a roundfaced hammer, and then re-heat the tube until the lead runs out and leaves the interior clear.
Plotting a Survey.-In explaining the method of plotting a eurvey by the use of co-ordinates, it may he stated that in the survey of a plece of land a syotem of triangulation must be laid out, the junctions of the lines to be chained being marked by station poles. The lines ehould approximate to the boundaries, and such additional lines taken ar will form up the boundaries into a oeriee of triangles. Dach triangle is theoretically perfect when the length of the three sides is known, but practic-
at 1880 , at 2.30 comes in to 8 links, and at the end of the line at' 292 it comes in to 2 liniks. These distances and offsets plotted to scale are shown in the accompanying Fig, 1 ; the small circles show stations, the large circle with the number in it gives the number of the line, and the arrow-head shows the direction in which it was measured. In practice the offset lines are usually omitted, points being made in the right places and the boundary sketched through. When the whole plan is plotted the chain lines are putin red (crimson luke) and the boundaries in black (Indian ink) and the pencil lines rubbed off. Then equalising lines are drawn through the boundarieg and a new set of triangles laid down on the plan, as in Fig. 2. The base aud perpendicular of each are measured hy scale, and the calculation of area is made from the dimensions so found.'
Particulars of Diamond Drill.-In a diamond drill a small diamond is used as the cutting agent. 'l'he drill may be made of a bit of steel or a thin brass tuhe, into the end of which a sharp splinter of diamond is fixed by embedding in lead.
Sharpsning Bandaaws.-When oharpening a bandsaw, each alternate tooth should be sharpened from its own side. A bcreeching noise is sometimes cansed when working the saw hy the teeth not being uniform in length, by uneven set, by too much berel, or by excessive rake. Strip the points of the teeth by parsing over them a topping file, which will make the teeth uuiform in length. File up to a sharp point, and shoot tha file so as to give the pace of the tooth but little bevel and very little rake; in fact, the front of the teeth should be nearly upright. The teeth may be set with a omall hammer on the bevelled edge of a small iron anvil. Secure the anvil in a vice, lay the saw flat on the anvil, and strike every alternate tooth from its own side.

Relaxing Birds' and Squirrels' Skins.-The follow. ing is a method of relaxing birds' and squirrels' skins. Half fill ma earthen ressel with sand that is damp but not actually wet. Wrap sach akin in a cleau rag and place lt on the damp sand; then cover with more damp sand, cover the whole with a damp cloth, and place in a shady place. In the course of, say, two or three days remove the top sand and examins the skins. If the feet and wings can be epread out by geutly working them, they are ready for stutting. If a number of skins are to be relaxed it might be ad viaable to procure a special relaxing hox. Birds and squirrels are much more easily monnted fresh. Relaxed Gkins dry very quickly, and many have a wooden and unnatural appearance when stuffed.

How to Make a Prawn Trap.-The prawn trap shown by Figs. 1 and 2 consists of an iron hoop from I8in. to 24 in. diameter with a shallow net attached.

in the liquid. When clean, wash again in clean water and roll in a cloth to dry. Then hold in front of a fre and beat briskly with a folded towel. This method should not be adopted with a valuable skin; instead, after the washing, apply benzoline, then plaster, and beat with feathere in preference to a towel. Without this beating the bird would probahly dry rough.
A. Bath or Lavatory Mirror,-The frame for the bathroom or lavatory glass hers illustrated mas be of birch or some hard wood. The moulding can be worked in two lengths of 6 ft ., İ in. by $\frac{\mathrm{a}^{2}}{\mathrm{i}} \mathrm{in}$., which will allow for joint. ing, cutting, etc. A \mathbf{c}-in. bead is run through the centre on the faceside; this can be done by a beading plane with adjustable fence, or by a hand scratch tool. A rebate is worked on one edge $\frac{1}{3}$ in. Wide by $\frac{\pi}{8}$ in. deep. The cross rails are secured to the uprights by mortise. and-tenon joints. The top spindle rail is not rebated, but is left with a square edge all round. The shelf is t in. thick by 4 in, wide, screwed to the under side of bottom cross-piece. The tail-piece is made from $\frac{1}{2}$-in. stuff, sawn to shape with a bow or compass saw and secured to the frame with a couple of nails at each side passing through the uprights. The spindles are lisin. long

A. Bath or Lavatory Mirror.

exclusive of dowels, and the tips are $1 \frac{1}{6}$ in. long and $1 \frac{3}{2} \mathrm{in}$. in diameter, the dowels fitting into holes bored in the ends of the uprights and spindle rails. The mirror is 1 ft . 2 if in . by 1 ft . 4 in., a stock size with some of the large dealers. Ths bevelled edge improves the appearauce. The frame can be stained and polished, or lert in the natural wood. A method of hanging is not shown, as ways will suggest themselves according to the position the glass has to occupy.

Aperture of Stops in Photographio Lens.-The figures of the following lene stops, $f / 4, f / 5 \cdot 6, f / 8, f / f 1 \cdot 3, f / 16$ $1 / 22, f / 32, f / 45$, and $f / 64$, represent fractions of the focal length, or, roughly, the proportion which the diameter of the stop bears to the distance between the stop aud the ground glass when a distant object is focussed. To state the diameter, therefore, it is necessary to know the focus of the lens. Focus an object its exact size, measure the distance between the object and the ground glass image and divide by four. This gives the equivaient focus, aud avoids the necessity of measuring from the optical centre. If one is substituted for f, calling it tin., etc., it is merely necessary to draw a line equal to the focus aud divide it into this number of equal parts to obtain the diameter. This is not scientiflcally accurate, as there is a slight condensation of light by the front lens, but lt is near enough for all practical purposes.

Injurious Gasea from Gas Worka, -In ths mann facture of sulphate of ammonia, the gas liquor, containing aulphide, hyposulphite, cyanide, and other componnds of ammania, is heuted first alone and then with slaked lime in an automatle still, and those compounds which are volatile, e.g. sulphide and cyanide, pass over along with the fiee ammonia through a pipe and bell-shaped exit into a tank containing sulphuric acid. The ammonia is absarbed by the sulphuric acio, leaving gulphuretted $h y d r a g e n ~ t a n d ~ h y d r o c y a n i c ~$ acid free, and it is usual to counect the bell-shmped exit to a purifier, in which the gases are absorbed; if this is done there will he no escape of injurious gases.

Uge of Zinc Dlahes in Photography.-Enamelled zinc dishes may be nsed for nxing, developing, or hardening, but the the enamel coating is always liable to have minute hales in it, the dishes should not be used for any solntions that mar'be reduced by the bare metal. Strong solutiona of powerfin alkalies will in time destroy the enamel.

Development of Staircase Well. - When developing a well lor a half-space landing, first draw the plan of the well, aa ghown at Fig. I; then throngh c draw the tangent $A B$, of course parallel to DE. Then aet

Development of Staircase Well.

off lines $F A$ and $G B$ at 60° to D and E respectively, as ghown; then the line AB, for all practical purposes, Will be equal to the semicircle FCG. From this the development of the wall-that is, the shape of the veneer-can be set out as represented at Fig. 2, which shows how the thin board would be marked out before being heut over the cylinder.
Particnlans of Corundum.-Corundum is a simple mineral, also called adamantine spar. Its specific gravity varies from 3.975 to 4161 . It contains about 90 per cent. of alumina, a little silica, lime, magnesia, and water. It is insoluble in acid, infusible by the blowpipe flame, but fuses gradually when heated with Hux. It ia generally found in ill-defined crystals, or acute and obtuse hexahedral pyramids, and is of a pale grey or greenish colour, also blue, red, and brown. It ranks in hardness next to the diamond, the sapphires being the blue variety and the oriental ruby being the red. It is found in India and in sands of rivers and alluvial matter in Ceylon. Common corundum is found in granitic rock in India, MontSt. Gothard, sind Piedmont. The granular variety, containing peroxide of iron, is the emery of commerce, found in the lele of Naxos in rolled masses at the foot of primitive mountains.
How to Cut a Cracked Glass Shade,-Suppose a glass ehade to hs cracked at the bottom for about glasa ehade to he cracked at the bottom for about portion without breaking the top part of the shade. First make an ink mark round the shade a little
below the end of the crack. Now obtaln a tube with a tine jet-a mouth blowpipe will do, or a gliss tube dıawn to a fine point, or even the mauthpiece of a clay pipe. Connect this to a piece of rubher tube and thus to a gus bracket. Now light the gas, keeping the flame ots small as possible. Lay the shade on a table with the crack uppermost and place the flame between the crack and the ink mark; hold it there a moment, then raise it, and as the crack moves along, keep touching the glass carefully with the flame and lead the crack completely round the ink mark. At the end of ahout five minutes it will be posisible to remave the cracked portion. To fluish, carefully touch up the sharp edges of the shade with a piece of emery paper.
Making a Cheap Time and Inatantaneons Shutter. -An'nexpensive time and instantaneous shutter' suitable for a mazazine hand camera may be made of cardboard as follows. Cut a piece of stout pliable card-a good photographic mountanswers well-to the pattern shown. in Fig. 1. Next cut a piece like Fig. 2, and attach at A to the first piece on the underside with a stud ar rivet v . Bend under, fiat, the two piecea B and 0 (Fig. 1), and attach to the inner hoard, thus forming a suppart, and leaving a space for the shutter to work in. Now cut in thin metal a piece like Fig. 3 , and hend on the datted lines. Farce the points Dand Ethrough the card at Fand G (Fig.

Making a Cheap Time and Instantaneous Shutter.

2), and turn these and the flaps H and I down fiat, thus hold. ing it firm. Fasten a piece of fine black card to H and I, and hriug through the two opposite sides of framework, and fasten outside a button or bead. By this means the shutter may be pulled from side to side. Now fasten a rubber hand by a slip-knot through K (Eig. 1), and put the other end of the loop over L. If the shutter is now pulied over by the right-hand button it will need only a slight pull of the leit to canse it to spring across and give an instantaneaus exposure. Time exposures may also be given.

Making Malt.-Malt might be made in small quantities. from barley, but careis required. The barley is sorked in water for from forty-eight to seventy-six hours, according to the time of the year. It is placed in heaps till it hecomes dry to the touch, the temperature rising by the growth of the harley; after about ninety-six hourg the heas has risen to the full, and the acrospire or young shoot is visihle on splitting the grain. The heaps are now spread flat on the floor and turned over about twice each day, the temperature of the rooms. heing about $60^{\circ} \mathrm{F}$. The young shoot appears from the barley in a few days and dries away after about twelve days. The malt is now moved to the kilns and spread in layers, the heat varying with the kind of malt required -for pale malts 90° to 100° F., rising to 145° to $165^{\circ} \mathrm{F}$. The heating in the kiln requires one or two days. In mashing the malt with water, the water is previously heated to 160° to $170^{\circ} \mathrm{F}$.; it is not necessary to keep that temperature up for long, but it may be allowed to fall slowly; on noaccount should the temperature be allowed to go higher than stated above.

Flting the Head of a Landau.-The accompanying sketches show how the frumework of a landeu head is fitted up, and also a plan of the posltion of the hoop-sticks when tixed in place. First get out the top pillars A, A (Fig. 1), which are 2 in . thick by the width of the door pillar at the bottom or hinge end, tapering to $2 k i n$. wide at the top, and the cant rails B, 2tin. deep, straight on the iuside, to come fiush with the pillars on the outside, sweepiug out to the side sweep of the body : then cut the top part of the body ets.nding pillar to a taper, to take the hinge C, so that it comes fush with the back of the pillar A, being careful to see that the face of the pillar a is kept level with the inner face of the door pillar at D, so that the glass frames will
for the hody closing in : the cant rall is boxed out to lino with the pillare, $\frac{7}{1}$ in. deep. Run the quirke on the outside, cut the joint in the cant yail E, and let in the dovetail catches on the top to keep it in place. To prevent itopening whilst fitting apthe other parts, tightly fit a slip of wood in the glase course, fixing the two halves of the cant rail to it with screws. Having fixed on the pillare and cant rails, for good, aud having eeen that they line with one another, fix on the two centre hoop-aticks F, F (Fl/ 3), whichare 3 in. wide by lin. thick, and are planed off at the ends co that they fit iat on topoi the cantrail. The front one is kept over the joint in the cant rail until it lines with the male part of the dovetail catch, a clear epace of $\frac{\pi}{8}$ in. being left between the two hoop-sticks to allow room

Fitting the Head of a Landau,
work fieely. The hinges C having been turned to the proper depth eo that the knuckle jolnt comes fair in the centre of the joint formed by the two pillars, fix them in place, keeping the outer edge $\frac{6}{8}$ in. in from the ontside of the pillar, serewing them on so that the joints line atraight acrose both ways. The top pillars are now fitted to these hinges, temporarily at first; bee that they are perfectly \quad quare from hoth faces. Mark off the height of the head, which should be sufficient to give a clear distance of 3 ft. 6 in. from the top of the seat to underneath the hoop-8tick, and fit in the cant rail B. The cant riail should not be cut untll it is practically flnished; it is utticched to the pillars by two hinges, which are 60 me times let into the top part, and at other times on the inside of the rail, according to the make of fittings used; bee that each corner works equare and true with the pillar, or the head will never close properly. After the pillare and cant raile have been cleaned off to the body, they are boxed out for the glass course, marking the pillars by the course already made in the doors (which is generally about lo in. wide, tapering to wards the top to Pull $\frac{1}{2}$ in.) ; it is taken out full in. deep, and should be a trifie deeper than the courre in the door pillar, to allow
for the cloth and lace trimming on the edge. To fit up the narrow hoop-sticke $\{$ (F'ig. 3), it is necessary to fit around the top part a trame ol scaffold, indicated by the dotted lines H (Figs. 1, 2, and 3); the top ones are $\frac{1}{2} 1 \mathrm{n}$. deep by lin. thick, true to the side sweep of the body on the inside edge, fixed to the cant rail by a, ecrew, in line with the top of the wide hoop-sticks already flxed. At the corners, 8 trips I (Figs. 1 and 2) are screwed on at the top, being fixed to the hack and front raile at the bottom (日ee F'igs. 1 and 2), when the top line of the trame should have a drop of lin. from a straight line, and a sall out in length of lin. beyond the square line, both back and front. To keep the frame its proper width, two laths K, K (Fig. 2) are tacked acros9 at the back and front, afterwarde testing for correctness with a wax line. The siats L (Fig. 1) are now got out, the front and hind oues being slightly curved at the top, full lin. thick by the width of the hoop-sticks G (Fig. 3) at the top, tapering to neariy the width of the slat-iron M (Fig. 1) at the bottom; they are very blightly 6 wept on the outside, and in fitting them up they have to restagainst the framework at the top and on to the glat-iron at the bottom; this gives a twist to the two bearings, which is worked out a good bit

In rounding them up. At the top thay are kept $\frac{5}{3}$ in. below the top edge of the frame, the hoop-stlck making up, when let on, the remainder. The slat-sticks alee rounded off at the bottom end about $1+i n$, below the last screw hole in the slat-inon, but should not be fixed ror good until the whole is fitted up. In some cases it is necessary to fix on a small corner block behind each pillar, to carry the first narrow hoop-stick; in other cases a fial is left on the fitting, to which they are fixed. Having got them all in place, hold a long lath flat on the centre hoop-sticks, press down each end, and see that it bears fair on each stick; should it not do so, alter the fixiug on the slat-iron either up or down, as may he required. After it is comeot, tack on two strips of webbing irom the centre hoop-sticks over the others on to the cross rails of the body, keeping it tight and tracking to each hoop-stiok; take avay the frame round the body, loosen the screws in the strips in the cant rail, lower the head to see that it works all rig'. c, when the pillars should be as shown at N (Fig. 1). of all is correct, put it back in its place, securely fix tne slats to the irons. put on the filling-up pieces o, (Fig. 1) ou top of the cant rail level with the hoop-stick and fush with the end of the rail, this and the top corners of the hoop-sticks being canvased about 7 in. each way, and the bottom of the slat
join the three together with a binding strlp over each joint, making the ands square. While this ls drying join the three remaining cards in the same way, the wide one bein ri in the centre. Then turn both parts over, auljust evenly, aud join tgain, when the whole will appeax as in Fig. 1 , where the blacker line at D shows the biuding strips in Fiew, the joints B, C, E, F, having been joined on the other side. Next join the ends a, which is done by holding them over a fiat ruler while sticking on the strip. Those strips act as light-tight hinges, so that the whole will fold up flat, as shown in section partly closed in Fig. 2. The letters at the joints in Figs. 1 and 2 correspond, and make this quite clear. Figs the bottom, cut a piece of tin thin. by 4 in . and turn the edges up in. Inll all round, snipping out the corners. This will make a tray that will fit loosely inside. To milke the top, cut a piece of tin to the shape showu in lig. 3 , bend at the broken lines and cut at the pull lines, so that it appears as shown by Fig. 4. The edges projecting downward will be 3 in. apart, to fit inside the lamp (see section, Fig. 4). The thanges bent up form light shades in one direction for the ventilation hole. A second piece of tin will shnde in the other direction, and this must be cut as shown in Fig. 5 , and bent along the dotted lines, and slightly curved as at $\mathrm{s}_{\text {. }}$

Lamp for Photographic Dark Room.
sticks 9 in. or 10 in . np, when it is ready for the trimmer. lt shonld be mentioned that the whole of the hoop-sticks and slats should be well rounded in to prevent the cloth or leather from being chafed, and in cases where a large front light has to he fitted the front hoop-stick is much heavier than here given.

Preparation of Mercury Chlorides. - The two chlorides of mercury are mercuric chloride (HgCl_{2}) and mercurous chloride (HgCl or $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$). The first is often called colrosive sublimate, and the second calomel. To prepare mercurous chloride, dry mercuric chloride, mercury, and a common salt solution are rubbed in a mortar to a uniform mixture, which is sublimed, that is, evaparated by heat, and the calomel is condensed in steam or air. Another method is by placing solution of mercurous nitrate in a dilute solution of common salt; the mercuric chloride in the white pre cipitate resulting. It inust be thoroughly washed in water, and dried. Mercuric chloride is often produced by the evaporation of a mixture of dry common salt and mercuric sulphate in equal parts. Or metalic mercury may be heated in chlorine cras ; or hot hydrocbloric acid may be used to disfolve mercuric oxide (red precipitate), when the required material crystallisas out on cooling.
Lamp for Photographte Darls Room.-To make the lamp here illustrated, cut two rectangular pieces of cardboard 8 in. by 4 in. and four piecess 8 in. by $1 \frac{3}{1}$ in. ln one of the wider pieces cut out a piece for the window about 5 in. by $2 \frac{1}{2}$ in., and fit in a piece of ruby glass, secured by lantern slide binding strips stuck on both sides. If ruby glass is not available, gum two thicknesses of orange paper over the space. Then lay this piece on the table (inside uppermost) with one of the narrow cards on each side of it, and

This will slide over the first tin, and the flanges of the lid will meet at the corners, and, being $3 \frac{3}{4}$ in. by $3 \frac{1}{4}$ in., will fit comfortably in the top. The tray bottom and lid cover keep the card sides extended-as shown in Fig. 6 . When packed up, the tray and cover will fit into each other, and the sides fold up flat.
Preparing Gelatine for Casting Trusses.-Gelatine suitable for casting trusses should be of good quality costing ls. to ls. 6d. per lb. Soak the sheets in, a bucket of cold water till soft, and then melt in a vessel surrounded with water like an ordinary ginepot, adding sufficient water to make the mixture just thin enough to pour easily and yet enter into all the small details of the ornament. The gelatinu must not be used too hot, or it will stick to the mould, however well the latter may be oiled. Allow the can to hecome sulticiently cool to be handied without discomfort before using.
Injurious Gases from Manure Works,-The gases evolved in the manufacture of artificial manure are carbonic acid, sulphurous acid, sulphuretted hydrogen, hydrochloric acid, and, according to some, arseniuretted hydrogen and silicon fuoride, also sulphurio acid in the form of spray. These gases are certainly injur.ous, and in small quantities will lead to bronchial and other affections, and to poisoning if inhaled in large quantities. The operation of dissolving is, however, carried on in a closed mixer and pit in which a fian is placed. and the gases are drawn through towers in which blocks of wood loosely packed are arranged, and these blocks are kept wetted by water sprayed from above; by this means the harmful gases are dissolved out before the air is passed into the chimney. In a properly constructed superphosphate woris there will therefore be no nuisance from the escape of gases.

Cleaning Gold Braid. - Gold braid only slightly discoloured may be cleaned by beating it with a solt discoloured may be cleaned by beating it with a sort fuller's-earth. If badly spotted'and blotched, the stains may bo removed by carefully brushing wlth a brush dipped in a warm solution ot potassium cyanide-1 dr. to \quad pt. of water-then in clean warm water. If the braid is of poor quality, all attompts at cleaning will only make its appearance worse.
Safety Valve on Hot-water Apparatus.-The position in which the safety valve is on the primary return Is genarally considered as good as any. Thare is no doubt, hoverer, that theoretically the ideal place for a safety valve is directly in the boiler, which is the seat of danger; but this position is seldom available, and at hest the valve would be out of sight, and this is not desirable. The valve is therefore connected to the boiler by a pipe that will not readily become stopped up. The flow pipe is the least desirable position, as in hard-water districts the pipe is apt to choke with deposit. The return pipe is much less liable to choke. Perbaps the best way is to connect to the boiler by an independent l-in. pipe, screwing this through the top of the boiler so that it projects down about I in. inside. It is not likely to be shelled over or stopped with lime deposit if done in this way.
Size of Girder to Support a Floor.-Suppose a girder 16 required to support a floor 38 ft . by 30 ft ., the girder to run the $38-\mathrm{ft}$. Way. A single girder of 38 ft . span down the centre of the room wonld require to be of steel, composed of a rolled joist 20 in . by $7 \frac{1}{2} \mathrm{in}$. by 89 lb ., with two $12-i n$. by $\frac{5}{8}$-in. plates on each flange, making the
brown goods belng grain side out. The shoee will not need washing every time they are cleaned; but before they are creamed-in fact, every time they are taken off they should be well dusted and polished with a soft cloth. After the cream has been put on one shoe, let it set while the other is creamed; then well polish with a goft cloth. This treatment preserves the surface of the leather.

Making Emulsion of Cod Liver Oil.-Suppose that one is making upan 8oz. oottle of emulsion of cod liver oil ; clean and dry the bottle, and weigh into it 20 gr . of gum tragacanth, moisten the gum with a very little spirlt of wine, and allow it to stand tor about an hour. then add loz, of water and ehajke vigorously; this will produce a thick emulsion. Now measurs out 3 oz . of water aud 4 oz , of cod liver oil, add a small portion of the oil and again shake, add water sud shake, and so on, until the materials are thoroughly mixed and emalsified. If it is intended to sweeten and flavour this mixture besides adding hypophosphites, make s, syrup by dissolving llb. of white sugar in 2 lb . of water take 3 oz . of this syrup in place of the 3 oz of water, add to it from 20 gr . to 50 gr , of each hypophosphite before making into emulsion. The flavouring matter is oil or bitter almouds; it should be diasolved in a little spirit of wine, a few drops of it being added at the last go that there is just sufficient to give a flavour and no more. T'be emulsion can be made very quickly and thoroughly by placing the materials in a mortar or basin and employing an egg whisk.

Box for Oil Colours.-Herevith is a sketch of a colous box suitable for either studio or sketching parposes.

whole girder $22 \frac{1}{2} \mathrm{in}$. by 12 in . by 195lb. per ft. The floor may then be carried by Il-in. by 3-in. flr joists resting on a $3 \frac{1}{2}-i n$. by $34-i n$. by tin. angle steel, riveted to web on each side, as shown in the accompanying illustration.
Cleaning and Polishing Brown Boots.-In cleaning all boots and shoes it is best first to put them upon trees; if unprovided with these, to fill them-or the forepart of them-with soft peper so that they can be the better rubbed. For brown leather that is stained by dirt in wear, all that is necessary, as a rule, is to wash it with a very soft brush or aponge and a little soap and water. If very bad, wash in the sime way with ('lark's mahogany fluid diluted well with water. Propert's fluid is also very good, but wants a little more care in using. Whichever isused, follow with an application of the same maker's cream. To keep the boots light, use white cream, unless any of the surface is worn, when it will need brown cream to bring it to the colour of the remainder. Sometimes dust accumulates on cream and mixes with it because the cream has not been proparly applied, or because too much hes been used. If the boots are on tirees, the cream can be rubhed off with a dry cloth, but it is very hard work; and water, as above, will not hurt the leather if used carefully. To uss the cream, have a very small portion ou a plece of clean white flannel and rub it on the leather very lightly over a wide surfiace as quickly as possible. This is continued till all the boot or shos has been gone over. Then start afresh, and go ovel it again and again in the same way, always working the pad with a circulur motion. After the first cleaning, the front will need the most treatment, as that portion of the shoe gets more wear, and the bending of the foot throws the cream out of the pores of the leather, these

The box, which is about 13 in by 9 in . by $1 \frac{1}{2} \mathrm{in} .$, ls divided into compartments to hold twenty-three oolours, oil, turpentine, dipper, and brushes. The palette is laid inside the lid. The dotted lines uuderneath show how the same sort of box may be mada to hold two or three prepared millboards.
Mountant for Glazed Prints.-There is always a danger of losing the glaze when a water mountant is used, but an alcuholic solution of gelatine does not eo affect them; it is, however, difficult to apply a thoroughly even coating. If the prints are backed with waterproof paper, ordinary mountants may be used, and the print paper, ordinary mountants may oe used, and dowe prith benzoline may be used.

Making Stome Playing Marbles.-Ordinary stons marbles are mostly made in Germany. The stona is broken into pieces of the required size and thrown into a mill, where, beneath a kind of horizontal malstone. the angles are ground off and the pieces graduaily reduced to shape.
Glazing Photographio Prints.-To glaze prints, carefully claan the glass, dust it over with French chalk, and rub well, flnally polishing off every trace of chalk. Soak the print in water, and bring it in contaot with the polighed glass under watar. Cover the print with a sheet of blottlog paper, and squeegee into close contaot with a flat aqueegee, and set up in a, Warm, well-ventllated room to dry. When bone dry, the prints sbould spring off spontaneously if one corner is lirted with a penkniff. if the prints will not leave the glass without tearing, either the glass was improperly prepared or the printe were not thoroughly dry.

Renovating Crimson Velvet of Chair-seat.-The following is a method of raising the pile of a crimson velvet chair-seat cover. First take off the velvet cevering, as prebably there will be an under-cover of calico or hessian, and the stuffing will not be disturbed. Now heat an ordinary fiat-iron and cover it with several folds of wet cotton cloth. Fasten the iren by the handle, face uppermest, in a vice, and as the steam rises pass rapidly the wrong side of the velvet backwards and for wards over the face of the iron; finish by brushing up the nap with a soft bruch. Another method is to flll a clean tin can with boiling water, cork up, and lay it on its slde. Slowly pass the velvet over the can, and as the steam comes through bruch up the pile.

Estimating Load on Floors. - Floors should be estimated for according to the nature of the buildling and the probable load. A crowd of persons is varieusly estimated to weigh from 411 h . to 1174 lb . per square foot of the surface covered. Probably a safe average would be lewt. per ft. super. considered as a live load. Dwelling houses are usually designed for a dead load of $1 \frac{1}{4} \mathrm{cwt}$. per foot super., churches and public buildings $1 \frac{1}{2} \mathrm{cwt}$., and warehouses $2 \frac{1}{2}$ cwt. The weight of the structure must be allowed for in addition to the above loads, and this is most important to bear in mind in connection with freproof floors.

Railway Carriage Monldings.-The accompanying figures bhow a few of the sections of mouldings commonly used in railway carriages, but very many others are employed, especially on saloon interiors. Fig. 1 shows a coach round, Fig. 2 scotia, Fig. 3 couch head, Fig. 4 egee, Fig, 5 ovolo, Figs. 6 to 11 compinations of rounds, villets, and hollows. The round
plate the size of the stock, having a l-1n, iron pin in the centre long enough to pass up through the other wheels, and fitted with a nut and thread at the top. On the face of the rim of the bottom wheel are bolted twe cross-bearers ahout 4 ft . long, 4 in . wide by 4 in . deep, parallel with each other, haviug strong castors fixed on ahout 9 in . from each end. On the back of the top wheel is fixed an iron plate similar in size to the hottom one with a hole through the centre to take the bolt fixed to the bottom wheel. The backs of the wheels are put together and screwed down by the unt on top of the bolt. On the rim of the top wheel are bolted two bearere similar in size to those on the battom wheel. The body, when taken off the carriage, rests upon these, when the top wheel can be turned round to any desired position, or the whole moved where required by the castors on the bottom wheel.

A Tool-holder for a Slide-rest.-Figs. 1 and 2 show a very handy American tool-holder for slide-rests, with a tengue to fit into the T-slot in place of the regular toul post. it can very easily be constructed to fit an post. It can very easily be conctructed to fit an it planed flat on the hottom. In commencing to make it. the base of the iron casting being planed, the hole should be bored with a horing har hetween the centres ol the lathe with which the holder is to be used. A A-in. hole is about right for a $4 \frac{1}{2}$-in. centre lathe. The siot A (Higs, l and 2) is cut with a hack-saw, and clamping screws are shown at B. The dotted lines at 0 indicate the belt hole for fastening the holder to the slidenrest. Fig. 3 shows a s-in. steel boring har, which should have a total length of about 10 in . A $\frac{1}{2}$-in tapped hole carries a grub ecrew, and a corner of the har is filed off. The hole for the

shown by Fig. 1 is used on outside mouldings; Fig. 6 shows an outside cornice moulding where the roof hoards overhang the side ; Fig. 10 a cornice molilding to que over the cloth when the roof hoards are cleaned off fush with the side; Fig. 9 shows an inside cornice moulding, and Figs. 7 and 8 are for inside doors and panelling. It will be noticed that the bead (Fig. 3) differs from that usually used in joinery in having a v quirk.

Cement Joints to Drain-pipes.-For jointing drainpipes, cement mixed with a little send is used. When the sand is clean and sharp, 1 part of sand to 4 parts of cement may he safely used, without detracting too much from the strength of the joint. To make a good joint, tarred gaskin should be first well caulked into tre jolnt with a flat caulking tool, so as to prevent the cement mortar bulging up inside the pipe and forming a ridge. The length of time such a joint should be allowed to stand before testing. will depend on the setting qualities of the cement, but with twenty-four hours' rest it should stand a head of $1 \mathrm{I}^{\prime \prime}$. of water. Two parts of Portland cement mixed with 1 part of lime and 6 parts of sand give s mixture twice as atrong as one made of 1 part of lime to 2 parts of sand, while the cost is nearly the same. Such a mixture, however, would be toe perous for jointing drains with. Four parts of cement, 2 parts of lime, and is parts of sand would make a suitable mixture.

Body-horse for Coach-painters' Use.-The kind of body-horse most generally used in painting the bodies of carriages consists of a pair of geed stout second. hand wheels, placed back to back and on top of each other, and four cross-bearers and castors. Procure a pair of wheels about $3 \mathrm{t}^{\circ} \mathrm{t}$. 6 in . high; with 24 -in. or $2 \frac{2}{2}$-in. spokes; see that the tyres are tight, so that the spokes will not work when the weight is put upon them. If the stocks are fairly large on the back end, clean them off true and flat; plug up the centre quite tight in each one. On the back of one fix an iron

Tool-holder for a Slide-rest.
cutter should be drilled, the cutter being of ${ }^{3}$-in. square tool steel. Fig. 4 shows a split bush to hold a $\frac{1}{i n}$. bar ; it has a milled end to facilitate removal. Several such bushes ghould be made to accommodate a variety of bars, and also one or more with the holes eccentric to the centre of the hushing to hold small steel. By that means it is easy te place the cutting point of the tool at any height required.

Tempering Gun-lock Springs.-In tempering amall V-shaped splinge for gun-locks, the springs must be made red hot over a clear forge fire, and then plunged into cold water and allowed to cool. They are warmed and rubbed all over with mutton suet, which is then blazed off over a clear fire and the gprings allowed to cool. Be careful not to overheat the steel.

Detecting Adulteration of Milk.-A hydrometer graduated for specific gravity (a urinometer is suitable), also a 6 -in. by l-in. tube wlth a graduation at 5 in, and other marks, will be required in testing milk. Pour some milk into the tube and float the hydrometer in it ; if the milk is pure the hydrometer will sink until the mark 1032 is just visible at the surface of the milk; watered milk will have a gravity below 1030 , and, if very watered mik will have a gravity below loso, and, if very
bad, 1020 to 1025 ; skimmed milk has a gravity from 1033 to $103 \overline{3}$. Remove the hydrometer, fill the tube to the 5 -in. mark, and leave it till the morning; then read off the number of divisions occupied by the cream. The divisions may be one-tenths or one-twentieths of an iuch; if the former, then each division equals 2 per cent. of cream ; if the latter, then each division equals 1 per cent. of cream. A goed milk will yield 8 to 12 per cent. of cream or 3 to 4 per cent. of fat. The figures given above hold true for the majority of milks, but a little latitude must be allowed; for instance, if the percentage of cream is tweive, then the gravity may be below 1030 , and yet the milk may be genuine, becanse the fat is lighter than the other materials. A full chemical analysis is really necessary for detecting slight adulteration.

Bluing Flfle Barrels.-Charcoal, crushed to dust, is employed for bluing steel gun-barrels. lron can he blued as well as steel. The barrels must bs very highly polished, and previous to being immersed in the charcoal dust, which is made hot, must be rubhed with whiting to remove all grease; after removal from the charcoal they are dusted with whiting. When being hlued, and as soon as the colour is deep enough, allow the birrels to cool, after which oil them thoronghly.
Overhead Arrangement for Lathe, - The fllustrations show a simple and efficient way of setting up an overhsad shaft and fittings for driving revolving cutters as A in Figs, I, 2, and 3. The uprigats B (Fige. I and 2) may be of gas pipiug, the lower ends being fixed to the table and the pipper ends having in oross-har to carry the hearinge of the overhead shaft, with drum D (Figs. 1,2, and 3) ; aset of these eupportsis requirsd at each end of the lathe. The chief part, however, is the tightening device. This consists of a pulley P (Figs. 1, 2, and 3) and hook with weight C (Figs. 1 and 3). Fig. 3 shows the arrangement clearly. The gut band or helt should be long snough to phss over the drum and pulleys. The weight keeps the band tight in whatever position the
tools mist run truly, they are fixed in the mandril and there turned. The general shape of the tools is that of a small diec more or lese rounded on lte edge, which ls the cutting part, and which, for fine linss, io nearly a knife edge. For sinking large shields the tools are more rounded, and in some casee almost spherical. The rounded tool cute more rapidly than one with a nearly flat edge, and is chisfly used for removing the bulk of the material, while the fintter edge ie used for emoothing the surface. To allow the tool to be applied to sunken Hat surfaces without the stem interfering with its action the edge is made conical, the tools are seldom larger: than ris in dlametsr, and are sometimes as small as ${ }^{\frac{1}{6} \pi}$ in., very small tools being made by wearing down on rough work. To prepars the diamond dust it is mixed with olive oil. A sraall quantity is applied to the mlowly noving tool; this is then moietened with some non-clogging oil, euch as sperm or neat'sfoot. Stones to be engraved are often mounted on a handle ahout. 5 in. long aud $\frac{3}{4}$ in. in diameter, the cement heing coated with seal. ing-wax to prevent adhesion to the fingers. If the stone is aet, its setting is inserted in a notch in cork or bamboo cane. Ths surface of a hard, polished otone is roughened by ruhbing on a soft steel plate

elide-rest may hnppen to be. Fig. 2 shows a modification with a spring Einstead of the weight. The lower end of thls spring should bs fixed to the carriage of the slide-rest. The arrangement with the weight is easier to construct.

Engraving Deaigos on Gems.-Seal engraving is the art of sinking designs in intaglio on gems und hard stones. When the subjects are of an artistic kind the art is termed " gem engraving," and when a design is carved in relief it is called "cameo cutting." - The tools and processes are similar in all three branches. The tools consist of small revolving wheels, the edges of which are charged with diamond dust, moistened with neat'sfoot oil tor hard stones, or with oil or water for soft stones, the polishing being effected with rottenstone and "water. The ohject is held on a "cement stick," and is thus applied to the lower edge of a wheel. The sapphire is cut slowly but emoothly the ruby is cut slowly, being apt to break off in smal pieces, leaving a rough edge; carnelian and hloodstone ure of close structurs, and muy be cut slowly. The solter stones can bs cut with greater rapidity, but the effect is not so smooth as with harder stones, the amethyst being as soft a stone as can be engraved smoothly. When such soft substances as gines or marble are engraved, the tools foon deterlorate, the diamond duet embedding ln the work and thus re-acting on the tool. The tools have long conical stems for fitting into the hollow mandril of a small foot-driven lathe-head. They are of iron wire, of tened to take up the abrasive material easily, and around the stem of each tool is cast s. tin or pewter plug that fits the lathe mandril. Ae the
charged with a minuts quantity of diamoud dust and oil, or, if the stone is soft, on a leaden plate with fue flour emery. Ths outline is then carefully sketched in with a birass point or scriber, nnd the euriace within this outline is sunk. For dotting out an outline a small sharp-edged knife tool is used, a thicker tool with a rounded edge perfecting the outline; a still thicker tool is used for clearing out the material. The surface is finished with a smaller and flatter tool. Curved lines ars more easily engrared than straight lines; and colour lines (or lines that show the stond surface between) fres engraved with a tool having two knife-edges. The front edge cuts the required depth of line, while the second faintly marks out a parallel lins ; should the doubleline tool tend to "run over," i.e. to overlapany previously cut ontline, finish the linee with a single knife-edge tool. The work ls watched during the cutting througli a lens mounted in an adjustable stand diroctiy over the tool, the work heing brushed from time to tlme. Ths engraver, however, depende much on the sense of feellng for placing the work in respect to the tool, and upon hearing for judging of the progress of the work. An impreesiou of the work is occasionally taken in a black wax mads by mixing fins charcoal powder with beeswax, and un impression of the finished stone may be takse by dusting it with vermiliou, cleaning its surface, and then pressing into hot red sealing-wax on a thin card or thick paper. So that the engraver's hands may be perfectly stsady and fres, he usually rests the palm of the lett hand ou the capof the lathe headstock, while the forestnger and thumb embrace the revolving tool und grasp the upper end of the cement stick. The forefinger and thumb of the right
hand grasp the stick just helow, and the right elbow is supported on samall cushion on the bench. When the engraving is finished, polish is restored to the surface by rottenstons and water on a pswter lap. The engraved surfaces of ssals are not usually polished, but those of gems are finished carefully with copper tools charged with fine diamond dust. Boxwood tools with still finer diamond dust follow, then the copper tools with rottenstone and water.

Bevels tor Hips to Semi-octagonal Lantern Light. Forss 1 and 2 show the plan and elevation. The bevel for the bottom ends of the rafters will bs the same as thsir rake, as shown at E (Fig. 2). The bevel to apply to

Bevels for Hips to Semi-octagonal Lantern Light.

Prom K (Fig. 1), K L parallel to $\mathrm{B}^{\prime} \mathrm{N}$ (Fig: 2), and then by drawing the vertical ling $L M$, giving the bevel as at F. At Fig. 3 is shown the bevel applied for the backing of the hips; this is obtained by fixing on any point P in K B and drawing an arc tangent to $K L$ and meeting $K B$ in R; from P draw a line perpendicular to $K B$, meeting $K O$ as shown, and join $O \mathbf{R}$, which will give the angle G required. To get the trus shape of one side, bisect A Sin 0 and draw the straight line BOD, then with the compasses set to radius $A^{\prime} B^{\prime}$ set off $A D$. The joining of $A D$ and $D S$ gives the shape required. From this development the bevel tor the top of the hips is obtained by the angle CDS as shown at H.

Uee of Supplementary Lenses in Photography. - A convex lens added to another lens shortens its focus, and a concave lens lengthens its focus, To find the result of such a combination, multiply the two foci sad dipide the answer by their sum minus the distance
of separation. Thus, with an 8-in. lans added to a 6.in. lens at a distance of 2 in., $\frac{8 \times 6}{8+6-2}=\frac{4 \pi}{2}=4 \mathrm{in}$. If it is desired in a flxed focus camera with lens of $5 \frac{1}{2}-i n$. focus and extension of 6 in., set for 8 ft ., to include objects at 1 ft ., it will be necessary to find the focus to which the present lens must be reduced. To do this, divide the distance between the lens and a near object by the extension (or the distance from the lens to the plate), which gives the ratio or proportionate size of the image. Multiply the whole distance by the ratio and divide the answer by the ratio plus ons squared. Thus $12 \div 6=2$, the ratio. $\frac{(12+6) \times 2}{(2+1)^{2}}=4 \mathrm{in}$. To find the focus of the lens that must be used to reduce the $5 \frac{1}{2}$-in. lens to 4 in., let a equal the focus of the present lens, b equal the required focus, $\frac{a \times b}{c}=\frac{5 \frac{1}{2} \times 4}{1 \frac{1}{2}}=14 \frac{2}{3}$. In order to prove that this will give the focus desired, the first rule given above should be used, namely, $\frac{14 \frac{2}{3}}{14 \frac{2}{3}}+5 \frac{1}{2} \frac{1}{2}=4$. It will be noticed that the distance of separation is ignored. This ls because

Sketch for 100-ft. Chimney, with Prices, etc.-The accompanying sketches show a $100-\mathrm{ft}$. chimney deaigned In accordance with the principles lald down on $p, 149$.

Design for 100-ft. Chimney.
Assuming that it Is for five boilers, each 30 ft . by 7 ft ., and of about 50 horge-power, the chimner muet
be aufficiently large for 250 hores-power. The area in square inchea $=\frac{100 \text { horse-power }}{\sqrt{\text { height }}}=\frac{100 \times 250}{\sqrt{100}}=2,500$; and this corresponds to a circle $4 \mathrm{ft} .8 \frac{1}{2} \mathrm{in}$. or, say, 4 ft .9 in . diameter. If the firebrick be not carried up to the top, the commen brickwork will need to be stin. thickerin each length. In Lancashire and the North of England generally the brickwork would be measured up and given as: x superficial yards common brickwork, 9in. thick, the price being about 5 s . ; x superficial yards extra for circular work about 3 ft . radius, at about 1 s .4 d . x superficial yards (face measure) building to batter of 3 in . in 10 ft . at about 6d.; x superficial yadds firebrick lining, half-brick thick, at about 4 s . 6 d ; x superficial yards extra for circular work about 2 ft . 4 in in. radius, at. about 2s. ; x euperficial yards (face measure) for building te batter of 3 in . in 10 ft ., at about 4d.; x lineal feet building in stone basecourse, at about 1s. ; x lineal fest neck menld, two courses deep, circular, at about 8d. ; x lineal feet oversailing to chimney cap, sixteen courses deep, cir cular, at about 1 s . 6 d : a lineal feet setting stone coping at about la. Fair prices for labeur only would be for common brickwork, about 2a. 6d. per aquare yard, extra for circular about 8d., per superficial yard of batter about id.; per \quad uperficial yard firebrick lining, about 19. 6d. ; per superficial yard extra for circular work, about yd.: batter in firebrick lining, about 3d.j per lineal feot building in stone base, about 4 d. ; per lineal foct neckmould, id.; oversalling sixteen courses deep, about ls.; stone coping, Id. In addition to these the master bricklayer should add sums for labour to cover hoisting, alteration of scaffold, etc. Fig. I showe half elevation, Fig. 2 half section, Fig. 3 plan at A B, Fig. 4 plan atCD. Fig. 5 vertical section of flue at $G H$, Fig. 6 plan at EF. In. Fig. 6 , letter I indicates the flue from the boilers.
Particulars of Pigments used in Sign-painting. -The following notes may be regarded as supplying a summing up of the characteristics and properties of the pigments used in sign-painting. Burnt gienna is a rich pigments used in sigu-painting. Burnt aienna is a rich transparent red-brown earth used for glazing over geld with a emall quantity of ex-gall, and should be thinned With copal varuish, Not turpentiue; gold size may be used as a drier. I't dries better than raw sienna, and is very permanent, as it is not liable to change by the action of light and oxygen, nor by damp and impure air. Burnt umber is a burnt Italian ochre. It dries well in oil, and is therefore often used as a drier. It is very permanent, and is cometimes used instead of vandyke brown. Emerald green, which is, perhaps, the signwriter's special green, is a copper green upon a terrene base, very useful for brilliant work. It has not much covering pewer, and is a bad drier in oil, and therefore requires gold size or patent driers. It retains its colour well. The tube colour is the best. Flake white is a vary pure white, notlikely to discolour; it is on this account generally used as a finish over previous coats of whitelead. Green lakes are pewerful coloure, but net permanent. They may be purchased in bulk ready ground in oil, or in tubes. Indian red-peroxide of iron-makes pleasant tints with white, is permanent, and pessesses great bods. It may also be used as a ground ccleur, or as a chade tint with vermilion. For a quick-drying ground colour it may be mixed with turpentiue 4 parts, varnish 1 part. Indigo possesses great body, and is n good glazing colour. It is not very durable, and is injured by inpure air. Ivory black is made by placing ivory dust in a covered crucible exposed to a great heat. An inferior colour known as bone black is made by treating bones in a fimilar way. lvory black, the deepest and purest of the blacks, being somewhat hard, requires very careful griuding, and unless ground very fine is useless. It is best ground in turpentine, and diluted for use with turpentine, gold size, and a little varnish. In drying it will become dull $s o$ that it should not be used unless it. is afterwards to be varnished. If thinned down too much with turpentine it will net bind, 60 that when the varnish is applied it will rub off on to the rest of the work and speil the whele. Ivory, black, when purchased nngronnd, resembles "drops," and is sometimes called "droy black," but bone black is prepared in the same way. Lemon and orange chromes, when of best quality, are chromates of lead. They are brilliant, have good body and coveriug power, and make good tints when mixed with white. When used in oll they must be protected by varnishing, especially if exposed to impure air, which in time will turn them black. They make so-called gold colours, aud must on no account be intsrmixed with Prussiau and some other blues in making greens, as chromate of lead will destroy thees pigments. The yellow chromes are made in three ahades, known ase Nos. 1, 2, and 3; the No. \& ahade is the orange chrome, a deep rlch colour. The shades are varied by increasing the chromate for deep orange, and lessening it for the pale Jellowa: These colours are injured by damp and impure air, sulphur fumes, and hydrogen; hut the orange chrome is said to last better
than orange oxide of lead. The chromes require skilful handling. Prussian blue is a good working and staining colour, and a quick drier. Raw sienna is rather an impure yellow, but has more body than the ochres and is also more transparent. By hurning it becomes burnt gienna, which has the same properties. Raw umber is a gind drying colour that does not injure colours with which it is mixed. Ultramarine, when perfectly pure, is most expensive, but the sign-writer generally uses French ultramarine, an inferior product, which will, however, stand when protected with oils and varnish. It may be despened with vegetable black, and when mixed with white makes a pure tint. Fandyke brown is a rich, deep, transparent brown, and is a permanent colour good for glazing and for "markings" ou gold. It is a bog earth, and not a very good drier. Vegetable black, which has taken the place of lamp hlack, is a light powder, and requires no grinding. Patent driers may be added, and it may be used on unvarnished work. Venetian red is cheap but permanent, and must be procured ready ground in oil. it is usetul as a ground colour. Vermilion can be had as a fine dry powder, free from grit, and is a very brilliant colour in oil. The hest quality only is permanent, and that is Ω sulphuret of mercury. Ohinese red, or vermilion, is of a deep crimson tons, hut has bad covering power, and, unless well protected, will soon fade under the action of light and impure air. White lead-one of the most frequently used colours and also one of the most faulty-is made by suspending rolls of ordinary thin sheet lead over malt vinegar or pyroligneous acid, in close vessels, the evaporation from the acid being kept up by a 'steam bath underneath. The lead is thus reduced to a whits powder ready for being ground with liuseed oil into to paste. White lead improves by keeping; and for good work should be stocked for at least twelve months after purchase. Very pale and old linseed oil should he used in the thinning, otherwise it will probahly soon diecolour. It is, however, about the best pigment for preserving wood, etc., from the effects of the weather. Zinc white is an oxide of yinc, but it does not possess so much covering power as white lead. It, however, does not discolour, and is a very pure pigment. Yellow ochre is not a very bright colour; it is best purchased in tubes, otherwise it is not thoroughly ground. It is an earth found in most countries, and is of all shades, from the warm yellow of the Oxford ochre to the pale straw yellow of the French earth; the latter is often used for "old gold" shades, etc. The ochres are not liable to change through any chemical actions, and may therefore be considered permanent.
Combined Fbony Stain and Varnish. - A recipe for a combined ehony stain and varnish is the following. Take 4 oz . of shellac, $\frac{1}{2} \mathrm{oz}$. of mastic, $\frac{1}{3} \mathrm{oz}$. of oil of turpentine, 40%. of gum sandarach, $10 z$. of Venice turpentine, 10 gl . of camphor, 20 oz . of methylated spirit, and $\frac{1}{2} \mathrm{zz}$. of spirit black (aniline dye). Crush the gums, and put all together in a clean bottle: keep tightly corked, and well agitate till dissolved. Carefully strain, and apply with a camel-hair brush, and set aside in a hot room. Several coats may be given at intervals of half an hour. A harder finish may be gained by the aid of a japanner's stove, for which purpose it is best to buy the varnish ready prepared, as it has an oil varnish basis. A temperature of about $300^{6} \mathrm{~F}$. causes it to liquefy, settle into inequalities, and as the spirit flies off gives a hard, vitrous surface, which on the best class goods is atterwards smoothed down with finest-grade pumice powder and the final brightness imparted with lottenstone and the hand.
Setting out an Elliptic Gothic Arch.-Figs, 1 and 2 show ons method of setting out an elliptic Gothic arch. Referring to Fig. l, bisect the span AB by the perpendicular line DCE, and make CD and CE each equal to the given rise of the arch. Draw $A F$ and $B G$ parallel to CD ; and draw D F and DG, making the angles $C D F$ and $C D G$ each equal to half the given vertical angle. Take CH, equal to the difference between CD aud A F , and join A. H. Divide A II and AT each into six or more equal parts at the points $1,2,3,4,5$. Through these points, on the line a $I \mathrm{i}$, draw the lines it J, $\mathrm{E} K$, $\mathrm{E} L$, etc.; and through those on the line a F draw the lines $D J$, DK, DL, etc., cutting the former in the points J, K, L, etc.; a curve drawn through these points with a bender will give half of the Gothic arch required, Referring to Flg. 2, having constructed the arch, make a o equal to AF, and draw D P perpendicular to D F. Make DQ equal to $A O$, and join $O Q$; bisect $O Q$ by a perpendicular ling meeting $D P$ in P, and produce $P O$ to meet the curve in R. Divide the curve A RD into equal parts, corresponding to the number of arch stones or bricks; then 0 will be the centre for drawing the joints to the portion $A R$, and P the centre for drawing the joints to the portion RD. Figs. 3 and 4 show other methods of setting out an elliptic Gothic arch. A given rise is not required with these methods, and the arch may be filled from the centres. Referring to Fig. 3, set off on the span three
equal parts, and describe a square on the centre division and with the corners of square as centres describe the curves as shown. Fill in from the striking centres. In Fig. 4 the span CD is divided

Setting out an Elliptic Gothic Arch
into four equal parts, and a square is described on the two centre ones, the corners of the square being taken as centres and the curves described from them, as before. The arch may be filled in from the centre as shown.

Fumigating Oak Pioture Frames, When fumigating oak pioture frames, first remove the pictures, glass, and gilt slips, then glasspaper the frames to free them from glue, grease, etc., and so arrange them in a box that the fumes will play fresly round every part. The ammonia, in liquid form, specitlc gravity 880 , must be poured into saucers or shallow dishes, the box closed up, and every crevice pasted over with brown paper to prevent the fumes escaping; $\frac{2}{2} p t$. is sufficient for a box 9 ft . long, 6 ft . high by 3 ft . wide. The time of exposure varies according to the tone desired, generally from twelve to twenty-four hours. If possible, insert a pane of glass through which the action of the fumes may be watched. Wiping the frames over with strong coffee or lime-water will produce a tone closely resembling fumed work.

Oblique Mortiseandetenon Joints,-The accompanying drawings show three ordinary forms of oblique mortise-and-tenon joints. In each case they are first set out ready for sawing and mortising; and then prerared
painful feeling, the wax is just right for poaring upon a plaster model, providing it is not too cold to run freely. If the pattern be a ceiling flower, fixed on a plaster plate ready for moulding, place it in Water for about fifteen minutes; then take it out, and clear all superfuous water from the surface. Put a fence or wall of clay around it about 1 in . higher than the pattern, and then pour the wax upon the lowest part until it rises about in in. above the pattern. If the model is a flat one, that is all that is required. Remove the wax from the model when cold. This is easily done if the model is placed in cold water, The mould is oiled with sweet oil once only during a day's work. For fine white plaster use Gallipoli oll for new wax wash the mould with clear water after oiling it; for old wax dissolve a very small quantly of soft-soap in warm water, and with this wash the mould after oiling it. This will prevent any discoloration of the first casts from the mould. Holes and hollows will appear in the casts if the plaster is too thick to run into all parts. It should, when mixed, be no thicker than cream ; and a good plan

Oblique Mortise-and-tenon Joints.
for fixing together. The mortise shown by Figs. 1 and 2 is rather difficult to make, owing to it going obliquely through the wood. The joint shown by Figs. 3 and 4 would not be wedged, but fixed by gluing or pinning. Figs. 5 and 6 show a haunched joint which can be wedged.
Removing Tar Paint from Gravestone,-To remove paint containing tar from letters cut in a gravestone, dissolve American potash, mix with sawdust, and lay it on the paint for twelve hours. Should this fail to allow the bitumen to be washed off, it may be so far softened by heat as to permit the superfluons black to be scraped off; and the letters can then be repainted. To make a good job of removing blacks marks from the level face of the stone, it will be necessary to grit the stone all over.

How to Make Wax Moulds for Plaster Castings. -A simple way of making wax moulds for plaster castings is the following. Mix together 3 parte of resin and 1 or beeswax by the aid of heat. Stir occasionally, to prevent the resin settling at the bottom of the pan. To ascertain whether the mixture is ready for pouring, dip the finger in cold water and then into the melted wax. If it can be held there for half a minute without any
is to sprinkle the mould over with water ; then bruch the plaster well iuto every part, and fill out to the thickness plaster well into every part, and fil out to the thickness water for twenty minutes; then the casts can be taksn out.

Mahogany Stain and Varnish.-A common plan of making the stain and varnish as sold at paint stores for imitation mahogany is strongly to impregnate burnt eienna with Bismarck brown-an aniline dye. The dye readily dissolves in water, the sienna gives it body. One pennyworth of each will make $\frac{1}{2}$ gal. of btain. Spirit varnish varies in quality according to price; 40 of of orange shellac, 2 oz. of resin, and 1 pt . of methylated spirit will make a fair quality varnish. A red tings is imparted by adding a small quantity of Bismarck brown.

Removing Sucker-valve of Lead Pump, - For removing the sucker-valve of a lead pump a suckerrod is necessary. This has a tapering threaded point which is passed down the barrel and sorewed into the lead claok, which is then pulled off the sucker; the harpoon end of the rod is then passed through the latter, and lifted out. By warming the tail end of the pump barrel the eucker can be lifted out muoh more easily.

Staining and Polishing Millboard in Imitation of Walnut.-Millboard may be given the natural appsarance of walnut by the following procedure. Mix dry yellow oohre in 1 part polish and 3 parts spirit ; apply several oohre in 1 part polshand till a solid groundwork is gained. If the boards coats till a solid groundwork is gained. If vae boards ochre. A brighter undercoat can be obtained by using lemon or orange chrome instead of ochre. Snooth down with worn glasspaper. Mix umber in polish and spirit; put in some figure; for darker tones add vandyke brown, or black and red. Thin out with spirit if too strong, or to gain gradations of tone; use a camel-hair badush. Stipple in some heait or wavy portions. It is a good plan to have at hand a badger softener or clean dusting brush; as the colours are laid on they may be blended together, or at least any harsh appearance removed, by brushing or stippling the colours whilst still wet with the badger or dusting brusk. Finally, smooth down again lightly, then apply a coat of spirit varnish with a trace of red stain (Bismarck) added. A second coat may be applied after an interval of half an hour. When dry, smooth down with glasspaper or pumice, then French polish or finish out with varnish.
Intersection of Monldings.-The following is a method of getting the section of mouldinga meeting in an obtuse angle when the mitre is square to one of

Fig. I.
body; the joint at the bottom must be made as shown, and fixed with four screws in eaoh half-check from the inside. Be careful to get the correct bevel, and both sides alike. Before fixing together for good, and both sides alike Before fixing together for good, and fiont for the heel panels. The hind pump handle 0 is balved into the sham door B from the inside to the same bevel as the rocker, with which it has to line, and the front pump handle is pnt into the front rocker piece D in a similar manner. The ends should be carved, and a chamfer made on the outer edge of the rocker pieces and the sham doors, and in some cases a quarter head is run along the bottom edge of the pump handle. If the phaeton is to be painted, give all the joints a good coat of white-lead mixed with linseed oil only; if it is to be faished in the natural wood, put it together with gold size or a thick varnish. The rocker pieces and sham doors are now secured to the well with No. 14 screws, with the heads inside, keeping them fush with the inner edge of the rockers, and when in place the pump handles should line with one another and bs just a trifle out of should line With one another and bs just a trifle out of rise. Lay the side down flat, outside uppermost, and mitre in the bottom rocker piece D; this is also fixed from the inside, and a fine screw is inserted through each mitre into the side pieces. Two filling-up pieces are required on the pump handles inside, bevelled from the rocker to the pump handle to carry the edge plate; these may either be of steel round the well, or iron. Along the pump handles as far as the curved.ends it is half round, lo in. wide, feather-edge; and if a rumble bas to be placed at the back, lugs sbould be welded into the plate to take an iron stay to support the rumble. Four

Intersection of Mouldinge.
them. First set out the obtuse angle CAD, and mitre line A B; then draw the section of the main moulding as shown at E . Next draw line DH at right angles to A D ; then from CGdraw a number of ordinates parallel to CA , meeting AB as shown, and from where these meet AB draw the second series meeting $D H$ as shown. Then by pricking off the distance of each ordinate from $D H$ the same as its corresponding ordinate from $0 G$, a number of points will be obtained through which the section of the moulding can be drawn as shown at F.

Lubricant for Cyele Chains.-A good, inexpensive, gud easily prepared lubricant for cycle chains is a mixture of plumbago and vaseline. Any good make of blacklead will do, but specially prepared plumbago is better. Grush the blacklead to a fine powder and mix thoroughly with twice the bulk of good vaseline and a little lubricating oil. As all these lubricants are very "dry," they must be applied about every fifty or hundred miles.

Making a Parisian Phaeton.-The accompanying sketch shows an outline elevation of a double seat Parisian phaeton. In making the body the following parts will be required. For the rockers A six pieces of birch, 3in. wide by $\frac{7}{8}$ in. thick when finished; two sham doors or pillars B, got out to pattern by $1 \frac{1}{\text { in }}$. thick; two front and two hind pump handles C, 1 솔. deep by $1 \frac{1}{2} 1 \mathrm{n}$. thick; and four rocker pieces $\mathrm{D}, 1 \mathrm{i}$ in. by $1 \frac{1}{2} \mathrm{in}$.; all these parts should be of clean, close-grained English ash, Aressed up square and true. The rockers are halved together at the bottom to form the well of the

A

Fig 2
Making a Parisian Unaeton.
${ }^{5}{ }^{5}$ in. holes are drilled along the bottom part of the plate to which the body steps are bolted. The plates are now screwed on, No. 14 screws being used around the well, and No. 12 screws along the pump handles. The two sides are next fixed together, a stretcher being placed across back and front to keep it the proper width; the bottom is first put in, then the front and back panels. Next place two strap iron plates across the bottom, and turn up each panel 3 in. The hind seat $E, 1 \mathrm{ft} .6$ in. Wide, is now got out and fitted on temporarily; it comes flush with the outside of the sham door at the front, and is swept in towards the back about lifin. each side; the slloows are got out to the samesweep as the end of the enat, are lizin. wide by lan. deep when finished, and should line with the sail out of the sham door; they are half-checked on to the sham door, and are supported at the back by a square iron stay shaped as Fig. 2. The bolt end at the top passes through the raised back G, which is of l-in. birch, swept edgeways in its length, 5 in . wide, and notched on to the elbows so that it is level at the bottom, being fixed in place by the bolt end on the corner iron and a small corner plate on top of the elbow and inside the raised back. The spaces for the sticks or iron rods should now be marked off. Measure the lengths required, and mark the direction of each one on theoutside with a shortstraighatedge; take apart, bore the holes for the pins $\frac{y}{\text { in }} \mathrm{in}$. deep, carvo the ends on the elbows, put in the ping, and fix down the elbows and raised backs for good. The front seat, H is made of lin, birch, 1 ft .2 in . wide, and sufficiently long to over'hang the pump handle 14 in. on each side, to which it is tixed by screws. The dash-board I is made of $\frac{2}{2}$-in. birch, fixed to the front edge of the seat, which is bevelled to the pitch, and by two balf-round irons on the front, with a strong foot at the bottom. The side seat rail is made of $\frac{2}{2}$-in. round iron, and has a 6 -in. half-round fiap to fix it to the seat, and a round boss to take a $\frac{\text { s }}{\text {-in }}$. bolt through the dash at the front.

Repairing Single-tube Cycle Tyre.-The method ef repairing punctures is very similar for all single-tube tyres. First slightly enlarge the hole, inject salutlon, and then force a rubber plug (previously colutioned) into the hole. In same cases a nuinber of specially made rubher rings are used instead of a solid plug, and the surplus projecting above the tyre is removed with a knife.
Fixing Wood Tester Head to Bedstead, - The sketches show how to convert an ordinary iron bedstead in to a half-tester. Fig. lis a side elevatlon of a tester head, Thich might stand out from the wall, say, 20 in . or 22 in . glving room for a curtain. Fig. 2 is a plan of a tester head showing a square frame in red deal, say 4 in . by 1 in . The wad may he plugged and the back portion of the frame fixed to it with screws and an iron bracket (see Fig. 3). On this framework a moulding, say 4 in. or $4 \frac{1}{3}$ in. desp, should be planted, and carefully mitred at the oorners. Screwed to the under part of the framework are two fretwork brackets of l-in. waod, one on each side, cut

'Fig. 2 '

Fixing Wood Tester Head to Bedstead.
to shape as shown. Behind these brackets may be fixed a small brass rod, as shown, from which the curtains can hang. Or hrass haoks may be used instead of the rod if the latter is considered too expensive. Fig. 4 shows the front elevation of the tester head, with a fretwork arnament in the centre of the top of the moulding. This will with. The top of the tester should be covered in with canvas or thin boards.
Making Copper Pan for Frying Fish. - Copper welghing 3 lb . to the square foot should be used in making a pan, say, 12 in. hy 12in. and 4in. deep, for frying fish., The corners are usually brazed, but a "dog-eared" corner properly flnished, with the top edges well up under the wlre or flange, answers equally well.
Roach and Trout Fishing Pastes.-Far egg paste for trout fichlng, beat up an egg and add sufficient flour to form a stiff dough; then add a little cotton-wool worked well ln if for runnlng water. To make a good roach fishing paste, taks a thick slice of fairly stale white bread, cut off the crust, and dip into clean water;
then squeeze and knead till of the rlght consistency, Putting the bread into a piece of canvas before dipping into the water tends to keep the paste clean. A little cotton-wool may be worked in to prevent the paste being washed off the hook.
Cleaning Brown Kid Gloves.-To clean brown kid gloyes, cut 4 oz . of white curd soap into small pisces, and boil with an squal weight of water till a smooth paste is formed, adding water to make up loss by evaporation; add 1 drachm each of strong ammania and eau-de. javelle, stir well ln, and allow to cool. The gloves ghowld be stretched on wooden hands and well rubbed with the cleaning compound, then with a clean flannel, after which they should be allowed to dry.
Scrlbing and Fitting Sash Bars and Ralls.-Tbs sketches show how the several parts of a top sash al

Scrlbing and Fitting Sash Bars and Rails.
formed with the mouldings acribed so as to fit together. At A in the above drawings is shown the tenon and mortise of top rail and stile, 0 is a jaint between the bars, and D is a dovetailed joint between meetiing rail and stile. At E is shown the joints between the bars, tononed and scribed ready for fltting togethsi. If desired, these joints can be made mare seoure by strengthening with dowels, as shown. The scribing should be done with a scribing gouge.

Hardening and Tempering Bicyole Cones.-If the bicycle hearings are of cast steel, they are hardened by heating to a cherry-red and instantly plunging into cold water or ail. They arg then brightened with emery cloth and, to temper them, are carefully heated until they assume a medium straw colour. If left toa light a colour they will prahably chip. When made of Beseemer or mild steel and case-hardened, the cones do not requira tempering.

Waterproofing Waggon Covers, Hatch Covers, and Coal Bags.- Willesden waterproef' canvas is often used for waggon covers. Or No. 8 canvas may be dressed with a coat of raw oil 8 parts, and turps 1 part; when dry paint with ochre or one of the earth piginents mixed as usual with boiled oil, turps, and a little patent driers. Hatch covers are nade of a wider and cheaper canvas called tarpaulin canvas, and are dressed with Stockholm tar alone, which is applied warm with a brush. Coal hags are dressed with a mixture of Stockholm tar and linseed oil, applied while warm.
A Combined Jewel Box and Scent Cabinet.Fig. 1 shows a cabinet constructed to contain jewellery in the front and at the hack scent hottles which are flxed by contact with the lid. To lock the bottles, are fixed by contace with the The doors or lids of the cabinet are framed and glazed. Fig. 2 is a plan with the lids removed to expose part of the interior. The back of the box is joined to the front by a partition B, which is detailed in Fig. 5 . The framework is of $\frac{x}{2}$-in. stuff, 3 in. wide, the sides being mitred tegether. Before fitting the parts together the grooves for the various partitions should be made. The groove for the partition B (Figs. 2 and 3) should be 4 in. from the front and sin. deep, whilst for the pieces \mathbf{C} (Fig. 3) the grooves should be
are $2 \frac{2}{2}$ in. wide, $\frac{7}{7}$ in. thick, and $6 \frac{1}{2}$ in. long. Piecee are cut away at the bottom of these, and also at the back of the side rails A (Fig. 2), similar to halving, so that these pieces can be fixed by fcrews from the inside. Or they may be dovetailed into the sides. The tops are curved (see Fig. 4), and the top rail N (Fig. 1) may be fixed at the ends by two tenons. The doors are mitred together, the framework heing sin. wide and ty in. long for the top and bottom and 5nin. for the sides, whilst the thickness is tin. The glass is let in in the usual manner. The doors are hinged to the sides. Under the two hack pieces 00 (Fig. 1) and near the centre are two sinall pins in the partition B (Figs. 2 and 3) to give the doors rigidity when locked from the front. The interior of the jewel tray should be covered with silk velvet, which in the case of the bottom part, or under the tray, should case of the bottom part, or under the tray, should appearance of the top tray would be greatly imynoved if the sides were padded with cotton wool or wadding. The two larger compartments to the left of the top tray (see Fig. 2) may each hold a watch, and a thin wedge-shaped piece with a hole in the centre should be glued in and oovered. Fig. 11 is a detail of the right-hand partition P (Fig. 2). For removal of the top tray, fix two tabs or strings to the sides. Walnut, when polished, lcoks well strings to the sides. Wal.
as a wood for this cabinet.

Fig. 5

Fig.
 E=年 $\rightarrow<23^{\prime \prime} \Rightarrow$

FIG. 3

Fig. II

A Combined Jewel Box and Scent Cabinet.

lin. from the front, and only inin. deep. Fig. 3 is a plan with the top tray removed. The front F (Figs. 2 and 3) has two grooves 1 in. deep by inin., one for D (Fig. 3), the other for $E 1 \frac{1}{1} \mathrm{In}$. from the left-hand end. These grooves run only $\frac{14}{1} \frac{1}{n}$. from the bottom. The bottom must have a groove $\frac{3}{2}$. wide for B, and another $\frac{3}{10}$ in. wide for the rails 0 (see Fig. 4); at right angles are grooves for D and E. The fixing screws for the base are grooves for D and E. The fixing screws hor pe partition D (Figs. 3, 4, and 6) stand up up in ${ }^{\frac{7}{1}}$, allowing $\frac{1}{1}$ in, for the groove in the bottom. The left-hand cross rail C , with its $\frac{3}{2}$ in. groove, is shown separately in Fig. 7 . The righthand rail is without a groove (see Fig. 3). The top tray, shown in Fig. 2, is made from two pieces $8 \frac{1}{4} \mathrm{in}$. long, ian. wide, and T_{6}^{2} in thick, and two similar pieces $4 \frac{3}{3}$ in. long. The hottom is in. thick, let in as shown in Fig. 4. The back strip, with grooves i iu. deep and ${ }^{3}$ in. wide, is shown separately in Fig. 8. The front (Fig.9) is almost similar. The left-hand side of the tray should have a din. groove for the rail G (Fig. 2). The partitions may simply be nailed in from the bottom. Fig. 10 shows the shert rail G, with two grooves β_{B} in. wide, to take the short rails H (Fig. 2). The cross rails P (Fig. 2) are $4 \frac{1}{2}$ in. long, 1 in. Wide, and $\frac{3}{3}$ in, thick. The top tray rests on tong, rails. Wide, (Fig. 3) 4 isin. long and $\frac{3}{2}$ in. square, nailed

Re-polishing Birch Chairs.-Commence by dissolving $\frac{1}{4}$. of common washing soda in 1 gal . of warm water, and cleanse the chairs with this; swill off with clean water, and wipe quite dry. Then apply with a camel-hair brush several coats of spirit varnish made as follows. Four ounces of best lemon shellac, 2 oz . of ben zoin, 2 oz. of pale resin, and 1 pt . of methylated spirit ; dissolve by frequent shakings and gentle heat; carefully strain through musliu. The varnish should be carefully applied, and an interval of at least half an hour alloved between each coat. Levelling the varnish on the most prominent parts (the seat and the back) is done by means of a minent parts the seatand wet with polish glaze and spirit.

Making Cup Leathers for Pumps.-Proper moulding appliances are necessary for making the cup leathers of ordinary force and lift pumps. The iron or gunmetal moulds are the shape and size of the outside, and the gtamp or core is of the size of the inside of and the Gtamp or core leather. The leather is cut circular and then theaked for a few hours in water or oil, accordingly asit is dressed or prepared, and then pressed into the mould by the stamp with considerable force. Temporary moulds and stamps can be made by turning them out of solid blocks of very hard wood, a lever being used for pressing one in to the other, with the leather between them.

Fixing Slop Sinks.-A guod slop sink should be made to hold rather more than a pailful of slops, for preventing an orerflow if a house-flannel should get over the outlet. It should be made of impervious strong material, so as not to be easily broken by the fall of a scrubbing hrush or other hard object into it. There should not bs any corvers in which filth can accumulate. The sink should have a flushing rim, and a flushing cistern attachment; the flushing pipe should be $1 \frac{1}{2}$ in, or $1 \frac{1}{3}$ in. in diametgr. The basin should have a trap close beneath it, with crosse bars for keepiug out anything that would choke it. The bars should bs fixed, but easily removable for access to the trap for auy purpose. As the rush of water down the waste-pipe violently expels the contained air, a ventilation pipe, not less in size than the waste-pipe, should be fixed. When fixed in privats houses, the waste-pipes should be disconnected from the drains, the same as other sinks, but in hospitals and similar buildings they should be treated as soil pipes. Slop sinks down which hot water passes should not bs connected to soil pipes. Hospital slop sinks require to be specially constructed with attached arrangements for cleansing bed pans with the least possible amount of handling.

Boiling Water in a 5-gal. Tank. Herewith is a sketch of an apparatus that will boil 5 gal. of water in a tank fixed 12 ft . from the fire. The tank should bs mads with an open top and be covered with a loose lid. If the tank is tightly closed at the top, a hole must be mads or a pipe inserted in the top, a hole must be mads or a pipe inssrted in the four-pipe coil is shown in the fire, but if hot water is not required at a short notice two pipes will do-that is, the middle bend in the coil may bs omitted. If the fire is moderately thick from front to back, the four-pipe coil will probably boil the 5 gal. of water in thirty minutes. A thin fire will bs of little uss in any case, as the comparatively cold coil will kesp the fire dead. The pipes may besin. in diameter, butin. will be better. The coil

Apparatus for Boiling Water in a 5-gal. Tank.

is only suitable for soft water. If the water is hard, a small boiler must bs used instead of a coil, as the latter would quickly become choked with lime deposit. The boiler should be provided with a man-lid so, that the deposit may be regularly removed. The tank can be supplied with cold water by a tap over the top or by a pipe connection in the side or bottom; this pipe should be fitted with a stopcock. It is essential that the pipes should have a rise from the coil to the tank of not less than 1 in. in 5 ft . The more the pipes rise the better.

Mixing and Applying Floor Stains.-The practice of staining the margin left on the stairs at the side of the carpet and round the outer edge of a room carpeted with an art square has, from a sanitary polnt of view, much to commend it. A rich brown tone harmonises well with most carpets, but there is no apparent reason why other colonrs, as mahogany or pine, may not bs used. A perfect match is not aimed at, as a good contrast does equally as well. To remove any dirt or grease, the floor should bs well cleansed with warm water, in which has been dissolved a little common washing soda, not soap or powder. When quite dry, ths fashing soad, not soap or powder. Wheady for the stain. Permanganate of potash will yield shades varying from light oak to dark walnut. One pennyworth dissolved in 1 qt. of water is abont the quantity for a living-room or bedroom of ordinary size. When the stain is too light, apply a second coat, or add more potash. Best results are gained by two applications. Another simple plan is to use an ordinary walnut stain, say vandyke brown, mixed in a lather strong solution of common washing soda-one teacupful to 1 gal. of water; apply with a brush and rub well in to 1 gal. of water; apply with a brush and rub well in
with a rag, finishing off the long way of ths boards. With a rag, fiushing oft the long way of ths boards. If mahogany colour is desired, mix burnt siennawhich may be bought at paint stores ground in waterin equal parts of stale beer and water. For pine colour, nse raw sienna; common malt vinegar is also useful to mix them with. For a rosewood colour, take 2 oz. extract of logwood, th. red sanders; boil in 2 gal. of water for an or logwood, $\frac{1}{2}$ ib. red sanders; bour in Strain through canvas or muslin, then add alum hour. Strain through canvas or musin, then add alum a darker tone, brush over again with logwood stain only; 2oz. extract to lqt. If required still darker, or with dark streaks, add 2 oz of blue or green copperas to the
logwood solution, Floors thas stained should be after. wards brushed over with glue size, to prevent the varnish sinklng in, and the nail-holes then filled up with putty coloured to match, then glven two or three coats of spirit varulsh, or a, good quality oak varnish as used by house painters. When it is desired to stain and varnish a room in one day, a combined stain and varnish is used. Dissolve 4 oz. orange shellac in 1 pt . methylatsd spirits; then add as much dry brown umber or vandyke as will give the tone desired in at most two applica tions; apply evenly with a large camel-hair brush. It is well to bear in mind that where putty is used, it must always hs used after stain size or a first coat of varnish; its oily nature prevents the staln, etc., striking into the wood and causing a patchy appearance. Spirit varnishes should be applied with camel-hair brushes, oak or oil varnish with hog-hair brushes. So that ths varnished surface shall not bs scratched, glus small pieces of washleather or cloth on the legs of the chairs.
Solder for Brazing Musical Instruments. - An easily fusible and smooth-flowing solder for brazing musical instruments consists of 6 parts of copper, 5 of zinc, and 3 of silver. The usual practice is to make the solder at the flrms where it is used. Cast a small ingot of the alloy, and then roll this down to a suitable thickness. Strips ars then cut of a conrenient size l'or use when soldering.
Tasting Correctness of Watch Depth.-To test the correctness of a watch depth, wedge the driven wheel tightly so that it cannot turn, then try the shake of the wheel teeth between the pinion leaves. If thers is no shake, or if this is scarcely perceptible, the depth is too deep; if there is a lot; it is too shallow. In a correct depth the pitch circles of the wheel and pinion must roll upon each other. In the above figure the wheel teeth consist of radial lines to form the sides up to the pitch circle; beyond that they curve to a dome-shaped point.

Testing Correctness of Watch Depth.

Similarly, the pinion leaves consist of radial lines up to the pitch circle, and beyond that are finishod off with a semicircle. In a correct depth the pitch circles roll upon each other, and the curved portions of the wheel testh each other, and the curved portions of the whe

Refrigerating with Chemicals.-Chemicals may he employed for refrigerating purposes, but the really effective ongs give a much lower temperature than treezing, and they ars therefore not nearly so good as ice for the purpose. Equal parts of water, nitrate of ammenia, and carbonate of soda will yield a temperaturs about 30° bolow zero F. The cost of chemicals as refrigerators is, however, a great drawback to their use. After using them a solution is obtained which must be either evaporated to recover the salts or thrown away.
Heating Warehouse by Steam.-It is assumed that it is desired to heat by steam to $60^{\circ} \mathrm{F}$. five workrooms, each 90 ft . by 33 ft . by 10 ft . Two 2 in . pipes each side of room would be equivalent to about 200 sup . ft . of heating surface, and this should be satisfactory with steam at low pressure. If the pressure exceeds 10 lb ., less pips would do, proportionately to the increass in pressure. With five rooms there would be l,000 sup. It. of radiation, and with low-pressure steam the supply main from boiler should bs 3 in. The return is usually taken in pipe ons size smaller, but a 2-in. pipe should bs sufficient in this case. The size of trap cannot be given, but a trap made to work with l, 100 ft . to $1,200 \mathrm{ft}$. radiation should bs used. The different makers' lists give the sizes. Expansion joints will be required in the 90 -ft. runs of pipe.
Making Patterns for Small Columns.-In making a pattern for a small column, turn it to the required gection, allowing tin. per foot of length for contraction, all flanges having good drawing qualities to ensure clean castings. If the plinth is to be octagonal or hexagonal, turn it to the largest diameter, divide, end cut it to the required number of sides. If it is lmpossible to make a core-box on account of the core being too long for sand, a spindle must be used to turn the core, with a core-board, which is made of 4 -in. or 1 -in. stuff with a bevelled edge. It is fixed to the core-maker's spindiebench and turned with a handle. The sand is applled to a spindle, which is kept for that purpose.

Disinfecting a Watermbutt.-If coft water in a butt amells, the latter should be emptied, turned on its open end, supported on one side so as to leave an opening, and some sulphur should be placed on an old saucer, fired with a red-hot iron, and placed underneath the cask. The fumes from the burning sulphur will disinfect the cask. Before putting the butt into use again, slake some lime and give a thiok coat over the inside; from time to time relime the butt.

Method of Setting out an Elliptic Arch. -In commoncing to set out and turn an elliptic arch, the ellipse m's.t first be set out by drawing a line A B (see Fig. 1) equal to span of arch. Through centre of line raise a perpendicu. lar C D equal to required height of arch (say $\frac{3}{3}$). The foci of the ellipse are found by taking c as centre and the distance AD as radius, and describing an are to cut AB at $f^{\prime} f^{2}$. The seml-ellipge may then be dramn by taking a piece of string equal in length to $A B$ and fixing it $b y$ pins. at f^{1} and f^{2}. Insert a pencil into the loop thus formed and draw the curve as at Fig. I, taking care to keep the thread perfectly tight. To set out the stones forming the arch, divide the curve of the ellipse into the required number of equal part's (Fig. 2), and through

Setting out an Elliptic Arch.
each point draw lines from each of the foci, as at F. Bisect the angle E FG. The line which bisects the angle is a perpendicular to the curve. An arch constructed by this method will require every brick or stone to be of different shape in half the arch.
Straightening a Warped Oak Panel.-To straighten a thin ork panel that has much twieted since the polish was applied, place it face downwards, under pressure, With several thicknesses of paper intervening to protect the polish. If cramps are not available, on the workbench screp pieces of. wood which will well overlap the corners. Slack out the screws. Give the back of the panel Eeveral coats of spirit varnish or polish. Apply liberally with a brush, taking care that the polish does not run over the edges and spread underneath. Whilst still wet, apply pressure by tightening the screws, which should be fairly strong. Repeat the operation if necessary, and secure the panel in its place, when straight, by nailing strips of wood around its outer edges.
Producing Blue Photographs.-Blue prints may be made by brushing over any fairly pure paper with equal quantities of (α) citrate of iron and ammonia 1 part, water 4 parts; and (b) potassinm ferricyanide 1 part, Water 4 parts; these are printed in usual way, Or the first solution may be used alone, and the second solution applled as a developer after exposure. A blue-green image on a brownish ground is produced, but the brown washes away in clean water, leaving the image fixed. It is advisable, however, to give the prints a citric acid
bath, 1 in 40. Paper for this ferro-prussiate process, as it is called, may be obtained ready for use of any photographic dealer in packets each containing twenty-five hali-plate pisces. Blue pictures may be made by the carbou process, which is the most satisfactory and permanent process to employ; the tissue (or sensitive paper) may be obtained in any desired colour. The paper, which appears to be almost black, is exposed as usual, but does not print a visible image. It may be timed by an actinometer or by another negative of the same density printing on another It is next squeegeed into close contact with a paper coated with insoluble gelatine and placed in hot Water. The parts unaffected by light dissolve away after the top paper has been stripped off, leaving the image in pigmented gelatine on a white or other ground. The print then merely requires immersion in alum, and blight washing to remove the bichromate.
Defective Strlking Gear of Grandfather Clock.The incessant striking of a grandfather clock until the motive power is exhansted may be due to one of these causes. The rack hook B (see sketch) may stick; or the rack tall being bent may come in front of the

Striking Work of Grandfather Clock.
hour snail, and thus allow the rack to fall too far for the gathering pallet to touch it; or the plic in the end of the rack to catch the gatheriug pallet may be missing.

Powdering Soapa-The only means of powdering a pure soap is to dry it as much as possible and then to put it through a machine that will act like a rasp. For small quantities, a sugar grater would serve the purpose. Dr'y soaps are combined with soda ash, which renders them much easier to powder.

Effect of Form of Orifice on Velocity of Effilux from a Pipe.-It is required to know the effect of the form of the orifice from which a liquid is: flowing on the velocity of the effux. With an orifice of the same diameter as the pipe, the liquid escapes at the same epeed as that at which it travels in the pipe. If the orifice is contracted, the same quantity has to pass through the smaller aperture, und to do this the speed must increase so that it issues with greater force, and, if pointed vertically, would be driven to a greater height. On the other hand, if the orifice is increased as a trumpet, the speed of the issuing water is lowered at the point where it enters the open air, and the water will not rise to such a great height, but will be broken into spray by the resistance of the air acting on a larger surface. A trumpet-mouth orifice is used only when it is desired that the issuing liquid shall spread, and a jet orifice is used when the water is to be forced a considerable dietance, as illustrated by some kinds of fountains and also by the hose jets used for extinguishing fires in buildings, etc.

Making Ammonia Soap. - A recipe for making ammonia soap is the following. Take 100 parts of oil and fat, 10 parts of caustic potash, 8 parts of caustic soda, and 5 parts of strong ammonia. The amount of water and the strength of the lyes will depend on the process employed; it will not be satisfactory to make the soap by the cold process and boil it afterwards unless making simply a soap jelly. For the cold process the lve is at 66° Twaddell, and abont 40 lb . of water would be required, but for boiling add more water; the ammonia must be added after the soap has cooled somewhat.

Effect of Bende in Pipes,-Liquids flow in straight lines through straight pipes, those in the contre travelling at a higher speed than those in contact with and rubbing against the insides of the pipes. On turuing a bend, the against the insides of the pipes. straight lines deviate in proportion to the angle of the gtraight lines deviate in proportion to the angle of the
bend, and those on the outside of the current cannot keep their relative positions unless they travel at a higher speed. The lines thus become changed, and the friction bstween themselves, and also their tendency to maintain a straight course inside the pipe, causes a retardation in the velocity, so that a lesser quantity passes through.

Badly Fixed Cast-ir on Gutter:-Cast-iron gutters sometimes droop forward so much that water splashes over. The cause has to be ascertained and remedied. If the gutter is of half-round pattern, it is probably fixed with brackets, screwed on underneath the soffit, and the front of the qutter has fallen because the brackets were originally too weak to support it, or they have subsequently become too weak, owing to rust. The brackets will then be found to have given way at a (Fig. 1). The remedy is to remove the brackets, and either to bond them upwards antil they assume the shape shown in
a similar tool must be used to turn round the tap ontside. The new washer can be made of sheet rubber, or some yirn twisted into a ring, or a ring of cardboard coaked in water to make it soft. With the two latter redand white-lead (mixed to the consistency of very soft putty) must be nsed. A leak at the bottom nut of a boiler tap most probably indicates that the plug is worn and wants "reprixding." Unscrew the nut and take out the plug. Then replace the plug, with a little four emery and oil smeared on it, and twist it round and round evenly to grind the surfaces true to one another. To make a successful job, however, the grinding should be done in a lathe.
Preserving Bntter.-To preserve fresh butter, well press it and incorporate with it some salt; work out most of the water by kneading, then press into clean jars, fasteu parchment paper over them, and keep in a cold cellar. Butter thus prepared will keep for several months. Fresh butter, if properly prepared and free from excess of water, will usually keep for a long time. Preservatives are sometimes added, but they are mors or less harmful; borax is perhaps the least objectionable, and is added in quantities of 2 grains to 5 grains per $\mathbf{i b}$.
Warming Bird.room.-A number of canaries are kept in an upper roon, and it is assumed that a method of heating it during the winter months is required. The sccompanying illustration shows \& method of heating it by a coil dropped in a fireplace. Therg is every probability that one 2 -in, pipe round will suffice; or, if the room bs small, alin in. pipe may do, eupposing that a temperature ot 55° will be sufficient when the temperature outside is below freezing point. The coil in the fireplace (somewhere below) can be of l-in. pipe, and this size of pips will do from the coil to the room. Most probably a pair of pipes in the fire will do as shown, but this depends on

the size of room and the pipe in it. The fire pipes (scarcely a coil) should be in a sitting-room grate, not in the kitchen range; then the coil gets attention regularly according to the weather, and there need be no stopcocks or controlling device. If the fire has small fuel put on it at night, it will keep alight better than the kitchen fire will. A small cistern will be required for feeding tha apparatus, as shown. This can be replenished by hand. There must also be a steam pipe on the highest point of the piping in the room. All circulating pipes ascend from the coil to this steam pipe at least lin. in 10 ft ; the pipes must not run quite horizontally.

Polighing Limestone Fossils.-If the fossils are in section or have a flat surface, rub them down with fine sand and water on a smooth stone until the face is level. Wash away the sand and rub them on a wet stone until the scratches are all removed and the fossils appear quite smooth, but dull. Now rub them on a smooth piece of wood or glass, using dry crocus or rouge, and, When a dull polish is grined, finish on a piece of felt with dry putty powder. If the fossils are not flat the rubbing must be dons with cloths, using the materials as above described.
Staining Matchboarding to Imitate Pine,-To stain matchboarding to imitate pine, procure some raw and burnt sienna, ground in water; the former gives the yellow tone of pine. Mix as much of this as is required in equal partsoi stale beer and water. Apply witha brush, rub well in, and finish off in the direction of the grain with rag. When dry, it may be brushed over with patent size to provent the varnish sinking. After both stain and size are dry, fill up nail holes, ete., with putty coloured to match. To finish, use ordinary gpirit varnish or oil varnish.

How to Make a Half-plate Printing Fráme.-To make a half-plate printing frame, first mitrs four pieces of $\frac{1}{\text { inn. }}$ stuff (any well-seasoned wood will do), two pieces 85in. by litin., and two pieces 67 in. by tifon, and join with a strip of veneer at the four corners. Glue acrobs two blocks A and B $8 \frac{1}{3}$ in. by lin. by 1 in. Two blocks lin. square should be sawn across diagonally and glued flush into the four corners to form stops for the negative. The frame will now have a sight of $6 \frac{1}{8}$ in. by 48 in, and a rebate of $6 \frac{5}{8} \mathrm{in}$. by $4 \frac{1}{3} \mathrm{in}$. Out of inin. stuff cut a piece $6 \frac{1}{5}$ in. by $4 \frac{3}{4}$ in. Plans it up fiat and halve it the short way of the stuff. On ons side of each
colours vary thin, and apply them with a watering pot. So long as the massss of light and shade and the perspective are correct, and objects are not too distinct, the painting need not be very carefully done. Paper backgrounds may be purchased very cheaply, so that unless some special design is required it is cheaper to buy the ready-made article.
Measnring Liquid from Tank,-There are several ways of measuring liquids from a tank. If the annount of liquid is large, a wood, brass, or iron rule may be placed either at the centre ol at the side of the tank.

Measuring Liquid from Tank.
alab a piece of velveteen should be glued and the slabs hinged together. The fold-over spring is the better form, the print not being so liable to slip. When mitring is not possible, two pieces 6 in. long may be glued to A and B, thus leaving a space for gluing over C and D (see Fig. 2). This may be further strengthened by screws, but ths frame will not bear so much rough usage. It is essential that the frame should be free from usage. It is essential that the frame
Antomatic Sewage Filter.-Automatic arrangements for opening and shutting the valves of a sewags fllter are only to be trusted where a small quantity of sewage is to be dealt with. Fig. 1 illustrates mode of filling and emptying two filters antomatically by meane of tippers connected by bell-cranks to the trough which brings down the liquid to be filtered. Filter A, on the right, is supposed to be filled up to the level of the overflow, when the liquid, escaping into the tipper, pulls down the bell-crank, and pushes over the sewage trough to such a position that ths flow of sewage is diverted into filter B. At the sams

If the quantity is small, then a sheet brass, copper, or glass cylinder may bs fixed to the tank by means of a small pipe us shown. A stopcock should be attached to the pipe from ths tank, so as to regulate the flow of liquid into the measuring cylinder, and also a stopeock at the lower end of the measuring cylinder so that the liquid may be run off.
Removing Ink Stains.-Te remove from parchment or paper stains made with ordinary writing ink, apply spirit of salts (hydrochloric acid) diluted with five or six times its bulk of water. Solutions of either oxalic, citric, or tartaric acide are said to produce the same results; but in any case the acid must be washed off with clean water a minute or two after application. Experiment on odd pieces of parchment or paper before touching any valuable work, as some little skill is required. To remove ink stains from imitation ivory, wipe over eeveral times with 1 oz. of oxalic acid dissolved in $\frac{1}{2}$ pt. of hot water. Should this be of no avail, rub the surface with fine glasspaper till all marlks are removed; then repolish with putty powder and oil, applied

Automatic Sewage Filter.
time the outlet valve of filter a is opened by means of the wire attached to the top of the bell-crank. The supply trough is pivoted at ons end, and is carried at the other end on a roller, so ae to move easily; the arrangement is shown in Fig. 2. Instead of having a movable trough, the arrangement shown in Fig. 3 may be used, where a movahle division can be turned over so as to divert the liquid into either channel as required. Fig. 4 is a will $k n o w n$ form of tipper for discharging auternately to the right or left, but with this both filters would be worked at the same time, instead of alternately, as in the first arrangement.
Painting Photographic Backgrounds.-Mix with water to the consistency of ordinary paint, lampblack, whiting, and a little ultramarine with size to bind the ingredienti. Endeavour to produce a good neutral tint. To obtain a shaded effect, use a large brush and work as quickly as possible, lightening the tint as the work proceeds. If the shading is done while the work Is wet the shadows blend well together, and all hard lines ars prevsnted. Some workers hatch over the background and afterwards put in cloude with a blunt backgrolnd and afterwards putt in cloude with a blunt
charcoal point. It hab also been proposed to mix the
with felt or cloth; flnish with dry powder and chamois leather. A solution of $\frac{1}{4} \mathrm{oz}$. of citric acid in 4 oz . of water will remove all traces of writing ink from paper. This does not touch printers' ink, which indeed cannot be remored by the mere application of a bleaching agent. To remove ink or ironmould stains from linen, moisten the latter by holding it in steam, then apply weasten hydrochloric acid on a piece of stick. When the weak hydrochloric acid on a piece of stick. When the acid. To remove old ink stains from wood, lub the staine with muriatic acid, allowing the acid to remain for a few minutes; then sponge off with clean water. Spirit of salts may be used to remove old ink stains from wood; great care is required, especially if the staine are on a veneer. Another method is to apply staine are on a veneer. Another method is to apply appeared to wash off with cold water. Another ; use salt of lemons (binoxalats of potassa) moistened with water. Another; put some powdered crystals of oxalic acid on the ink stains, moisten with hot water, and rub them in. The oxalic acid will dissolve most of the otherwise insoluble ingredients of the ink, and the stain can be washed out with water. If this is not effective, try a solution of freshly made ohloride of lime.

Upholstering a Chair Seat. - The following are instructions on upholstering the seat of a crown-back parlour chair. These chaire are usually made with Ω Loose seat frame, fastsned together with dowels and upholstered on the top; the edges are not otitched, the flocke being strung on the edges with twine, this being tacked fast about every 4 in. to the top of the seat frams and then flled up with flocks. To make these chairs into spring seate, put a stuffing yail, 2 in. high, on the front p nd sides, web the bottom with four high, on the iront and sides, web chair webbing stitch three chair eprings to the wine of chair webbing stitch three chair eprings of a triangle, the odd spring at the back. woh in the form of a thiangle, the odd spring at the back. ths epringe fast iu an upright position. Pick on a layer of flocks and put on another cover of laessian; commence tacking in the centre of the chair front and worls round to the back. Stay-tack the back, blind-stitch the iront and sides, then stitch up the edge to a fine point with three rows of stitches. Pull out the stay-tacks, fill up bollow places with etuffing, pnll the cover down as tight as possible, and secura; clean off the edges with a sharp knife; the stitching up makes no difference to the sweeps and curves, these being allowed for in tacking on the covers, letting out or taking up as may be necessary.

Distilling Whisky.-The process of distilling whisky is very briefly as follows. A mash, made from malt and barley or other material is fermented with yeast, and after skimming is run into stills to separate it from the water and other products. Several forms of stills are used for distilling whisky; many of them are heated by open
in England, is a basic carbonate of copper. These are all Englieh ores, but Great Britain aleo importe copper sand, a mixture of metalle copper and quartz; and indigo copper, 60 named from its dark blue colour, from Chili ; and blue malachite from Australla. The following table shows the proportion of copper in the ores above named :-

Copperin 100
Ore.

Composition.

copper, oxygen
Red copper ore Copper glance Iudigo copper Copper pyrites Peacock ore
Grey copper ore
Green malachite
Blue malachite
copper, sulphur coppar, sulphur ... copper, iron, sulphur copper,iron, sulphur copper, iron, sulphur, a $\ddot{n}-$ timony, arsenic
copper, oxygen, carbonic acid, water
copper, oxygen, carbonic acid, water
parts of pure ore

89 $\begin{array}{lr}\cdots & 80 \\ \cdots & 90 \\ \ddot{3} \dot{2} & \text { to } \\ \cdots 5 \\ 1 . . & 50\end{array}$ 25 to 40 ... 58 ... 56

Retaining Wall for Sunk Roadway, - Probably the best form of retaining wall in brick for a sunk roadway 40 ft . wide and about 40 ft , below the level of the land at each side would be a series of relieving arches on piers in four tiors as shown in Figs. 1 and 2. The front is filled in by a screen, wail, giving the whole the appearance of a solid wall, although really the length of the archways is such as to prevent the mase of earth resting against it. To com. pute the length of arch required, Rankine's formula
flres, imparting a smoky flavour to the spirit (like Scotch whisky); these araknown as "pot"'stills, and the whisky is called' "pot" still whisky. Other forms of stills are heated by steam, the object being to distil off the spirit as strong as possible and to keep the whter in the still. The sketch above shows a simple form of "pot" still. A is the still proper; B is the fireplace for heating: C is the counecting pipe to the worm D; E is a large vessel or condenser filled with cold water, into which cold water runs continually and is syphoned away again ; and F is the receiver for the distilled spirit. Tha spirit obtained from the first still is nsually weak, and is re-distilled twice, more water being removed each time; the product of the third distillation is whisky, which is stored in vats for a long period to matnre it and improve its flavour.

Particulars of Copper Ores,-Native copper-that is, pure copper-is found in veins disseminated in granits in Cornwall and North Wales; but the most abundant English ore of copper is copper pyrites or yellow copper ore, which is a double sulphide containing copper, iron, and sulphur, and is generally associated with arsenical iron pyrites, tinstone, quartz, fluorspar, and clay. A purer variety of pyrites is peacock ore, or variegatcd copper ore, which is lound at St. Austell and Killarney. Another abundant ore is grey copper ore, which is a compound of the sulphides of copper and iron with those of antimony and arsenic; but it often contains lead, zinc, and sufficlent silver to render the extraction of the latter a matter of great iruportanca. Copper glance is another Important Cornish ore; it is a chemical compound of copper and sulphur, and is generally free from other metall. Red copper ore consists of copper and oxygen, and differs from the preceding ores in being free from sulphur; green malachite, which is not much found

gives a sufficiently mpproximate result; $l=\operatorname{cotan} . \mathbf{R}$ (h $\left.+\frac{x}{(1+\sin , R)^{2}}\right) ;$ where $l=$ the length, h the clear height of each tier, x the depth of the crown of an arch below the surface, and R the angle of repose of earth, Which may be taked at 45°. Calculating first the lowest tier, cotan. $R=\operatorname{cotan} .45^{\circ}=1 ; h=10 \mathrm{ft}^{\circ} ; x=30 \mathrm{ft} . ;$ and sin. $R=\sin .45^{\circ}={ }^{\cdot} 7071 . \quad \therefore l=1\left(10+\frac{30}{1 \cdot 7071^{2}}\right)=20 \cdot 2 \mathrm{ft}$. In the second tier, x will equal 20 ft . and $l=16.8 \mathrm{ft}$. In the third tier, $x=10 \mathrm{ft}$. and $l=13.4 \mathrm{ft}$. In the top tier is zero and $l=10 \mathrm{ft}$. Fig. 1 gives a vertical section of the wall, and Fig. 2 an elevation with the arches indicated. Retaining walls of such a height as this are exceedingly costly to erect, and unless the land at each side is of great value, the cheapest method of dealing with this case will be to buy a strip of land at each sida of the road and cut away the earth until there is a slope of 1 in $1 \frac{1}{2}$.
Colouring Bottom of Swimming Bath.-It is required o colour the concrete bottom of a sea-water owlmming bath 60 that the bottom can be plainly seen by the swimmer. A Portland cement known as "white cement" might be light enough in colour for the finishing coat without any further mixture. Or limestone chippinge, pnlverised very fincly, may be mixed in the finishing coat, and n skin can be made in this why which is almost milk white. White enamelled bricks would make much better job, but expense may prevent their use. In any case occasional otrips of colour running along the length of the bath, should be formed in the bottom by colouring the cement with Venetian red or red ochre. This colouring is ueeful as a guide to swimmers when owimming under water.

Paste for Attaching Cloth to Carriage Frames.This is a recipe for a paste for fastening cloth on the frames of carriages. It is known as coach trimmers paste. Mix rye fiour with cold water to a creamy thicknees, and add a good proportion of powdered resin ; then boil very slowly, continually stirring until the mixture is fairly thick. When cold the paste should be firm enough to cut with a knife, so that it can be spread on tho eloth.
Making and Eanging a Baby's Swing. - The sketch of a baby's swing here piven is almost self-explanatory. The seat of the swing is made from beech, say 1 in. thick and 15 in . by 15 in. , with a hole 3 . through each corner. Four ropes are passed through these holes, and stopped by knots underneath. The other ends are spliced or tied, two to each upper rope. Eight wooden spindles, bored from end to end with ${ }^{\text {b }}$-in. holes to allow the lower roper to slide through, are passed on as shown. Eight crossbars, bored near the ends with $\frac{3}{8}-\mathrm{in}$. holes, and strung on -four between the two sets of spindles and four above them-will complete the swing. The crobs-bars and epindles must be of beech, oak, or other hard wood, or they will be apt to eplit and lead to accident. The cross-

Making and Hanging a Baby's Swing.
or hammer-blocked work is done with the scabbling or spalling hammer. Thus squared stones for the quoins or face of a wall, merely left rough from the hammer, would be termed hammer-faced ashlars; the term ashlar in such a case being taken to mean square blocks 12 in. deep on face and upwards, squared stones under $12 i v$. deep being called shoddies. Scabbled or roughly picked with a pick, such as in Fig. 2 , sometimes called a scabbling pick, and weighing about 20 lb ., which takes down the excessive irregularities on hammer-faced work. Punched or puncheoned, or worked to a finer face with a blunt pick (Fig. 3) called a punch or puncheon. Picked, or brought to a finer face with the pick shown in Fig. 2. Close or finely picked, dabbed or daubbed, done with a ninepointed pick, or with a serrated pick, as in Fig. 4, leaving a surface as smooth as the process will admit of. It is usual to run a draught, or smooth eurface, 1 in. or more in breadth, round the margins of squared stones, even when dressed only with the hammer or pick. in order to ensure close-fitting joints. The stones are then said to be hammer-faced ot, as the case may be, with draughted margins. These margins are wrought with the axe as in ingle and fine axing. In single axed work the inequalities left by the pick are reduced by an axe weighing about 91 lh . (Fig. 5). Axed work shows the mark of the tool in parallel lines, and is used in quoins, rebates. cornices, etc. Fine axed is a more careful description of

Tools for Dressing Granite.

bars can be 2 in. by ${ }^{\frac{3}{4}} \mathrm{in}$. by 15 in ., and the spindles 1 in . diameter and 3 in. long. If the seat-guard is not considered deep enough, add four more spindles and four more cross-bars. Knots can be made above the seatguard to keep the cross-pieces and spindles in place, if desired; but that is not usual, as the child's weight prevents slipping. The four lower ropes should join the two upper ones about 12 in . above the top of the seat-guard. Two places are found in the ceiling so that when hooks are screwed in they will enter the wood of the joists, and not merely hold by the plaster or the lathing. By driving a knitting needle into the ceiling, the position of the joists can be found without much damage. The ropes must be hung by metal eyelets held in epliced loops.
Facework on Granite.-"Granite is dressed," states "Builders' Work and the Building Trades," "by means of heavy picks and axes, after having been roughly shaped with the scabbling hammer. Mouldings, rebates, etc., are ©nt by means of iron chisels, steeled at the cutting edges, and ueed with a small hand hammer, called a mash hammer (Fig. 1). Granite, grit, and other hard stones, built into walls with their faces merely scabbled, are said to be quarry-pitched, hammer-faced, or hammerblocked. Such work ie called rock or rustic work, and is mostly confined to foundations, plinths, and quoins, where a bold massive appearance is aimed at. The following are the different kinds of work put on granite in Aberdeen; other hard stones are dressed in a somewhat similar manner. Hammer-faced, hamroer-dressed,
single-axed work. Patent axed is the finest description of surface-work before polishing, and is produced with a hammer or axe the faces of which are formed of a number of parallel thin steel blades bound together, so as to allow of their being taken out and re-sharpened (Fig. 6). Polished work is performed by rubhing, first with tine sand and water under an iron rubber, then with emery, and lastly with putty and flannel. All plain surfaces and running mouldings can be done by machinery, but carvings and broken surfaces have to be done by hand. Hard stones, such as granite, show off to best advantage when polished; but if such a high finish is considered too costly, it is better not to waste money on too fine a face, which only destroys the beauty of the grain, and produces a flat, monotonous surface." In the accompanying illustrations Fig. 1 is a mash hammer; Fig. 2, scabbling pick; Fig. 3, punch; Fig. 4, Berrated pick; Fig. 5, axe for single-axed work; Fig. 6, axe for pateut-axed work.
Making Birdlime.-Proper birdlime is made from the inner bark of the holly, which is taken in the summer. This is boiled with water for several hours until quite soft, the water is then drained off and the pulp placed in a covered pit and left for several weeks to ferment. It is then pounded in a mortar and kneaded with the hands and kept under water till required. Spurious birdlime may be made by boiling linseed oil until it becomes sticky; this will take many hours. Another preparation is composed of boiled linseed oil 3 oz., gum thus or Venice turpentine 1 oz ., and castor oil 1 oz .

Stickiness of Oilskins.-The atickiness of an ollskln ooat which has been dressed with a mixture of bolled oil, terebine, and oil varnish may be due to the uee of luferior materials, though it must be remembered that mixtures do not always dry quickly. Boiled oil, oil rarnish, and terehine are rapid drierb, and when excessive sumounts of driors are preseat the mixture hardens rapidly on the surface and but elowly throughout, the film lemaining tacky for a long time. The mixture should dry right through equally; and thereore not too rapidly. Boiled oil alone is a good oreparation, hut a little gold size may be added if desired to make it dry more rapidly. The oil ehould be applied in a thin coat, the oilskin hung up in a warm place till quite dry, and a second coat applied and also allowed to dry. As it is doubtful whether it is possible to get rid of the stickiness, it is perhaps better to steep the oilskin in benzoline for a time, dry it in the open air, and treat it as above.

Making a Brush Rack.-In making the brush rack shown in Fig. 1, a piece of oak, walnut, or mahogany about $\frac{3}{4}$ in. thick and a little larger than the dimension shown may be used. In setting ont, commence with the middle line; then draw in the outline; and, lastly, fill in details. The small curves can be worked by the brace and bit. If preferred, the semicircle on top can be worlsed separately and glued on. The opening in the centre is for a mirror measuring $6 \frac{3}{2} i n$. by $4 \frac{1}{2} i n$. The

Design for a Brush Rack

gilt slip overlaps the hole ahout in., and the moulding verlaps the outside edge of the gilt slip about \ddagger in. (see Fig. 2). If this cannot be managed neatly, substitute a piece of plain moulding without a rebate. Large brass hooks should be screwed in the positions shown by the crosses. The hooks uaderneath the glass may hold a small hat brush.
Removing Stains from Engravings. - Mere age stains can be removed from engravings by placing the latter in a shallow tray (a tea-tray, for instance) containing water, and exposing them to the rays of the sun till bleached, when they should be allowed to dry naturally. When dry they can be ironed with a hot iron over several folds of linen to take out oll creases, etc. To remove yellow grease stains, lay a sheet of muslin in a tea-tray, and on the sheet lay the, engraving. Take the whole into the open air and with a soft wash-leather pad well spoage the yellow stain with petroleum spirit or epirit of wine. Do not in any case attompt to do this indoors or near artificial light, as the spirit is highly intimmable. When the stain has been removed, lift the muslin and engraving together from the dish to a table, and cover the face with blotting-paper, placiag over thisasheet of browa paper, and then a sheetof calico. This done, turn the whole over, remove the muslin hack, replace with blotting paper, orown paper, and calico, and submit the whole to geatle pressure untll dry. Staine caused by damp, etc., are removed by the following method. Cover the engraving in a glazed earthenvare tray with clean raio-water till the paper is saturated; then pour off the water, and euhstitute a bolution of
the stain disappears pour the eolution away, and rinse the engraving in clean water. Then dry, and easure smoothness by stretching the paper. To remove grease stains, lay the engraving between several folds of clean blottiog-paper, and pass a hot irou over it. Continually change the paper and repeat the ironlag. Several appli. cations of beazine are also effective in removing grease. Damp and age staing may be removed in the following manner. Lay the engraving in a flat digh-a sheet of glase with wooden sides dreseed with paraffin wax will answer yery well-and pour over it a mixtare of equal parts of benzoin and concentrated solution of chloride of lime and water. Let the engraving remain till the stains dieappear; pour off the hleach, and well wash with cold water as the engraving les in the dish. On no account attempt to take it out. After a dozen or so changes of water, let it soak for an hour in fresh water; tip up the dish, and let the eagraving dry on the glass; Very slight friction with a camel-hair brush may be applied to a particularly obstinate mark, but do not finger the paper while it is wet.

Making a Wooden Washing Tray.-The pitch of the sides of a wooden warhing tray can be obtained as in Fig. 1, a centre line being squared acrose the sides and ends, and half the required length or width set off from

Making a Wooden Washing Tray.
It at both top and bottom. Then connect these marka as shown. The ends should be trenched into the sides for the full thickness, as ehown in Figs. 2 and 3 . The grip ehould be at the extreme top of the ends and should run quite across, so that two hands can take hold if necessary. Iron pails and screws may be used; the heads simply require a little putty over them. Fit the joints, make them tight, nail well, plane off the edgres all round so that the bottom fits well, and put them all together without paper, painti, or white lead.
Converting Dry Plate Negative into Positive,-A negative may be converted into a positive by bleaching in the ordinary mercuric chloride intensifying solution, consisting of bichloride of mercury (or corrosive eublimate, s, dangerous poison) 100 gr ., chloride of ammonium 20 gr ., water 20 . , but the rebults are not eatisfactory. An old process, known as the ababastrine process, has also been nsed, but as it depends on the action of chloride of mercury it cannot be considered successful. The formula, however, is as follows. Dissolve 40 gr . bichloride of mercury in 2 oz . water, and add 20 gr . Bodium chloride (common salt) and 1 dr . hydrochloric acid. Either of the above formulm may be used, the negative beiag ooaked until thoroughly bleached, then well washed and, when dry, coated with any opaque black varnish. Unless the film is thoroughly freed from hypo before bleaching; the negative will he stained, or it may not bleach at all, remaining a dirty brown colour. The staining or the refusal to bleach occurs because the chloride of silver that is formed in the film is immediately attacked by the unremoved hypo, which is very weak.

Making and Bending Flash Glass.-Sheet glass no to the thickness of window glass is made by up to the thickness of window glass is made by blowing a mass of past, glass into a large hollow a dividing line is marked across its surfaos, and the-cylinder is placed in in reheating furnace, where it opens aud falls iuto a flat sheet. Ths bending of a sheet of flat glass involves a partial reversal of the above process. A muffle furnacs must be provided, and a sufficient number of smooth blocks of iron, one surface cient number of smooth blocks of iron, one surface being flat and the other suriace curved to the required
shape of the glass. The glass that is to bs bent must be placed on the rounded surfaces of the iron blocks whilst the furnace is cold. The fire is then lighted, and the temperature gradually raised. When the muffle is at a red heat the glass will bend and assume the shape of the block on which it rests: the fire must then be allowed to die down, the muffe being kept closed, so that the glass may be properly annealed by slow cooling. This is an expensive method, but no other form of heating appliance would answer so well for small sheets as a muffle furnace. The glass must not be engraved bsfore bending, otherwise there will be distortion, especially near the central line.

Blind-stltching Hair Mattress.-In blind-stitching Fig. 1 shows the first operation of putting in the needle, which must not be drawn out on the top, but backed out about 3 in . farther on the frout; note that the needle is double-pointed for this purpose (see Fig. 2). l'his will leave inside the mattress a loop of twins (see Fig. 3), which, when drawn tight, will secure all the hair

Making Hair Mattress.
contained in the loop or stitch up to the edge of the mattress, thus forming the hard, square edge seen in this class of work.

Recipes for Furniture Polish Revivers. - Below are given twelve recipes for furniture polish revivers. (1) Besides thorougily eleansing the furniture this reviver leaves a good polish, which is not easily soiled by finger-marks. Mix together spirit of wine 1 pt . vinegar' $\frac{1}{3} \mathrm{pt}$., boiled linseed oil $\& \mathrm{pt}$., turps $\ddagger \mathrm{pt}$. Mix the spinit and vinegar first, shaking well till of a creamy colour ; then add the other ingredients, and mix all well together, keeping it tightly corked. Apply with a clean cloth which must be dry, rubhing well in, and polish off with a dry flannel. (2) Thoroughly mix $\frac{1}{4}$ pt. lime water, \ddagger pt. linseed oil, and then add $\frac{1}{2}$ pt. sweet oil, well mixed, atterwards thinning with nearly $\frac{1}{2}$ pt. of turpentine. attiwards thinning with nearly with wadding or soft rag, wipe off, and furpentine. soft clean rag moistened (but not wet) with methylated spirit. If the work is very dirty or sticky with wax, it should first he well washed with weak soda and water. (3) To 各 pt. cold-drawn linseed ail. add $\frac{1}{2} \mathrm{pt}$. spirit of wine (meth.), $\pm \mathrm{pt}$. good vinegtar, and two pennyworth of untter of antimony. Well shake this, and well rub in a wotter of antimony. Well shake this, and well rinb in a inttle with a soft cloth, repenting the rubbing at be obtained. (4) Warm 3 pt . of turpentine, 12 oz . of Castile soap, 12 oz . of white wax, 4 oz . of butter of antimony, and 1 gill of vinegar over a slow fire. (5) Mix together $\frac{1}{2} \mathrm{pt}$. of vinegar, 1 noggin of methylated spirjt, and a tablespoonful of raw linseed oil. Use on a piece of solt rag. (6) Before using this, wash the furniture with a solution of about two tainlespoonfuls of extract of soap in a pail of warm water. To polish, apply the following mixture with a soft pad. Take $\frac{1}{2} \mathrm{pt}$. each of linseed oil aud vinegar', boil them together, and, when cool, add a pt. of methylated spirit. This method may be applied to polished or painted furniture. (7) A varnished or French-polished surface may be cleaned with soap and a moist flannel, a moist fannel alone, or a rag wrung almost dry after dipping in paraffin oil. The polish may be revived by ruhbing with the following polish. A piece of gum sandarach as big as a walnut is simmered with
$\frac{1}{4}$ pt. boiled oil till dissolved, and, when this is nearly cold, 1 dr. Venice trrpentine is added. Thin this, if necessury, with oil of turpentine. (8) A good renovating medium is camphorated oil, rubbed on very lightly and quickly with a soft flannel rubber, (9) Mix together equal parts of vinegar, sweet oil, and spirit of turpentinc. Apply this with a piece of soft Hannel, and rub down with a soft silk handkerchief. (10) Wash well with soap, soda, and water; dry well, then revive with raw linseed oil, vinegar, and paraftin oil in equal parts. (11) Mix together cold ipt. of linseed oil, 2 oz . of distilled vinegar, 各 oz. of muriatic acid, 1 oz of spirit of wine, $1 \frac{1}{3}$ oz. of oil of almonds, $\frac{1}{3}$ oz. of muriate of antimony, and $\frac{3}{4} \mathrm{oz}$. of spirit of hartshorn. Shake the mixture and pour a ittle upon a clean rag, rub the furniture well, and finish off with a piece of clean, soft rag. The mixture must he shaken each time the rag is replenished. (12) Thoroughly mix together 1 pt . linseed oil, $\frac{2}{2} p \mathrm{pt}$. methylated spirit, $\frac{1}{3} \mathrm{pt}$. white wine viuegar, and 2oz. butter of antimony. Mix well together, shake each time used, put a little on wadding or flannal, and rub briskly. Wipe oft with clean, soft rag.

Choosing and Fixing Spirit-level Tubes.-Spirit. level tubes are drawn out in a blowpipe flame; the tube, with care, does not cease to be a tube, though, when twisted hot, or broken cold and placed for a moment iu the flame, it is quickly sealed up. These tuhes are not quits straight, but the error is not great. A tube like Fig. 1 would be quite useless, as the hubble would divide into two portions, as shown, and no indication would be possible; but if the tube is turned over as

Fig. 1.

Fig. ${ }^{2}$
Fig. 3.

Choosing and Fixing Spirit-level Tubes.
in Fig. 2, the bubble promptly comes to the centre. The illustrations are purposely exaggerated. A tube that is quite straight for a portion of its length, and curves off towards oue end, is very unsatisfactory; if the tubes could be uniformly larger towards the centre, as in Fig. 3, no care would be necessary in mounting. It is desirable that a tube, when set in place, should give similarindications when reversed, as in Fig. 3, although the surface is not level; this canvot happen unless the curvature of the tube is uniform, and the tube is uniformly set in its socket. Levels, as usually sold, are set on a tinfoil film, which makes the bubble more easily seen; in home-made levels a substitute may be employed. Mix dry plaster-ofParis with a little powdered blue, or mix the plaster with water and blue ink; quickly set the convexside upwards, so that the hubhle reverses equally at a slight inclination. An adjustable inclination is easily obtained by resting the tube on two screws inserted in the bench for a portion of their length. By this means, on reversing, the bubble ought to occupy similar positions as regards distance from the centre; then, after adjusting the screws until the bubble rests in the same place when reversed, the centre can be marked. Of course, long hefore this has been accomplished the plaster will have set; but this does not matter, as the under side can be adjusted by shaving with a sharp trying plane; treated thus, the level is more correct than if the tube were adjusted by the fingers. If the tube has been deeply emhedded, the block containing it can be made parallel after the under surface has been adjnsted.

Renovating Upholstered Firniture.-The following are instructions on renovating leather-covered furniture. Cut the strings that hold the huttons from underneath the seats; these strings can be drawn out on the top. The stuffing will now be loose and the bulged edges knocked up square. Get the seat surface as even as possible; then re-button with covered buttons, commencing near the edges. Tie these up as tightly as possible, so as to make deep tufts. Now dissolve 1 oz. of bleached shellac in $\frac{1}{2}$ pt. of spirit and give the leather two thin, even coats, applied with a piece of sponge.

Steam Feating Lanndry Drying Room.-Below are brlef particulars of the mothod of heating a laundry drying room 20 ft . by 16 ft . by exhaust 8 team. A room 20 ft. by 16 ft , should have at least two $2 h-i n$. pipes all round, and three pipes would be desirable. A better arrangement is to put two-thirds of this quantity dif pipe in rows across the room so as to get a well-dlstributed heat. A drying room, to be effective, must have very fres ventilation. Hented air absorbs only a certain amount of moisture. A constant change of air is, therefore, absolutely necessary. A $2 \frac{1}{2}$-in, exhaust service will be suitable, and, after passing through the drying room, it should still be capable of heating water in a tank. It will he deslrable to fit a "separator" as near the enging as convenient to remove the greane vapour from the steam, otherwise it will in time collect in the heating pipes. No run this exhaust service, take it to its highest point immediately it leaves the engine-that is, high enough to allow of a fall of In. in 10 ft . all the way to its final outlet. This is to prevent the collection of condensed water at any point. The heating pipes in the condensed water at any point. The heating
Ascertaining Strength of Timber.-The machines used for testing the tensional, compressional, and other strengths of timber and other materials are very elaborate and very expensive, as the experiments must be efficiently carried out. In testing for tensile strength, the piece of timber may be from $\frac{1}{3}$. to 3 in. square, held betveen toothed jaws, or shouldered and held between clips, but it is essential that the stress should be direct, that is, in the true axial line of the pisce. The same sizes may be used for teating compressive strength, the ends being made perfectly true and square, and not shouldered. Timber

Ascertaining Strength of Timber.
is, however, more often tested for transverse strength, and home experiments may be made which will give a rough approximation. What is wanted is to find a value for c in the formula $W=\frac{c b d^{2}}{I}$, where W is the breaking load, c a co-efficient varying with the material and the mode of londing and supporting, b the breadth in inches, d^{2} the depth in inches squared, and L the clear span in feet. If the piece be simply supported at both ends and loaded in the centre, c will be about $3 \frac{1}{2} \mathrm{cwt}$. or 400 lb . for fir or deal. Say a piece of straight yellow deal, in. square and 3 ft . long, carefully prepared, and laid across tivo supports fixed level at a distance of 24 in. from each other, and an empty galvanised iron bucket hung on the centre of the beam. Then the bucket can be gently filled with dry sand until the small timber beam cracks and breaks. It can be arranged that the bucket does not fall far, and then the bucket and sand can be carefully weighed. Suppose it to be 80 lb ., then the calculation will be $80=c \times \frac{.75 \times{ }^{2} 75^{2}}{2} ; 80=c \times{ }^{-2109 ;} \therefore c=$ $\frac{80}{2109}=$ say 380 lb . or $\frac{380}{112}=$ say 3.4 cwt . If the timber con. tains moisture from want of seasoning or otherwise, the fibres will tend to slide on one another and yield with a smaller load. The effect of this moisture may be shown by plotting the results to a curve, as in the illustration herswlth, which is hypothetical ouly.
Underground Rain-water Tank.-Rain-water tanks should be designed to suit their positions, and only a general description of their positions and construction can be given. The tank should be only a short distance from a house or building, so ms to shorten the lengths of the drains leading to it, and should also be Dear the place where the pump necessary for raising the water can be fixed. The selected site should not be near any soil or sewags drains or any other place where there would be risk of the water becomiog contaminated. After the excavation has been mads to the desired size and depth, the bottom should be covered with Portland cement concrete from 9 in . to 18 in . In depth, according to the slze of the tank and the nature of the soil in which it is being
built. The walls should be from $12 \ln$, to 18 m . thick, and made of concrete, or built with bricks in cement and rendered inslde to maks it watertight. Some engineers puddle the outsids with clay. The tank can be arched over or covered with rolled-iron jolste about 18 in . to 24 in . apart, and filled in between with Portland cement concrete. An access manhole should be made in a suitable position, and have a ralsed curb round it and a fliat stone ur hinged oak cover. The overflow should be made of ordinary drain pipes, and be arranged to discharge into the open air in a field or other auitable place, but notinto any soil or sewage drain. A trap is not required, but in some cases an iron grating on the outlet end is necessary for keeping out rats or other vermin.
Lacquering Brass.-Heat the article to be lacquered on a hot plate or in an oven; when it is hot enough, which must be fonnd by trial, apply the lacquer with a camel-hair brush. If the right temperature has been attained, there should be a slight hissing when the lacquer is applied. Reheat the laicquered article and then allow to cool; the lacquered surface must not, while it is hot, be touched with the fiugers.
Levelling Thin Metal Plates.-A good method of levelling thin metal plates, such as No. 20 wire gauge, is the following. In the illustration the plate to be set is "loose" at A B CD ; to make it fiat, the parts of the sheet opposite the buckled edge must be stretched with a setting hammer, used upon a largs circular iron slab. known as a setter, The dotted lines upon the diagram indicate the places at which the hlows are to be delivered, and a few additional blows along the centre after the

Levelling Thin Metal Plates.
buckles are drawn out will stiffeu the sheet. Buckling in sheets of metal is due to impurities in the metal, to a defect in the rollers, or to unequal annealing.
Estimating the Value of Standing Timber.In some localities the value of standing timber is made out by a surveyor who has specialised in this class of work. His calculations are based on the apparent cubical contents of the trees growing over a given area; and their exactness will necessarily depend on the experience ho has previously gained. But sight measurement can seldom be relied upou. The only satisfactory method of estimating, and the ons most often followed, is to measurs the timber height and girth of each tres on the plot separately. In such cases the trees are numbered, and the survey is conducted as here in-dicated:-
1898 Cutting. Treffgarne Hall Woods. Woodmoor Section.

No. of Tree.	Kind of Tree.	Cubic Ft. contained.	Price per Ft.	Value.
			s. d.	£ s. d.
30	Ash	40	26	500
31	Larch	28	20	2160
32	Elm	80	20	800
$\begin{gathered} 33 \\ \text { etc. } \end{gathered}$	Oak	64	30	9120

The first thing to ascertaln is the price per foot each kind will realise when delivered ati the place of sale. The price to be paid for the standlng timber will then be found after the following items have been deducted -1 , cost of survey; 2 , cost of felling: 3 , cost of cartage, or rail, to market; 4, construction of temporary roads, or gaps through fences, and makiug same good; 5 , extras to additlonal labour, etc., on account of difficult nature of ground: 6, profit. Firewood, if ineluded, is to some oxtenta recoup on the above, but it is usually sold under separate agreement.

Gilding Liquid for Dipping Metals.-For a liquid colution for gilding brass and bronze, dissolve toz, of gold chloride in 5 gt. of distilled water' then add $2 \frac{1}{3} \mathrm{lb}$. of canstic potash, 5 oz . of pearlash, and 2 oz , of cyanide of potassium, and stir until all is dissolved. Dip the articles in this solution whilst at a nearly boiling temperature. The colonr of the gilding will be affected hy the temperature of the solution, and it may be necessary afterwards to work up the surface with a brush. A solution for gilding silver and German silver may be made by dissolving 20 grains of gold chloride in 1 pt. of distilled water, then adding gradually $1 \frac{1}{2}$ oz. of acid carbonate of potassinm. Mix this with another solution containing $1 \frac{1}{2}$ oz. of asid carbonate of potassium in $1 q$ t. of water, and boil the mixture until it turns green, when it is ready for use. Silver articles to be gilded in this solution must be attached to thin strips of zinc. GiIding by this process may be made more permanent by frist thinly coating the articles with mercury in a solution of nitrate of mercury.
Fixing Valley and Jack Rafters-The accompanying conventional eketch shows the best method of fixing valley rafters and jack rafters on a roof. The
in order that no cutting may have to be done after the bed is spread. Wash the sand through a fine sieve, and gauge 2 parts of it to 1 part of Portland cement. Wat the steps if they are too dry, but do not wet the treads, as they are almost impervious to moisture, and the addition of water makes them too slippery. Having spread the bed, hold a straightedge on the face of the riser to keep the treads from slipping forward, and with another straightedge tap the treads to their proper level. This tapping will cause the cement to come up between the heads and thus form a solid cross-joint, which should not be more than $\frac{1}{15}$ in. Wide. Cover with boards, which must be kept clear of the treads, and in twolve hour's' time wet the steps, and keep them under water for four days. After this they will not require further protection.
Setting Out Semi-elliptic Arch,-The semi-elliptic arch, suitable for masonly construction, shown in the accompanying illustration is set out in the following manner. First draw the span AB and the rise CD, and draw AX and D X parallel to CD and CA respectively. Divide AX and AC each into three equal parts, make $\mathrm{C} \dot{\mathrm{Z}}$ equal OD, and draw lines through the pointe, as shown,

Valley rafters are notched over the wall-plate, and cut between the ridges. The jack rafters are fixed to the valley rafter and ridges.
How to Make an Effervescing Saline.-The simplest kiud of saline is made by mixing together 1 oz. of tartario acid and 1 oz . of bicarbonate of soda. If required sweeteued, mix with 2 oz . of finely powdered sugar. All the powders should be thoroughly dried hefore mixing. Seidlitz powders are very useful salines. The powder in the blue paper contains 2 drachms of Rochelle ealt and 2 scluples of hicarbonate of soda. The powder in the white paper contains $\frac{1}{2}$ drachm of tartaric acid.

Repairing Worn Stone Steps,-In manyinstances the worn parts of stone steps can be made good with silicon treads. In executing such a job, the first thing is to centre the step; if economy has to be practised, make the centre where the stone is worn deepest, which will be year the side on which the handrail, if there is one, is fastened. If the cost is immaterial and a well-finished appearance is required, centre the step so that there is the same width of margin on each side. The middle point can be made the centre of a tread (the treads are 6 in . square) or it may be at a joint, according to the number of treads. Six or seven treads are generally sufficient to replane the worn part of one step. Cut out sufficient to take an exact number of whole treads, and do not allow for a hed deeper than \ddagger in. The treads should be tried in position
intersecting each other at Y and N. Make the angle D N II equal to the angle NDC, and produce D C to meet NH in II : then H will be the first centre. Join $Y N$ and bisect it, cutting $N H$ in M, which will be the second centre from which the curve $Y \mathrm{~N}$ is struck. The curve $A X$ is obtained in a similar manner, and the other side of the arch, being symmetrical, is easily found.

Measuring Bnildings.-In measuring up a newly built house so as to euable complete drawings to be made, commence with the ground plan and measure carefully, as everything else must fit this plan. Take the outside dimensions first, then the inside. Then measure first floor, secoud floor, attics, and cellars. Next take the height from floor to floor at the staircase for the sections. For the clevations make sketches aud count the courses of brickwork for heigit, and the uumber of bricks in length for intermediate points of width. Details of windows, if mullioned, etc. may be measured by opeaing the window aud reaching out. The pitch of roof must be obtained or fassumed, and the roof plan may generally be drawn by repeatiug the plan of the lower floor and noting where the ridges come. All measurements should be nurked on the sketches. Draw out the ground plan first, and test everything else byit. Any roof spaces, etc., not accessible may be left blank or details assumed; the whole thing may be done without a ladder with sufficient accuracy for the purpose. Details of floors, stairs, cornices, etc., seen in the sec tions may be left until the last.

Eand Shears for Cutting Sheet-iron. - Flg, l is an elevation of a pair of shears suitable for cutting stout sheet metal. The top bar is of iron 3 in. by 1 in . thick, on which the top knife, of best cast steel 2 in , wide by in. thick, is fixed, and hung at the end of the supporting bracket by bolt and nut. The supporting bracket is of wrought flat iron, 3 in. Wide by $1+i n$. thick. In the top of this bracket is fixed the bottom knife of best cast steel, 2 in , wide by 1 in . thick. The npper bar in which the upper knife is thick. The nuper bar in which the upper knife is standing portion of the suphorting bracket at A, connected to the upper bar'and knite with square comnection,

Yery disgusting, is the method usually adopted. Much work may be avorded by gently boiling some ot the bones in several changes of water until the flesh can be removed whlist hot with blunt pieces of wood. If the bones are boiled, allowed to soak in cold water for some days, and then exposed to sun and gir, most of the grense will have disappeared and the bones will have become bleached. Dry sosp, washing powders, or soda will greatly assist. Chloride of lime made into a weak solution with water is commonly used for a weak solution with water is commonly used for lpt. of water, as if too stroug the solution spoils the bones. Or cover the bones with equal quantities of

pinned to koth rail and handle. The ironwork is bolted to a wood block, dovetai ed into \& 3 -in. plank 11 in. wide. The whole arrangement should be slightly on the slope. This is done by setting the shear's end of the machine on a block of wood 3 in. thick. Fig. 2 is a plan of the ironwork in position, with the knives as they meet eaeh other. 'lhe wrought-iron supporting bracket is affixed to the wood block by square-head bolts.
Determining Contents of Heaped Material.-The contents of a heap of material, shaped as illustrated, can be found approximately by multiplying the length of the base by the width and by the perpendicular height H of the mass, and then dividing the final product by 2. If all of these measurements are in feet, the result will be in cubic feet. To determing the height in feet, when the leagth of the sloping side is given, square this length in feet and subtract the square of half the width, also in feet.

Determining Contents of Heaped Material.

Then extract the square root of the remainder. Applying this to a heap 23 ft . long by 12 ft . wide with a sloping side of 9 ft ., the perpendicular height will be $\sqrt{81-36}=\sqrt{45}=6.7 \mathrm{ft}$., since the square of 9 is 81 and of $\frac{12}{2}=36$. The contents will therefore equal $23 \times 12 \times 67 \div 2=925$ cub. ft. (say).

Cause of Blue Colour in Niekel. - When a thin coat of nickel is deposited on iron and steel, the underlying metal gives its tint to the deposited nickel when polished. A similir bluish tint is observable in nickel deposited from an old solution contaminated with base metals. In such asses the colour of the deposit may be improved by addiug to the solution common salt (sodium chloride) at the rate of 1 oz . of salt to each 6 gal. of solution at first: then note the results. If an improvement is observable, add more salt ; but it is not adproverment is observable, add mole salt; but it is not lf the deposit is still bad, the solution is unfit for use.

Producing Skeletons of Animale.-For such anlmals as horses and dogs, first take away the skin and the internal organs, and then with the knifo remove the greater part of the flesh. Next place the bones in frequently changed water until the flesh has putrefied, and then either pick or wash it off. Thls, though
peroxide of hydrogen and dilute ammoun in an earthenware vessel. Tinally wash in clean water. Expose to sun and air to dry. To bleach naturally, wet the bonessnd expose to sun and air, repenting as often as necessary. During both the maceration sud the boiling the connections or ligaments will give way, so that it may be advisable to tie or bind the bones with wires (copper preferred) before beginning the work. After the bones are cleaned they must bs pormanently joined by brass or copper wires of sizes to suit the bones, holes being drilled for the purpose.

Closestudding the Edges of Upholstered Chairs.

 - For close-studding the edges of upholstered chairs, procure a gauge to the shape of the accompanying sketch. For ordinary 音-in. brass studs the points of the gauge shonld be $\frac{\lambda^{2}}{3} \mathrm{in}$. apart. In marking for studs, put the last point of the gauge in the last hole made before

Gauge for Marking Positions of Stude in Upholstery.
striking again, to ensure that the holes shall be at equal distances apart. 'I'o sare burring the stud heads, drive in with a raw hide mallet.
Mahogany Stain.-Dragon's blood, used in making mahogany stain, is generally sold as s red powdsr; it readily dissolves in methylated spirit, yielding a bright red stain generally considered, if used alone, too fiery for a good imitation mahogany. In conjunction with other stains or mordants, as nitricacid and carbonate of soda, it gives better resuits. A chesp mahogany etain can be made by mixing burnt siemna (ground in water) in stale beer or vinegar. Colour, such as dragon's blood or Bismarck brown, in the polish or varnish used afterwards will give to this stain a richness of tone far superior to that obtainable by dragon's blood alone.
Pneumatic Pedals for Piano. - In applying pnen matic action to the pedals of a piano, a bellows about 4 in . long by lỉn. wids, snd opening about lin. will be needed for each pedal. The bellows is closed by a spring underneath and opened by the downward pressure of the pedal. It is comnected with a distended bellows of about the same size under the key, this bellows, being emptied by the action of the pedal, acts on the key by a tracker. The bellows are connected by a compo tube, and the key bellows are in two rows.

Hints on Photographic Backgrounds.-Generally a medium tone background is best for light dresses. If it is too dark, the tones in the drese will probably be lost; if too light, the figure may be lost in the beckground, but better gradition may result. of course, much depends on the lighting; with a flat front light suitable for hard, thin faces with a bad outline, the background will appear lighter, and with the light behind the figure it will be darker. Photographers usually have at least two graduated backgromuds, tha usually have at least two graduated backgronuds, the other. The backgrounda ahould be in a neutral tint, otherwise it is difficult to gauge their effect. A good plan is to get a dull plaster cast and photograph againat sheeta of paper of various tonea.

How Vaseline is Made.-Vaseline cannot be made on a amall scale; it is one of the producta of the diatillation of natural American petroleum, and ia a perfectly homogeneous body, remaining, as a jelly for an unhomogeneous bady, remaining as a jelly for an unhy dissolving 1 part of paraffin wax in 4 or 5 parte of pure heavy mineral Inbricating oil.
Striking ont an Elliptle Aren.-The accompanying diagram represents an easy way of striking out an elliptic arch. Firat draw the span $A B$ and the rise $C D$, then the parallel line at the aame length as the rise. Divide the rise CD into thres equal parts, of which twothirdg is the radius at A FG to strilse the shoulder of the thirds is the radius at A FG to strike the shoulder of the
arch. Then bigect $\mathbb{D} A$, and from the point H obtained
filings, 200 parta of water, $\frac{1}{3}$ part of indigo, and 3 parta of sulphuric acid. (5) A blue-black ink, but one which appears violet at the time of writing, is made hy hruising elderberriea, and setting them iu a warm place for thi'ee days to ferment; strain, and add to each 6 pt . of juice $\frac{1}{2}$ Oz. of sulphate of iron and $\frac{1}{2}$ oz. of acetic acid.
Pinhole Photography. - The principlea of pinhole photagraphy - or photographing without lenses-are extremely simple. The discs of light thrown on the ground when the sun's raye fiiter through intervening foliage are natural examples of pinhole photography, each of these disca heing an image of the sun. If a small hole is made in a card and held in front of a lamp, an inverted image of the lamp will be thrown on any white surface facing the hole. The clearness of this image increasea as the size of the hole is diminished and as the receiving surface ia shielded from extraneous light. The hrilliancy of the image increasea with the enlargement of the hole and with its nearneas to the receiving surface. But the definition remains the same. There heing no focus, the pinhole camera gives the maximum depth of focua. If two holes are made close together, two overlapping imagea result; and if a third hole is placed between the other two, the third image may blur the other two beyond recognition. Pinhole photography, therefore, is only possible with a small hole, and is applicable only to brightly llluminated inanimate objects. Captain Abney's rule for determiuing the best diameter of the pinhole ia to multiply the square root of the diatance between plate and

Strikleg Out an Elliptic Arch.
draw line to C; then square off centre of $F C$ to intersect at J; then with J an centre and $J F$ as radius describe the crown of arch from F to 0 .

Preventing Moths Attacking Clothes.-Try one of the following remedies for preventing motha attacking clothes. (a) Keep the clothes in a trunk made of cedar wood. (b) Sprinkle some oil of birch on a piece of cloth or flannel and place it in the box with the clothes. (c) Sprinkle 80 me Keating'a ingect powder on the clothes before folding them up. (d) Place gome albo-carbon (ohtainable from the ironmonger) in the clothes box. To remove motha from clothing, it ghould be atoved; or the clothes may bs taken out of doors and well ahalken, then well hrushed and carefully examined ingide and out.
Making Blue-black Writing Inks.-One method of making blue-black ink is to digeat together 70 g . of bruised galla and $\frac{1}{2}$ oz. of bruised cloves for about a fortnight in 5 pt . of water. Filter and add 3oz. of gulphate of iron and 1 fluid dr. of sulphuric acid. Well shake until the ingredients disaolve properly, and add loz. of indigo paste, and again filter if desirable. Galla for ink-making should always be bought whole, as, if already bruised, it ia impossible to estimate their value. The beat galls are known as Aleppo; they have a warty surface, are blue or green, and should be heavy and free from holes (showing that they have been collected before the ingect has escoped). English galls are of no value. For use, the galla are broken up into a coarse powder iu an iron or bell-metal mortar. (2) Dissolve in 12 oz. of water 7 oz. of sulphate of iron and 20 drops of sulphuric acid; In a similar bulk of water dissolve ahout $10 z$, of tannin, Diasolve in 1 oz. of alcohol-spirit of wine- 24 gr . of methyl hlue. Add to the first solution the methyl and alcohol, then add the tannin water, and shake. This does not need to be kept to mature, as do the indigo inka. (3) Ruh 6 parta of Pruesian blue with 1 part of oxalic acid and a little water to a amooth paste and dilute with water. (4) Work together 15 parts of bruised galle, 5 parts of ferrous sulphate, 4 parts of iron

pinhole by 008. An ordinary camera nay be used as a pinhole camera by constructing a cloge-fitting front with a sliding metal plate containing holes of different with a sliding metal plate containing holes of different table, which is worked out according to Captaiu Abney's rule,

Pinhole diametersin inches	$)^{\frac{1}{16}}$	${ }^{12}$	$\frac{1}{32}$	$\frac{1}{5}$	\cdots
Diatance between plate and					
hole for sharpest image in inches ..	664	32	16	8	

The fractions may then take the placs of the f ratio in estimating exposure; which, with a subject that would require one second at $f / 16$, will be just as many minutes as the plate is inches from the hole. Or estimate the exposure for the f number and multiply by the aquare of the distance. Thua, aupposing the hole iniu. at 4 in. is used and for the subject in hand the exposure for the same plate under the game conditions at $f / 64$ would bo ten seconds, then in this case the exposure will be 10×4^{2} or 160 seconds. To make a pinhole camera, procure a card. board hox, whose lid and the box itself should each be 4 in . deep; cover the outer sides of the hottom of the box with thin velvet so that the box will be completely enveloped and will be light-tight when the lid is on. Cut in the front of the box three openingg A, B, C (Fig. 1) of the si\%e and shape shown. Now make another box with projecting aides (Fig. 2) to fit inside the first. Cut two pieces of metal as D and E , and rivet to the two boxes as ahown at R ao that they move freely and indepandently. Glue on stripa of card F, G, H, and I to form stopa, and attach the cords J and K. The piece E has a second piece bent over it, and hetween these is fixed a piece of tinfoil or extremely thin copper L containing two holes $\operatorname{lin}^{-\frac{1}{4}}$ in. and $\frac{1}{5}-i n$. diameter, either of which may be pulled into position when required. The plate ia laid face up in the back of the outer box and is held upright by the inner bor when the latter is pushed in. Pull the cord so that tha proper hole comea into position in the centre, and close the shutter with the other cord. Stand up freing the view and open the shutter for the required exposure.

How to Make a Shutter for Taling Photographic Doubles.-The accompunying sketch shows an arrangement for doubling the sanie flgure on onc quarterpiate. Construct a framework A in s-in. Wood, laving holes $\mathrm{B}^{1}, \mathrm{~B}^{2}, \mathrm{~B}^{3}, \mathrm{~B}^{4}$. Into these fit the rods C, C. q^{\prime} he holes ahould be slightly smaller than the rods, and the latter should be cut down to form a shoulder, thus keeping them in position. Cut two pieces of wire, each equal in length to two sides of the frame, and sharpen the ends. Bend these to the shape shown (D and D^{1}) and fix into the two rods so that the two centres almost touch, thus forming the framework of two doors, made light-tight by covering with thin velvet. These doors should fit exactly, and are, of course, turued by the rods 0,0 , which project about $\frac{3}{8}$ in, beyoud the irrame. Fit into the inner side of the framework a second frame about $\frac{1}{2}$ in. by ${ }^{1}$ in., against which the doors shut, making a lighttight join. To the projections just mentioned are fastened cog-wheels E and E^{\prime}. Now take a stout knitting needle, and wind around it some brown paper, sticking it down with paste to form a paper tube. Measure half the circumference of the cog-wheel, and cut the needle down flat for this distance, leaving about an inch or so to fit the tube (both may be made from one needle). Notch the liattened part to fit the cog-wheel. The tubes are next fixed throngh the camera front as shown in section in Fig. 2, and the racks inserted. It will be seen that, if air is forced through the tube, the rack is blown out, carrying the wheel round with it. An extremely thin rubber band F fastened from the inner side of the door to the frame suffices to pull it back. To each of the tubes projecting outside the camera it will be necessary
twelve houns in 3 pt. of water and simmer gently till lat. is leit. Wheu cold, decant and dissolve about 20 gr . of yellow chromate of potash in the solution which must be well stirred the while. (5) For a cheap ink dissolve a threepenny packet of Judson's dye in a small bottle with a little hot water, and add cold water according to the strength of colour desired. When required for use, pour a littie into the inkpot, and dilute with water as required. (6) To make black writing ink that will not be affected by water after writing boil $\frac{1}{2}$ oz. of lump borax with $\frac{1}{2}$ pt. of clean water in a clean covered pot. When the borax has diesolved, ndd 102. of blenched shellac and stir tlll dissolved. Add oufficient vegetable black that has been thoronghly mixed with water on a palette with a palette knife till it is free from lumps and forma a thick paste. (7) Shellac dissolved in methylated spirit and covered with aniline dye makes a bright waterprool ink, but this is rather difficult to use, except in cold weather, as the spirit evaporates and leaves the ink on the pen too thick to fiow. It works all right if rapidly brushed on,

How to Make a Sheet Brass Table Lamp.Fig. 1 shows the table lamp complete. For it, cut two circles of sheet brass (No. 22 gauge), each 7 fin. in diameter. Hollow both together on a block until quite smooth, so that each resembles a howl. Turn up a small edge on each with a jenny or bottom stake, so that one will fit inside the other. Procure a No. 2 Hinks's Duplex burner, or, better still, a complede central draught burner. Measure the bed, and cut a hole $\frac{1}{4}$ in. less in diameter in the ceutre of the larger bowl; turn up the

A Shutter for Taking Photographic Doubles.

How to Make a Sheet Brass T'able Lamp.
to fit 6 ft . of small tubing, connecting them at the end wlth a Y-shaped double tap like Fig. 3 . By opening one door and keeping the other closed, one-half of the plate may be exposed, the process being repeated for the other balf. The two images overlap or vignette into each other, so that no join is shown, provided the doors are not too far from the lens. The doors shcuid be at a are not too far from the lens, the from the lens of about half its focus. If too near, too much of the plate will be exposed. For this reason the exact dimensions cannot be given. The position to he occupied is focussed with one door open and one shut, alternately, the alternate door being closed by turning the tap. The ball for operating the shutter is placed on the floor, to be worked by the foot.

Recives for Black Inks.-The following recipes are por black writing inks. (1) The common ink sold at oil for black writing inks. (1) The common ink sold at oil a copper 8 gal. of soft water, throw in 7 oz . of logwood extract, and put out the fire to stop the boiling. Add 102. of bichromate of potash and 80 grains of prussiate of potash, and after straiming, bottle it. (2) Bruise 60% of best Aleppo galls, and boil in 6 pt . of water for several hours, adding more water to supply the loss by evaporation. Strain whilst hot through calico into a clean vessel. Add $40 z$. of gum thrabic, and boil till dissolved. Strain again whilst hot arabie, and boil till dissolved. Strain again whilst hot previously dissolved in water. To preserve from going mouldy, add 3 drops of creosote for each pint op ink. The ink, to appear thoroughly black, must be kept for some time brrore using. (3) A black aniline ink is prepared by ribbing 60 gr , of aniline black with 60 drops of hydrochloric acid and lizoz. of alcohol. Dilute with $30 z$ of distilled witer in whieh $\frac{1}{2}$ oz. of gum has been dissolyed. (4) Dlgest $\frac{1}{2} \mathrm{lb}$. of logwood chips for about
edges for $\frac{1}{8}$ in, so that the bed will fit tightly over, and solder this on from the inside. Then fix the hollows together, the edge of one inside the other, and solder well round. This constitutes the oil vessel. To make the stand, cut a circle of sheet brass 7 in . diameter and hollow lt not quite so deeply as the other vessel. Swage it round, leaving it plain for $\frac{1}{2}$ in. from the edge to produce a mould-like appearance and to increase the strength. Gut another circle $4 \frac{1}{*}$ in. diameter, hollow it deeply, and file it perfectly plane at the edges Cut a hole $\frac{3}{8}$ in. less in diameter in the swaged circlo which, when edged ${ }^{3}$ in. all round, will allow the smallor circle to fit tightly over it. Solder this well from the inside. Now make a taper tube 4 in , long, $2 \frac{1}{4}$ in. diameter at one end, and $1 \begin{aligned} & \text { in } \\ & \text { in. diameter at the other. }\end{aligned}$ This must be cut according to the pattern, Fig. 2 . Bend it round over a mandrel, and braze the joint with soft brass spelter, using borax as a flux. File the joint smooth, and raise three small rings with a hand swage, starting inn. from the widest end see A (Fig. 1). Ont a hole, in diameter equal to the tube at its larger end, out of the small hollow, which is now flxed to the swaged hollow. Drop the tube in, beat over the protruding $\frac{1}{5}$ in, to the inside of the small hollow, and solder rolund from the inside. Then make a brass socket B (rig. 1) and solder it to the bottom of the oil vessel. Now fix the stand on a flat surlace, drop the oil vegsel over it so that its socket fits tightly over the tube of the stand, square it, and theu solder them together. Turn the lamp upslide down and solder a dise over the larger end of the tapor tube. Fill the bottom. with sand, and then solder a disc on to prevent it escaping. The lamp will then not readily be overturned. Remove solder from outside the joints with a smooth file, scrape with a stcel scraper or sharp pocket-knife, and polish with emery ind oil, finishing with bath brick and turps.

Recipes for Blue Wrlting Inls.-These are recipes for blue inks. (1) Place in a tumbler a teaspoonful of soluble Prussian blue pigment, and add sufficient pure water to dissolve all the blne and make it of the proper consistency for use as ink. (2) Allow loz. of powdered indigo to stand in 7 oz . of ofl of vitriol for forty-eight hours. Stir occasionally, and then add 80 oz of water, thus forming sulphate of indigo. A perman. ent blue ink is unade by dissolving 3 oz . or 4 oz. of this sulphate in 1 gal. of water. (3) Dissolve 3 parts of Pruesian blue and 1 part of oxalic acid in 30 parts of water, and add 1 part of gam arabic. (4) Dissolve soluble Paris blue (cornflower blue) in alcohol. (5) Dissolve 2 oz . of Chinese blue in 1 qt , of water and add 1 oz . of oxalic acid, when the ink is at once ready for use.
Stephenson's Reversing Gear for Locomotives. -The adjoining illustration shows the Stephenson reversing gear. \forall is the slide valve and C the crank. shaft carrying two eccentrics E and E^{\prime}, with centres as shown. A link carries a die U connected to the valve rod, which works in a guides. The hand lever H can be moved over the sector Q, and can be locked in iny one of the notches shown. This lever, by means of a balancing system of links, etc., at $\mathrm{K}, \mathrm{M}, v$, etc., moves the curved link L. To this link at centres P and P^{\prime} are connected the eccentrics E and \mathbb{E}^{\prime}. By altering the position of the link either eccentric may be put ing gear. For instance, as shown, the valve would receive motion from E^{\prime}, but $b y$ moving the handle over to the other side of the sector Q the die block would be at the lower end of the link and E would be in gear. With the handie at the centre of the sector, the die would be at the
consistent with the purpose for which the forgings are required should be imparted to them-sin. or a bare $\frac{1}{10}$ in., may be taken as a good average. The distorted outiines huve to he corrected with an emery wheel or with cmery paper.

Cause of Thin Photographic Negative.-Thinness or want of density in a negative may be accounted for in tro ways-by weak development owing to insufficient proportion of the actual imago maker, pyro and metol, and by too early removal from the bath. Thinuess is also caused indirectly by over-exposure and by insufficient potassinm bromide. With a pyro-metol developer, some time must elapse after the details appear in ordel to obtain density, even though the picture seems to be veiling over.
How to Make a Portable Photographic Dark Room. -Here are instructions on making a portable triangnlar dark room. Make three uprights 6 ft . long of lidin. stuff, and six crose battens 3 ft . 2 in. Iong. The top of the dark room consists of a triangular piece of wood 3 ft .6 in . by 3 ft .6 in , by 3 ft .6 in. Recessee are cut at the corners to receive the uprights, and the cross battens, which give stability, are fastened to the mprights on two sides at suitable places, and in the third side, which forms the door, one batten should he at the top and one at the bottom. The developing table is shown in Fig l, A being the sink, which is a metal dish sunk in a recess ; the dish is fitted with a pipe to carry off drippings to a bucket below. The table should be coated with paraffin wax. B shows a notch to take the upright, and C and D are

Stephenson's Reversing Gear for Locomotive.

Details of Portable Photographic Dark Room.
centre of the link and the valve would receive no motion from the ecceitrics, the forward movement of one being partly balanced hy the backward movement of the other eccentric. As the eccentrics are not exactly opposite, the valve, in mid gear, opens to lead only. To rever'se the end, it is only necessary to put in gear the eccentric that was previously not in gear.

Case-hardeaing Large Wrought-iron Work.-The ordinary methods of casc hardening are quite inadequate when large wrought-iron forgings of perhaps irregular shape require to be treated. These are boxhardened in the following manner. For the heaviest work, cast-iron boxes of circular form with cast-iron covers are used. They are of sizes suitable for the work in hand, rangiug between 1 ft . and 2 ft .6 in . in diameter. For small work, tubee of wrought iron or old pulley bosses are used. The bottom of the box is covered with a thick layer of the hardening material, which may consist of bone dust, leather clippings, or hoofs, mixed with salt or charcoal powder. Gare must be taken to give the forgings good support among the material, so that they shall not become distorted by their own weight while at a red heat. When the hox is filled with alternate layers of metal and of material, the cover is put on, and lnted with fireclay to make it nearly air-tight. It is essential that air be excIuded. Then it is placed in a fre or, preferably, in a reverberatory furnace, for from ten to thirty-six hours. The time during which the hox is exposed to the heat of the furuace mainly regulates the depth to which the metal will be hardened. The chemical activity of the hardening agents, however, influences the result. The addition of powdered yellow prussiate of potash is often an improvement. The forgings are turned ont into cold water, and are thus hardened to a depth which ranges from in. to nearly $\frac{1}{8} \mathrm{in}$. But in the same forgings the depth of the hardening will not be quite uniform. For light articles, of course, a mere film of surface hardening is enough ; for heavy work the steely casing ehould penetrate to nearly $\frac{1}{8} \mathrm{in}$. Since hardening distorts the work, the minimum amount of penetration that is
wing acrews that fasten the board to the other uprights. To facilitate packing into the smallest possible compass, wing screws can also be used for the battens. The room must be ventilated by cutting an opening in the top piece. The opening should be triangular, $\mathbf{l} \mathrm{ft}$. by 1 ft . by lft ., and it should have raised sides like a chimney, 6 in . high. Over this chimney is fitted a cap which is so made as to admit of the free passage of air while excludinglight. The conetruction of the cap (Fig. 2) is sufficiently explained by the illustration. The frame may be covered with two thicknesses of glazed lining, and a piece of ruby fahric can he let in on one side to form a window. The covering oyer the door side-which should overlap the whole width to form a light trap-may be hung on rods or suspended from hooks.

Blacking Letters on Headstones,-Black japan, which can be obtained from most oil and colour stores, will be found most suitable for lettering headstones. Use a small sahle-hair brush for the purpose. Drop black, ground in turps and thinned with good carriage varnish, may allo be used for the purpose.
A Setting Board for Butterfiles.-To make a cetting board for butterflies and moths, choose a piece of wood about 1 in. thick; groove it down the centre, and bevel it off towards the sides, so that at the edges the wood is only $\frac{5}{4}$ in. thick. On these bevelled faces entomological cork is glued, and a piece is also glued along the bottom of the groove. Rub down with emery paper when dry. The board may, if desired, be covered with white paper or with white paint. The width of the hoard and of the groove will depend upon the size of the insect for which it is required. It is usnal to have boards of various widths, each long enough to take two or three specimens.

Bleaching Pulp Cane.-If it is required to bleach pulp cane, either soak the material in a solution o: chloride of lime, then dip in dilute hydrochloric acid, and afterwards thoroughly steep in running water; or soak it in an acid solnicion of eoda bisulphite, followed by acid and water. It is advienhle to experiment first on a small scale.

Straightening and Repolishing a Mahogany Table.-To straighton a round mahogany tahle that is warped across the centre, flrst remove the top from the pillar, turn it face downvards, and sponge several times with clean water. Then apply heavy weights or pressure at its highest points for several dayb, frequently damping the unpolished part. Water ehould not be allowed to remain on the polished portion. To prevent the top roing back again, glue and screw several strengthening bars across. The table should then be washed with common washing soda, a teacupful to 1 gal. of water. Smooth down any ronghness with glasspaper, wipe over with raw linseed oil, and clean off with rag. If the top cannot be French polished, it may be improved in appearauce by applying, with a camel-hair brush, several coats of spirit varnish mads as follows. Orange shellac 4 oz., resin 2 oz ., gum henzoin 2 oz ., and methylated spirit 1pt. A rich red tone is gained hy edding one pennyworth of Bismarck brown. Shake frequently till dissolved, and carefully strain through muslin before using.
Dealgn for a Divan Chair.-The framing for stuffover work such ae divan chairs needs no elaborate finish, the value and comfort of this class of work being in the upholstering. Ths back legs are 3 ft . 4 in. long, made from 2 -in. square stuff; the turned front legs arg 10 in . by 3in.: side rails and front and back rails, 2 -in. square stuff; etuffing rails, liz-in. stuff ; arm scroll A, liz-in. by
plate is theu immerscd in stroug boiling lye water (goda and water), and thoroughly washed with brushes; this removes all dirt from the crevices. The plate is now ready for polishing, which is done over a dolly running at a very high speed, using crocus with a little rouge. The dolly is a number of circular sheete of calico about 12 in , in diameter, fastened together in the centre.
How to Re-hair a Violin Bow.-In commencing to re-hair a violin bow, cut off the old hair and remove the mountings which held it in position, taking note as to how they are flxed. The wedge II (Figs. l and 2) is picked out with the point of a penknife: the metal band G can be slipped off, and then the slide L will come away. The wedge D (Fig. l) is picked out, and the knot of hair will then come away. At the head of the how simply turn up the ends of hair, pick out the wedge D (Fig. 3), and the knot of hair F will come away. Thesmall wedges will prohably he suital le for use again. The hair is sold in hundles, each sufficient for one bow, at 6 d . to ls. per bundle. There will probably be a knob of sealing-wax on ond end as it comes from the dealer's, which, when broken off, will reveal the ends tied with waxed silk, and cut pretty close to the tieing. In order to keep the ends from slipping out of this tieing, it is usnal to sear them in a gas flame or on a red-hot wire, taking particular care not to damage the silk tie, at the same time cementing them together with a little resin. If the wedges have been destroyed in romoving them,

Degign for a Divan Chair.
2ln. stuff, mortised into the side rail; width of back measured insids legs, 1 ft . 10 in . : total width of front of seat, 2 ft .3 in . length of seat from front to back, 2 ft .4 in. and length of arm board, not including scroll, 2ft. 4 in. The back rails are tenoned into the hack legs, and the srm scroll into the seat rail. All other work is jointed with dowels.
Painting Wire Blinds.-In painting wire blinds, use very thin colour, made with turps and a little gold eize; stipple the blind all over directly it is coated, so as to remove the superfluous colour. The spacs to be gilded should be filled up with dry white-lead mixed with gold size and turps. A littlo dry whiting dusted on tha gauze will prevent the gold leaf sticking.
Hardening Cloclr Pallets.-Harden each end of the pallet ceparately: leave the middle soft and, if nocesBary, bend it. There will then be no necessity for tempering. When tempering steel, it can bs either dipped or allowed to cool when the right colour is reached. The result is the same.
Preparing Iron Wire for Tinning.-Immerse the wire in raw spirit (hydrochloric acid) and let it remain till the hlack scale on the iron is dissolved ofi. Then pickle the wire for a short time in killed epirit (chloride of zinc), when it will be ready for passing through the molten tin.
Reponsse Work. -In axecuting repousee work, firet cut out the brass, copper, or other material rather larger than the pattern to be produced. The mstal must then be hammered flat, and ground and glazed must then be hammered fiat, and ground and glazed be traced on it. The grinding may be done on a stone or an emery wherl. Arter the pattern has been hammered up, the plate is huffed on a buff, using finest emery and crocus boiled together with mutton suet. This material may be purclaised in cakss and bars. The
\llcorner

Fia. 2
FIG 3
How to Re-hair a Violin Bow.
carefully fit a little plece of wood so that it will secure the hair in the box, as illustrated. The knot made on the end of the hair is now placed in the hox at the head of the how sticir (Fig. 3), and fixed with the wooden wedge so that the hair comes away from the box in the form of a flat libbon. The wedge is sometimes glued in, hut this is not altogether desirahle. If the wedge is shaped as illustrated, and properly fitted, it will hold quite firmly without glue, and will save trouhle when the bow next requires repairing. The wedge must not fit too tightly sideways, or it will be liable to split the box. The hair must be combed through with a small toothed comb, then, coiling it up near the head, steep it for a few minutes in tepid water. Then comb agaln till it is a straight, flat hand, all the hairs running parallel throughout their eutire length. The nut 1 (Fig. 1) must now be set in the middle of its range of motion. Holding the band of hair ln the hand over the opening in the nut, allowance must he made for the knot to curl round the wedge in the box, the hair tied with waxed silk, and ths euds singed as hefore. This allowance cannot be measured iu any way hut must be judged. Slip the metal hend G along the hairs to the top and let it remain there. Take out the screw C entirely, thus allowing the nut B to coms away from the stick; fix the knot of hair into the box in the nut exactly as was done at the other end, and raplace the nut on the stick and try it for length. If it has been judged correctly, the hair will be too slack when the nut is at one end of its travel, too tight when at the other, and just right when it is in the niddle. If correct, give it a final comb from head to nut, and replace the slide L (Fig. 1), which covers up the wedge box. Replace the metal hoop G and insert the wooden wedge H so as to flatten out the hair against the flat upper side of tha hoop, and the joh is complete. Fig, 1 shows the nut, lig. 2 an inside end view of the nut mountinge, and Fig. 3 the bow head.
"Cuir-boullii" Leather Worls.-For "cuir-houilli" work untanned hlde, not leather, is omployed. The former is boiled with water, when it softens and may jasily be moulded; tanned leather would not soften Bufficiently, nor would it agglomerate when pressed. For ordinary leather work calf, kid, or Russia leather may be used; the material is simply out to shape, soaked in water, and moulded with special tools.

Filter Beds for Municipal Water Supply.-There is no more satisfactory method of filtering what is already practically pure water than by constructing two or more fllters of eand and using them for alternate periods. Each filter (if t vo $b=$ the number) should be large enough to do all the w.rk whilst the other is resting or being cleansed. The rate at which sand filters can be best worked is 51) gal. per square yard per day. The accompanying llinstrations show two filters each 9 yd. by 4 yd., which would be able to deal with 18,000 gal. of water every twenty-four hours. The water flows in at A or A^{\prime}, passes downwards through the filter, and finds its way into the main pipe by the outlet B or B^{\prime}. An escape pipe is provided at \mathbf{C} and C^{\prime}. To cleanse a filter by upwarl flow the valve
half lard oil and holf paraffin are suitable. Many oilstones are hardened through absorbing the linseed oil used with the white-lead when fixed in the case or for sharpening. The stone should be cemeuted in the case with glue and red-lead, and the oil should always be wiped off after being used.

Rectpes for Marking Inks.-Here is a recipe for a jetblack marking ink. Dissolve 1 dr. of silver nitrate in a little water, slowly add ammonia, until the oxide which first precipitates is redissolved, mix with a little indigo extract or sap green, and add strong gum water to make loz. Write with a quill pen, and afterwarde run a hot iron over the writing. For an indelible ink to be applied with a stencil, dissolve asphaltum iu coal-tar naphtha or turpentine to form a syrupy colution. Apply with a stiff stencil brush. The following is a very fine indelible marking ink. Add caustic alkali to a saturated golution of cuprous chloride until no further precipitate forms ; allow to settle, draw off the liquid, and dissolve the oxide in the smallest quantity of ammonia that will absorb it. Mix with abont 6 per cent. of gum dextrine.

Removing a Figure from a Group Photograph.One of the figures in a group of two in a photograph is sometimes required to be removed. It is done as follows. Mix up a neutral tint with ivoryblack, ultramarine, crimson lake, and sepia, and add plenty of gam-that is,

∇ Is closed (say filter No. 2 is to be cleansed), the escape at C^{\prime} is opened, the water is made to enter filter No. lat A (Fig. l), it passes out through B, cannot flow through the valve v, so rises through B^{\prime}, thence through the sand, and ont by C^{\prime}. This How is allowed to continue for half an hour, or as long as may be found necessary for cleansing the filter; when the water passing through O^{\prime} is clear, the valve V is opened, and o^{\prime} is olosed. Fig. 2 shows a longitudinal section through the filter. Fig. 3 shows the thicknessee of the layers of sand and gravel in the filter. When there are only two filters, the town supply has to be interrupted during this process of washing; with three or more filters, the pipes can be so arrauged that no interruption takes place.
Treatment of Eard Oilstone.-If a Washita stone has got very hard on the surface and will not sharpen, first face down the stone well by sprinkling sharp sand and water on a thick piece of glass, a smooth flagstone or slab of slate, or an iron plate, and rubbing the hard surface on the sand until a new face has been obtained. Dry sand on a piece of board or a sheet of emery paper will answer the purpose, but wet sand makes the best job. Boiling the stone in soda water will soften it to some extent. The proper oil shonld be used, fo as not to let the stone get hard. Vaseline or
gum arabic soaked in warm water till it dissolves. Stipple ont all the light parts, such as the hands, the face, the lights on the dress, etc., till it matches the middle tints of the background. 'Then treat the shadows with Chinese white in a like manner, till the two match as nearly as possible. All this should be done by making fine dots close together with the point of the brush. The paint should not be too wet, but wet enough to work easily. Of course, if the photogiaph is a silver print, the figure could be painted right out by brushing it over with a strong solution of cyanide of potassium or persulphate of ammonia, but the former is the neater plan, and is more under control. Moreover, should it be desired at any time to restore the figure, the paint can be washed off again.
Removing Vaseline Spots from Brown Boots.To remove a spot of vaseline from a light brown boot, apply a thick solution of white guttapercha, or pure rubber, in bisulphide of carbon. It is the same thing as patching cement, only that it needs to be much thicker. A small bottle of cement evaporated, and the residue added to a bottle newly opened, will answer the purpose. Paint all over and just beyond the stain, and when all the spirit, has passed off rub off the guttapercha with a clean rag; if not successful, repeat. The guttapercha that has been rubbed off can be used again.

Fretting a Banjo.-In fietting a banjo, first the position of the bridge must be marked off 9 in , below the base of the handle. Measure the distance between that point and the piece of ebony or ivory glued in at the top of the handle, aud divide this distance into eighteen parts: then the position of the first fret, mensuring from the ehony just mentioued, will be equill to the length of one of these divisions. From the point thus determined, again measure the distance to the bridge, subdivide it by eighteen, and mark off for the next fret below the first. The total number of frets is sixteen, and the place of each must be found as described, by subdividing the space hetween the bridge and successive frets, so that every division is proportionally less in length as progress is made. Purchase a set of eixteen fret wires or, if preferred, a single length to be cut as required. Saw the necessary grooves in the handle with a thin tenon saw, taking great care to set them squarely across the fingerboard, and then insert the fret wires. They should fit tightly, and be raised slightly above the plane of the handle.

Child's Wheelbarrow-Figs. 1, 2, and 3 show the construction and dimensione of a child's wheelbarrow. The sizes can be enlarged or diminished to suit individual taste. Deal boards $\frac{3}{4}$. thick will be most suitable for the sides and ends. The wood for the wheel should be 1 in . ol 1 in. thick, and mortised with a square
chair and well brushed along the parting thus made blowing away the dust and whiting at the same time To brighten up the colours, benzoline ahould be applied by means of a clothes hrush, which should be paesed lightly in the way of the fur, not against the fur. (3) Heat in au oven a mixture of equal parts of flour and powdered salt, and while hot thoroughly rub it into the fur. When the whole has been dressed, shake and brush out the mixture as described ahove. (4) To wash the skin, cut up a bar of soap and dissolve it in about 2 gal. of boiling water. Place the skiu upon a table and wet the whole fur with the solution. A gentle ruhbing with the hande will loosen most of the dirt. Now dilute about 2 qt . of the solution with 2 gal. of warm water, and continue the washing, the skin still lying apon the tahle. When the skin is quite slean, remove the soap with plenty of clean water. Th n dry it by means of a clean sponge, followed by clean cloths. In this way little of the actial skin will become wet. Now hang it in the shade, and frequently take it down and shake it well, hanging it by a different part each time. Any part that appears to be getting hard should be well rubbed betweeu the hands.
Machine for Grinding Moulding Cutters.-The llus. tration represents a simple and inexpensive machine for grinding moulding cutters. The frame F is of wood, and fastened to the floor. At B, B are two small besirings, in which a small spindle runs. In the centre at F

hole for the spindle, shown at Fig. 2; the hole should be aboutli in. square. The ends and sides should he housed together as shown at Fig. 3.
SImple Collotype Process.-In the process of collotype printing on parchment, as employed in the photo autocopyist process, a sheet of parchment, coated with gelatine and sensitised with bichromate of potash, is exposed behind a reversed negative, the result heing that a brownish image is produced in the hichromate salt. The reverse side of the parchment is then exposed in order to bind it and the film torether, and the whole is washed for twenty-four hours to free it from the bichromate. It is next stretched on a frame and oovered with glycerine and ammonia, which cance it to 8 well and become tacky in the parts on which the light has acted least. On passing an inked roller over the picture the shadows take up the ink, but the lights or absorbent parte reject it. Thinuer ink is applied to give the half tones. A tracing paper mask is then laid over the film, and the printing paper, which must have a good surface, is laid on it and covered with a sheet of felt, and the whole placed in a copying press and well squeezed. After considerablo practice 100 copies per hour can be made.
Cleaning a Tlger's Shin.-The following are methode of cleaning a tiger's skin. (l) Moisten bran with hot pater and well rnb it into the fiv with a piece of clean flannel; then with fresh dry bran, well rubbed in with a clean dry flannel. (2) Rub damp whiting (not wet) well into the Pur so that it goes down to the actual skin. Leave it till next day, well ruh the dry whiting, and remove by shaking and hrushing with an ordinary clothes brush. T'he skin should be placed over the back of a
are two small pulleys, which shonld revolve at about 700 revolntions per minute. At one end of the spindle is a fine equare-taced emery wheel E; at the other end there are three emery wheels-one square-faced, one round, and one bevelled. Over the wheels are water cans $c_{1} c_{5}$ with tape, and the water coming from these is caught in the troughe 'T, T. With these wheels moulding cutters may be ground and wetted up. It will bean advantage to have a portable rest, or one fixed to the frame of the machine, on which to rest the irou whilst being ground. machine, on which to rest the iroul whilst being ground. the cutter for soft wood, and of 40° for hard wood.
Removing Mulberry Stains from Boat Sall.To remove mulberry stains from a hoat sail, make a strong solution of chloride of lime (bleaching powder), dip the stained parts of the sitil in it, and allow to remain for a lew minutes. If the stains disappear, wash at once with water only; hut il not, then dip in dilute hydrochloric acid (1 part strong acid to 9 parts water , and intorwards thoroughly wash in running water for an hour to remove the excess of acid.

Cooling Shed having Corrngated Iron Roof.To cool a shed having a corrigated iron span rocf, line the under side of the latter with a material which resists the pussage of hent through it. Hair felt in sheets $\frac{1}{2}$ iu. thick is commonly used. Silicate cothn is better, but not so easy of application. Still further to cool the interion a regular curreat of air is necesalry, and this can only be obtained by an active chimney or a inechavical air propeller. A change of air and the escane of vitiated air can be obtained hy having an opening at each end of the shed, one near the ground and one near the roo:

Manufacture of Sodium.-Sodium is made by the Castner process. The materials used are caustic soda and a specially prepared carbide of iron, which is formed by reducing oxide of iron by producer gas, mixing the finely divided iron with pitch, and heating mixing in closed cylinders. The regeneritive furnace con. taius five egg-shaped retorts each 3 ft. high, and each retort is supported upon a hydraulic lift, by which the retert may be lowered to a cool chamber for cleaning purposes. When the retort is in position it is forced against the cover, which carries a wide pipe for shooting the charge into the retort; this pipe passes up through the furnace, aud is closed while the distillation is procesding. A lateral pipe passes from the retort to a receiver outside the furnace, partly filled with mineral oil, in which the metallic sodium solidifies as fast as it distils. The plaut formerly used coasisted of a horizontal cylindrical retort, about 3 ft .6 in . long, connected to the condenser by a straight iron pipe. The materials used are carbonate of soda and finely divided carbon.

Size of Rolled Joists for an Assembly-room Floor. - It is assumed that an asvembly.room is to be huilt over three small shops and that it is proposed to put in rolled-steel joists and fill in with concrete. For a clear span of 17 ft . 7 in , the least possible depth of steel joists for an assemily-room fioor is 9 in., but a 10-in. hy 4 -in, by $30-1 \mathrm{~b}$, or 10 -in. hy 5 -in. by 29 -1b. section would be much better. These joists may be placed 6 ft . apart, and it would be an advantage if $3 \frac{1}{3}-i n$. by $1 \frac{1}{2}$-in. by 6-lb. joists were placed transversely every 6 ft , betweeu the others, connected by angle brackets and carried by the others, connected by angle brackets and carried by girder ioist. N' the concrete should be the best Portland cement to 5 sea-beach gravel, and 6 in. thick. The
the glue is not allowed to become too thick. The state of the composition should be tested by placing a little of it on a piece of paper; if, when cool, it is firm to the touch-that is, rubher-like rather than doughy-it is fit to be poured into the monld, which should have fit to be poured into the monionsly whined and oiled. The core of the roller, before being placed iu position in the mould, must be perfectly clean and dry, or the comporition will not cling to it. The composition must be poured in at one side of the mould, so that the air may escape at the other side. After the mould has been filled, it should be allowed to remain in a cool place for at least twelve allowed to remain in a cool place
hours, when the roller may be drawn.

Burnishing and Mounting Bromide Print.-When burnishing bromide prints, thoroughly clean a sheet of patont plate glass and dust over it finely powdered French chalk, rubbing it well in all directions: then polish off all the chalk. Some workers prefer to pass the prints through the alum bath after fixing with slight washing before final washing. They are perhaps less likely to stick. lf the prints are backed with waterproof paper, this difficulty is removed for a time. Mount the prints dry; as they lie flat owiug to their thickness, run a $\frac{1}{3}$-iu. strip of mountant around the edges only. For this un alcoholic solution of gelatine or rubber solution may be used. It is not advisable to enamel bromide prints, as their character is thereby destroyed.
Setting Oat Curved Walls and Kerbing. - For setting out curved walls and kerbing a good eye is required in addition to mechanical aid. Small curves on the ground may be struck of required radius with a scriber and reel of hrass wire, or more roughly with a tape line and pointed stick. A wooden template will be found useful in adjusting the work. For large

size of Rolled Joists for an Assembly-room Fıoor.
centring should remain undisturbed for three weeks after the concrete is put in, and in the meantime there should he no traffic over it.

Dressing for Fishing Lines.-This is a recipe for a dressing for silis fishing lines. Melt in an iron pot over a slow fire 5 parts of solid paraffin and 1 par't of best resin, stirring well together. When partially cooled, dip the line in and draw it out through a piece of sponge or linen to remove superfluous dressing, and lay it on the floor in large coils to dry. The line may then be etretched and polished with a piece of wet linen and a little very fine pumice dust. Another dressing may be made of equal parts of gold size and hoiled linseed oil; or copal varuish may be used instead of the gold size. Soak the line in the mixture, then stretch it between two posts or nails for a few days to dry, first wiping off any excess of dressing with a piece of sponge or rag. If gold size is used the line will he ready sooner than if copal is used. Another dressing is made by melting over a water bath 2 oz. of beeswax with $\frac{1}{2}$ pt. of boiled liuseed ail. Dip the line in while hot and stretch to dry, as above described. To colour any of these dressings, add a little paint ground in oil.
Malring Printers' Rollers.-When a printer's roller is unfit for further use, all the composition is stripped from the iron or wooden core and is carefully washed in hot water, cut into small pieces, and soaked in cold water for ahout an hour. The composition may be remelted repeatedly, but must be strengthened on each occasion by the addition of treacle and glue. Ordinary roller composition may be hought ready for use at ahout 8d. per pound ; or it may be made by melting 2 lb, of good glue, and then adding 6 lh . of treacle and $\frac{1 \mathrm{l}}{\mathrm{h}}$. of Paris white. These proportions are varied according to temperature and to suit particular kinds of wark. In cold weather, and to prodice softer rollers, use more treacle; in warm weather, and for harder rollers, use more glue. The glue, which slould be cle.m and brittle, is soaked in water, which wheu the glue begins to swell is poured off ; the glue is theu placed in an inver vessel surrounded by an outer vessel holding the water, which unist not he allowed to hoil. When the glue has begn reduced to the consistency of syrup, add the other ingredients, and keep the mixture heated for about an hour, taking care that

Setting Out Curved Walls and Kerbing.
curves, detached points may be marked out by stakes on the ground, as shown in accompanying figule, where $b=\frac{c}{2}, c=\frac{a^{2}}{\text { ladius }}=$ feet in offset. In setting out, continue the straight direction past the tangent point to whatever distance is decided upon for lengtha, then take an offset b as per formula and range through tangent point and offset point to get next offset.

Stuffing and Mounting Fish. - In stuffing and mounting a fresh-water fish, first cover with muslin the hest side of the fish, and place it, with the other side up, on a table. Cut along irom the head to the tail, and through this long cut remove the flesh of body. After clearing away the eyes and any flesh left round the fins, head, etc., dress with the preservative, which is an arsenical soap composed of 5 parts (by weight) of camphor, 32 parts of white arsenic, 32 parts of white soap, 2 parts of salt of tartar, and 4 parts of chalk. Now pad round the fins, head, etc., with putty, and proceed to stuff the skin by replacing the natural body with an artificial one made of tow, paper, etc., upon a wire foumdation, or by well ramming in saw. dust, bran, etc., as the sewing up is being done. Now turn the fish over and fasten it temporarily to a piece of board by means of wires left projecting through the cut. Arrange the fins and tail in the desired position and clip them, by means of pins, hetween pieces of cork. Insert the eyes and close the mouth, using pins and cork, and then leave the whole to dry. Colour carefully to imitate nature, and varnish to represent wetness.

Steaming a Baker's Oven.-For steaming a baker's oven for say half an hour each day, a No. 3 or No. 4 dometop boiler, as used for hot-water work, but with the inver dome made lower so as to provide a steam chamber, would do; from the top of this a I-in. steam pipe should he carried into the oven. To feed the hoiler, lay on a $\frac{1}{2}$-in. service from the cold-water main, or from a cistern if it is about 30 ft above. Put a stopeock in this service, and a little water can be let in as required. There, must be a good pressure of water in this service, in case it is required to let water in while stemm is up. The hoiler must have the usual safety valve, water gauge, and emptying tap. A pressure gauge is scarcely needed.

Machinery for Rolling sheet Lead.-The machinery for rolling laad has to he vary powerful. The appliance consists of a long fieme, near the centre portion of which are two steel rollers turned by steam or other power. The lead is first cast into a slug of the width of the mill, and a few inches thick. This is run on loose rollers, fitted in the frame, up to the steel rollers, between which it is passed, the latter rollers being held a certain distance apart by means of adjus ting screws. The slug is passed to and fro between the rollere, which are brought closer together after each passage, until the lead is reduced to about $\frac{2}{4}$ in. to $\frac{3}{\square} \mathrm{in}$. in thickness. The sheet is then folded and again passed between the rollers; for very thin sheets it is again folded and again passed through until the desired thickness is attained. As the tenacity of lead is very low, very thin sheets cannot be made singly. The price of milled lead is not very much more than that of pig lead, and it can be bought for considerably less than it can be manufactured on a small scale.
Making Trammel Heads from Dunlop Tyre Valves.-A serviceable pair of trammel heads for draw-ing-office work may be made from old or disused Dunlop valves. Remove the cap and nuts, cut off the flange shown at A (Fig. 2) with a file or a hack saw, and file the end to the shope shown at B (Fig. 3). Drill a din. hole at o (Fig. 3) right throngh each valve, and with a hack saw carepully cut out the slot (Fig. 3) $\frac{3}{3}$ in. long by a full $\frac{1}{8}$ in. wide; file up smooth with a ward file. A piece of brass is fitted tightly in the hole in one of the valves, as shown by dotted lines D (Fig, l), and soldered in place ; the shank of an ordinary brass screw suits admirably, It is then drilled with a $\frac{1}{12}-1 n$. hole, as at E (Fig. I),
in the stencil plate. Special stencll ink may be prepared by incorporating any mineral colour (lampblack for black ink, with Venetian red for red lnk) with gold size and, perhaps, a little boiled oil. A nother method is to dissolve 10 oz . of shellac in $\frac{1}{2} \mathrm{pt}$. of methylated spirit, adding to this quy dry colour as required. Asphaltum, dissolved in naphtha or ben\%oline, may also be used For cake stencil ink, grind lampblack and gum arabic down on a slab or in a mortar, make into a paste with water, and allow to dry.
Imitation Sandstone.-For artificisl rock, Portland cement may be made to look like gray sandstons by mixing 3 parts of crushed grey sandstone with l part of cement; for red, nse the same quantity of red sandstons. If the coloured sandatones are not obtainsble, the cement may be coloured grey with lampblack, or a warm grey with umber and a little lampblack. The cement may be coloured red with red oxide of iron. toned, if necessary, with a little umber.
Furnace for Casting Aluminium.-A furnace for melting aluminium may be built like a brassiounder's purnace; the interior should be square with loose firebars, an ashpit having a grating in front, and a chinney. It must be built of fireclay bricks, puddled with fireclay The top is covered with a fireclay slab, which may be removed for inserting or withdrawing a crucible or for stoking. The fuel used is ironfounder's' coke.
How to Repair Worn Stone Steps.-By one method of repairing worn stone steps, the worn part is marked out with a dovetail (see Fig. 1), to which the stone is then hewn out from 2 in . to 3 in . deep, according to the

Trammel Heade made Irom Dunlop Tyre Valves.

Fic 1

Fig. 2
Repairing Worn Stone Steps.
to take the needle point, for which a piece of an upholstering needle, or the shank portion of a very fine drill ground to a point, can be used. Now get two small milled-head screws 1 (Figs. I and 3), such as are used on gas bracketa to keep the globe in place, and drill and tap a hole in each head to receive them. Take four pieces of watch spring Gabout litin. long, and bend them to the shape shown at Fig. 4; these prevent the heads cutting the beam, and at the same time hold them in position when they are being moved along the latter. The pencils supplied with most diaries and pocket-books fit the heads nicely. For the beam, a piece of black walnnt of any guitable length, accurately planed to $\tau_{5}^{T} \mathrm{in}$. Wide by $\frac{1}{1}$ in. thick and polished, is best. An ordinary compass pen may be made to fit into the end of the head by unscrewing it from the handle and filing it a little. Slide the heads on the beam, first placing the pieces of watch spring in the slots, the lower ones with the bend downwards and the upper ones with the bend upwards (see pig. 1), and screw on the caps. Instead of cutting slots in the heads, holes may be drilled and a piece of steel wire used for the beam; but this does not answer so well as a flat piece of wood.
Recipes for Stencil Inks.-The following is the recipe for a perfectly dead black stencil ink which is insoluble in water. Dissolve 1 oz . of shellac in $\frac{1}{3} p t$. or methylated spirit of wine, filter it through a layer of chalk, and then add lanphlack. It will make the brush rather hard, but, that can be softened by soaking in the jnk before use. For another ink, boil $\frac{1}{2} 1 \mathrm{~b}$. logwood chips for ten to fifteen minutes in 2 qt . of soft water; then add 1 drachm potassium bichromate, and boil up again for ten minutes. Add, when cold, some gum-water ; stir, and shake well betore using. A simple recipe is, lncorporate lampblack with gold size, not too thin, and use sparingly. The above inks are suitable for marking on metal. The following is the composition of the ink used for marking sacks. Ordinary printer'sink, to which it little terebine has been added, aray be used; or ordinary oil paint will answer the same purpose if slightly thinned. Ntencilling is per formed by a dabbing motion of a stiff-haired brush lightly charged with paint or ink, over the perforations
mount of wear. A piece of stone (Fig. 2) is then prepared and fixed in the step with good lime or cement, and the job is then complete.
Damp Walls in Basement.-It is desired to overcome dampness in the walls of a rather old house which hss no damp course and whose basement floor; $5 / \mathrm{ft}$. below the level of the street, is paved with slste 2 in . thick. A dampproof course should be inserted about 6 in . above the floor level. The flooring should be taken up sndiabout 5 in. of earth excavated. On the new level a bed of concrete abont 4t in. thick (say, in tbe proportions of 6 to l) should be laid, and this should be covered with $\frac{1}{2}$ in. of natural rock asphalt, which should be carried up the walls as a skirting to the level of the damp-proof course. Walls as a skirting to the leve of the damp-prool course. preferred, the excavation may be only 2 inin. the concrete laid, and the asphalt used as the finished floor. If the floors were of timber they shonld be taken up, the ear'th excavated to the level of the footings, a similar bed of concrete and asphalt with asphsilt skirtings laid, the space below the boards thoroughly ventilated, and the wooden floor refixed, care being taken not to injure the asphalt skirting. This method taken not to injure the asphatit skirting. if the work is properly done.

Scoring Granite Pavement.-The work of scoring a ranite pavement should be done with a heavy shortgrandled hammer and a mason's chisel made from steel of about 1$\} i n$. diameter drawn down to a flat yoint $\$$ in. broad. This is known as a punch. If continuous lines are to be scored across the setts, a string should be stretched between iron pins as a gnide; but loughening the setts by punching indentations about $1 \frac{1}{2}$ in. apart should serve just as well as scoring lines across.
Cement for Aquarium.-To make a cement for fixing the glars of an aquarium melt together 2 parts of pitch and l part of guttapercha; apply to the joints hot, and lightly warm the glasses before pressing them in position. The seams may be neatly finished on the outeide by slightly beating a small poker and running it along by slightly heating a small poker and running it along gold size to a paste with rinc oxide.

Composition Rollers for Branding Saclis, - To make composition rollers for branding sacks, soak until goft in sufficient water to cover it lib. of glue; then melt down by a gentle heat and stir in 416. of treacle. The rollers are cast in cylindrical tinplate moulds with a cylindrical core of wood placed in the centre. In hot weather the material should be made stiffer by increasing the quantity of glue to $1 \frac{1}{2} l \mathrm{lb}$. The materiai will better withstand the heat if the rollers are dipped for a short time in a solution of bichromate of potesh and then exposed to light; an insoluble film is by this means produced on the Burface.

How to Make a Plgeon Cote.-Fig. 1 is a front view, and Fig, 2 a section, of a pigeon cote. Three nests may be placed in esich of the three openings. A piece of iron about $\frac{1}{2}$ in. thick bent to the shaps of the hole over the drop-board is held inside by a hook on which it swings loose, thus allowing anything to go in the cote but not to come out. The piece A (Flg. 1) Bhould be $1 \frac{1}{3} i n$. wide by $\frac{3}{2}$ in. thick, to hold the door. Two 3 -in. hinges ars required for the door, and a
pressing an old flat file, made black-hot, on several thicknesses of wet brown paper placed on the wood. A bad hruise should be scraped out with a cabinet-maker's scraper and filled up with a mixture of equal parts of resin and beeswax melted togeth \mathbf{r} and coloured with venetian red or umber, to match the wood. Having made good all defects, wips over with a rag moistened with ginseed oil, which will cause the old and faded work to appear darker where the polish is removed; on comparatively nsw work a light place will show. This difference in colour requires to be mitched by the aid of stalns, dry colours, or dyed polish ; light mahogany places are darkened by wiping over with strong soda water, lime water, or solutions of bichromate of potash, and light places in walnut by wiping over with one pennyworth places in wainut by wiping over with one pennyworth polish or light places are not matched by the abovo means, body the portion up by passing the polish pad over it ceveral times to prevent the grain rising; theu colour up by mixing suitable pigments in i part polish and 3 parts spirit. For walnut, add dry brown umber or vandyke brown with a little

Fig. 1
FIG. 2

How to Make a Pigeon Cote.

lock. The piece a should be sunk into the top and bottom to fix it. Bore twelve holes in the wood to let in fresh air, and a small window may be fixed in the side for light, if required. The roof should slant, as shown. A hols should be cut in the boards for the entry of the pigeone, and a drop-board about 10 in . long by $6 \frac{3}{2}$ in. Wide Bhould project from the hole. At B (Fig. 2) two boards should project about 12 in. inside at the back of the cote; also at the bottom, as at c, for the nests, etc. The wood required for this cote is 97 'ft. of 6 -in. by $\frac{4}{4}$ in. stuff. The boards should be tongued and grooved to hold together better. Two strips of wood for each sids Will be required inside to hold the boards. A coat of tar, etc., could bs given to make the cote watertight. The total height is 4 ft . 3 in., length 2 ft ., and width 3 ft .
Hints on Repolishing Furniture, - Repolishing, though practically the same as French polishing, calls for more tact if the article is dirt-begrimed, broken, or bruised, and entirely different in colour from whatit was when firet finished. Assuming that such an article is to be repolished, it should first be cleansed. For this purpose, dissolve a teacupfnl of common washing soda in 1 gal . of warm water, and well rub the article, using, if necessary, a little pumice-stone powder or powdered Bath brick, and afterwards wiping quite dry. Any necessary repairs should be attended to, doors unhinged, and all carvinge, knobs, brass fittings, etc., removed. Bruises in the wood may be generally drawn up level by
black, and apply with a small tuft of waddiug or a camel-hair brush. A wavy appearance may be obtained by a tremulous movemeut of the hand, and a mottled appearance by gently dabbing with a badger softener or appearance ducting brush, such as a sash tool, while wet. if rosewood, mix a little red stain and hlack, and after allowing the stain to set for a few minutes, smooth down with fine worn glasspaper, and apply a thin coat of spirit varnish. The polishing ingredients are the same as for new work, but thinner. A tinge of red stain in the polich improves walnut, mahogany, and rosewood; but if for the purpose of matching any particular portion, a strong colour should be used on the polishing pad, \& strong colour should be used on the polishing pad, carved portions, monldings, and parts difficult to finish with a pad should be given an even coat of varnish. Many articles may be improved by simply applying one or more coats of good quality spirit varnish, for which the following is a recipe. Shellac, 40 oz ; sandarach, 4oz.: mastic, $\frac{1}{2}$ oz. ; Venice turpentine, 1 oz.; camphor, $10 \mathrm{gr} . ;$ oil of turpentine, $\frac{1}{2} \mathrm{oz}$. ; and metbylated spirit, 1 pt . Shake well over a gentle heatand carefully strain through muslin before using, and apply with a camel-hair brueh in a fairly hot room. For common goods, such as kitchen furniture, the following will suffice. Shellac, 4 oz. ; resin, 2oz.; benzoin, 2 oz ; and methylated $6 p i r i t, 1 \mathrm{pt}$. To make a red stain, discolve one pennyworth of Bismarck brown in $\frac{t}{4} \mathrm{pt}$. of spirit. A few drops added to polish or varuish will give a reddish tinge.

Construction of Folding Fand Camera.-Ingtruc. tions on making a quarterplate folding hand camera are here given. From tin. mahogany cut a piere 11 in. by $5 \mathrm{in}$. (A Fig. 1). The rails 13 B (Fig. 1), shown in section in Fig. 4, should be fitted as shown in. from the front and $\frac{1}{2}$ in. from the bach. Now cut the two posts $00 \frac{1}{4}$ in. squere and 4 in. long, and join with the cross-pieces D aud D^{1}. Cut and bend the plate E (Fig. 4) to fit the rails B; see that it ruus smoothly, E (Fig. 4) to fit the rails B; see that it ruus smoothly,
then screw into D . Now cut the board A (Fig , I) in two pieces straight across 4 in . from the back, ard hinge together again underneath. Cut thres pleces F, G, and If; F is 7 in . by 4 in., G7in, by 3 in., and $H 4$ in. by 4isin. In F and G cut the two slots I (the are being formed with a radius of a) and join all together with A and K, leaving an opening between K and G for the insertion of the dark slide. Next construct a frameworls (Fig. 2) 6 in. by 4 in., cantiug the top and bottom slightly to permit of swing. Fit in this another frame (to which the hellows swing. Fit in this another $\frac{1}{2} \mathrm{in}$. wide at the sides and 1 in. at the top and hottom. Pivot the sides of the swing frame to F and Gat M and N, and fix the thumbscrews I and 1^{1}. Haviug got this to work smoothly, remove the frame and form two tongues $Y Y$, 54 in . apart, running from F to G. Thess form guides or stops for position of dark slide. Now cut two thin brass springs o and screw to the sides of the frame above and helow the tongues. Next make the
its colour, but the to ned plece will have yellowed con. siderably owing to the formation of sulphide of silver. Thus the theory has been propounded that the gold forms a sort of casing around the injurious compounde and keeps them from being dissolved out. As the preliminary washing is dispensed wlth when the combined bath is used, toning by this method offers a possible way ont of the difficulty where the water is very hard; but with the combined bath the results are not hard; but
Removing Porcelain Letters frem Glass.-To remove porcelain letters from glass, well clean the sdges of the letters with the point of the hlade of a pocket-knife. Thea insert a very thin dinner-knife between the letter and the glass and work it carefully upwards; the joint will then break and the letters fall off.

How to Make Copyiog Inks.-Copying inks may be made by adding a small quantity of alum to an extract of logwood. To this is added table salt or sugar and glycerine. The inks so obtained are purple when flist used, and darken gradually on the paper. The copies taken from them darken still more slowly. Violet writing ink may bs converted into copying ink by the addition of glycerine in the proportion of about 3 parts of the latter to 4 parts of the violet ink. If a quautity of glycerine slightly

focussing screen $5 \frac{1}{2} \mathrm{in}$. by 3^{2} in., with $\frac{2}{s}$ in. rebate for ground glass 4 in. by 3 in., giving a sight of 4 in . by 3 in . At top and bottom of the right-hand end place a serew z so that it slips under 0 . Cut four sets of brass joints (as shown in Fig. 3) for attaching the focussing screen to the swing frame. Next fit the door \mathbf{P} (Fig. 1) for focussing. Construct two joints Q with springs R, and fit them to the sides of F and G (insids) and to the bottom A. On pulling down the front the spring R forces the side stays up so that the pin s passes into the slot d'. The rising iront carrying the flange consists of a square of wood, with opening for lens, fitting hetween the frout posts and fastened to a rim of brass at the top through which passes a coarse thread screw worked by a lever J, which, biting against the front post, holds all tightly together in any position. A similar screw fastens the front posts after focussing.

Washing Photographic Printing-out-paper. Ordinary tap water, which is generally more or less hard, is used for the preliminary washing of P.O.P. The chlorides, etc., combine with the free silver, which is thas removed. Trouble may arise with extremely hard water, particularly with gelatine papers. The chlorides and sulphates have been found to form compounds in the film that sre not readily soluble and are not removed in the hypo bath or in the final washing if gold has been deposited on them. In such cases the whites of the picture usually turu yellow. M. Schollzig has suggested the following experiments. Wash two pieces of unexposed paper in four changes of tap water for a totsul period of ten minutes. Let one piece soak for another ten minutes in a new toning hath. Place both pieces in the hypo bath: wash and dry. Next soak them both in water coutaining a few drops of ammonium sulphide. The untoned piece of paper will be found to have kept
less than the foregoing he used, the ink will copy within a quarter of an hour after writing. An ink which will yield one or two copies by hand pressure may he made by mixing, say, 1 pt . of glycerine in 3 pt of jet-black writing ink. The following is a recipe that has been recommended. Place 2 dr , of crystallised carbonate of soda and 1 oz . of extract of logwood in a porcelain receiver with $80 z$. of distilled water, Heat this until the solution reaches a deep red colour and everything is quite dissolved. Then remove it from the fire and stir in 1 oz . of glycerine, 15 gr , of neutral chromate of potash, and 2 dr . of finely pulverised gum arabic, each of the latter dissol ved in a little water. This is another recipe. Take 4 gal, of soft water (preterably rain water), and add gum arahic, clean copperas, and brown sugar, using of each $\frac{1}{2} l \mathrm{~b}$. (not more), and 1 lb . of powdered nutgalls. Allow this to stand for two weeks, shaking occasionally, then strain. This ink will not fade on exposure to the atmosphere. A simple method of making copying ink is to evaporate 1 oz . of ordinary ink to a quarter of its bulk, and dissolve in it 20 gr . of powdered sugar. of its bulk, and dissolve in it 20 gr of powdered sugar. 2 oz . of alum, 4 dr , sulphate of copper, 4 dr . sulphate of iron, $10 z$. of sugar, and 4 parts of watser, and fiter through flannel. Add a colution of 4 dr . of neutral chromate of potash in 4 oz . of water, and a solution of 2 oz , of chemic blue in 2oz, of glycerine. For red copying ink, dissolve 5 parts of logwood extract in 150 parts of distilled water without the aid of heat; add i part of chrom: te of potassium, and set aside for twenty-four hours, aud then add a solution of 3 part oxalio acid, 4 parts oxalato of ammonium, and 8 parts of sulphate of aluminium in 40 parts of distilled water, and agitin set aside for twenty-four hours. Boil in a copper vessel, and add 10 parts of vinegar. In a fortnight's time decant and hottle.

Value of White Mica.-White mica or muscovite is valuable, especially if in large pieces, which cleave easily into thin plates. It is nsed for chimneys for Incandescent gas lights and Davy lamps, for smoke preventers or hoods for lamps and gas burners: also in place of glass in the fronts of gas stoves, etc. : and in some countries it is used in place of glass for windows. The rough stuff is ground up and used as a paint, and the fine scaly kinds are coloured and used in place of bronze colours. The black mica, or biotite, is of no vronze. colours. The black mica, or biotite, is of no addition to the uses above mentioned, mica is put into room ventilators, and it is very largely employed in electrical machinery as a non-couductor.

Running an Oval Frame in Cement. - The best method of running an oval frame, 18 in , by 14 in ., in Keenes cement, would be to use trammels and zinc templates, as shown in the figure, which is drawn proportionate to the requiped size; or the frame might he made of wood and bent to the required shape;
varnish enamels dry much more quickly, and to those conversant with the art of French polishing come as a velcome change, giving a pleasing finish with a minimum of trouble, and, moreover, present a surface more readily adapted for the purpose of decorative ornament, whether gilding, transfer decoration, or hand painting. These enamels are mado by carefully blending dry colour in spirit varnish, a dead or semi-lustrous finish being gained by thinning out the last coat with methylated spirit by the addition of a little linseed oil, or hy dulling with fiuest grade pumice powder or four emery, A plan sometimes adopted is to mix the colour required with about equal parts of polish and spirit, coat after coat being laid on till a solid hody of colour appears. Two, three, or more distinctive colonrs may be laid on the article; for instance, Japanese boxes, plaques, etc., will be seen in varions tones underneath the decorations. When the colours which should be laid on with camelhair brushes-are dry, the surface should be smoothed down with finest grade glasspaper, and a coat of clear spirit varnish applied; and this, when dry, will give a

Running an Oval Frame in Cement
or a serles of divisions might be made on the oval by drawing lines perpendicular to the curve (as shown on the diagram) and cutting similar pieces from a straight strip of moulding and joining these together, though this would bs a somewhat elaborate method.

Galvanising Wire Articles.-When galvanising small wire articles, keep the surface of the molten zinc well wire articles, keep the surface of the moten zinc well
covered with sal-ammoniac, and heat the metal well above its fusing point. Then immerse the articles and move them in the metal until the zinc appears to be flowing freely upon the wire; withdraw and strike lightly with a stick to jar off superfuous metal.

French Polishing in Self Colours.-Brackets, tables for bric-i-brac, picture frames, etc., are often more attractive when finished in self colours with either a bright or dull finish, and a judicious addition of gold and flower decoration, than if finished in the natural tones left by the polish rubber or spirit varnish. Most of the enamel paints now sold in tins have an oil varnish basis, which means that at least twenty-four hours should elapse hetween each coat: and though some of them have remarkable covering properties, it is sometimes necessary to apply at least three conts in order to gain a good solid body, and if any portion is afterwards to be gilded it should be allowed to stand several days to harden thoroughly before this is attempted. Spirit
snperior enamel finish if carefully pollshed. Plcture frames are especially suited to this mode of treatframes are especiany suited to this mode of treatment. The pictures and glass being removed, the irames half polish and half spirit. A bronze green, mixed as advised, gives a finish neither very bright nor yet quite dull; gilt slips being put in give a green and gold finish. If a bright finish is desired on snch a foundation a transparent or white hard varnish is advised. Common brown hard spirit is apt to alter the colour, but more pleasing results are gained hy leaving the frames semidull, a small quantity of varnish being added to the enamel for that purpose.
Artificial Stone Cement. - The following cement, which does not require to be kiln-dried, may be used with pedestals, etc., out of doors. The materials required are silicate of soda, or water-glass; carbonate of lime; chloride of calcium; and quartz, or pure fint sand: this, if from the sea shore, should be well washed and sifted; if Bedfordshire sand, sift it to get uniformity, and wash it once. Take 1 gal. of silicate of soda and 1 bushel of mixture of flint sand and a small quantity of carbonate of lime; mix mechanically, and pour into the mould and then pour over the mixture the chloride of calcium. Auother cement is washed silicious sand 3 parts, shellac 1 part. Melt the shellae, and monld in to the sand while warm.

Maklng Glass-fronted Hanging Cupboard.-Fig. 1 is an elevation of a small glass-fronted cupbosid suitable for hanging on a wall. Tho top is 11 in thick, the bottom l in. thiek, and the eides and back in. thick. The sash forming the door is $\frac{3}{4} \mathrm{in}$. thick, finished size. The ton is rebated and moulded, the moulding being returned along the ends to form a small cornice (see Figs. 2 and 5); the bottom is prepared in a similar manner (see Fig. 3). The ends are reobated front and back (see Fig. 4). Fig. 5 shows how the end is fixed to the top and bottom, whilst Fig. 6 gives a

FIG I
will strike on a li-cwt. bell. Going barrel, 6 in. in diameter aud 16 in . long; main wheel 10 in . in diameter one hundred and twenty teeth. The hour wheel has forty teeth. is $3 \frac{1}{5}$ ín. in diameter, and runs with the main Wheel; the second wheel, driven also from the main wheel, has a piuion of ten leaves, is 8 in. in diameter, aud has one hundred and twenty teeth; the 'scape wheel (dead beat) is driven hy the sec, nd wheel, hae a pinion of eight leaves, is $4 \frac{1}{2}$ in. in diameter, and has thirty teeth: striking barrel, 7 in . in diameter, 16 in . long; main wheel, eighty teeth, diameter 12 in.; second wheel (carries eight cams for lifting the striking hammer), 8 in. diameter, eighty teeth, pinion of twenty leaves; third wheel (carries a cam unon which the atriking lever rests), 6 in. diameter, eighty teeth, pinion of ten leaves; fly (carries the locking arm), piuion of ten leaves. The locking plate or count wheel is mounted on a stud ontside the frame, and is driven by a pinion of eight leaves fixed to the axis of the cam wheel or second wheel. The locking-plate wheel has seventy-eight teeth. The fly has two vanes, each 8 in . by 4 in ., the centres of which are 12 in . from the axis. The main wheel of the going train revolves once in three hours; the second wheel once in fifteen minutes; the scape wheel once in one minute. The cylindrical boh of the seconds pendulum is of cast iron, weighing about 70 lb . The coing weight will probably be about $\frac{1}{3}$ cwt. or a little more, falling about 44 ft . on a double line for a four days' run. The striking weight should be about l^{1} cwt., falling about 20 ft . on a double line for a four days run. The clock can be made to go for a week by increasing the weights, putting them on triple lines, and giving about a $30-\mathrm{ft}$. fall. The frame should be A-shaped, with the going train up the right-hand side and the striking train up the left. The pendulum ehould hang in the middle of the freme from the top and swing between the barrels. The back 'scape pivot must he held by a cock to clear the pendulum rod. The arbors of the wheels run in gunmetal bushes screved on to the sides of the frame, and each is detachable geparately. The striking pinion, cams, barrels, main wheels, and oecond wheel may be of cast iron; all other wheels should be gunmetal, and all other pinions, lanterns. The bell hammer should weigh about 31b. The pendulum, if not compensated, should bave a deal rod, round, 1 in. thick.

Glass-fronted Hanging Cupboard.
better method of fixing the bottom to the end or side by means of dovetails, the pins being cut on the bottom. A loose piece of moulding is then planted on to cover the dovetailing, and the sash is mortised and tenoned together. If desired, a chamfer may take the place of the ovolo moulding on the stiles and ralls, or the sash may be made square and a bead mitred round and fixed with panel pins, as shown in Fig. 7. The sesh is hinged with brass butts, and a straight cupboard lock fixed on the left-hand stiles, the keyhole only requiring to be cut, and a small thread escutcheon let in on the face of the stile. The middle shelf is fixed on movable fillets.
Arrangement of Small Turret Clock. - The following epecification is for a small turret clock which

The wood minute hand is poised by a ehort outside counterpoise, and the hour hand by an inside weight.

Stockholm Tar and Swedish Pltch.-Stockholm tat is obtained during the manufacture of charcoal from pine wood. It is a good preservative for woodwork, being better than coal tar for the purpose. It cau be thinned with creosote oll or coal-ter naphtha, or with wood spirlt. Swediah pitch msy he melted and the tar tirred into it for thickening purposes. It is, pgrhaps, stirred into it for thickening purposes. apponds the cells best to apply the tar hot, because head expands the cells of the wood, and the subsequent contraction causes simply the tar heated until the liquid volutile portions have distilled over:

Black Enamel for Ferrotype Plates,-To make the black enamel for ferrotype plates, mix together amber 90 parts, black resin 60 parts, spir t of turpentine 45 parts, and painter's varnish to parts, and add sufficient lamp black to give the desired blackness. The varnish is contained in an upright bath and the plates in fairly large sizes dipped and aftorwards cut up. Then coat with collodion and sensitise as usual.

Breeding Cage for Small Birds.-The illustration shows an breeding and flight cage, which may have a mahogany front and zinc drawers. The cage may be 33 in . long, 14 in . deep by 11 in . wide, or it may be 28 in. long, 15 in. deep by 11 in . Wide. The cage is divided into two compartments by slides running from front to back, but when pairing or feeding these slides should be replaced by wired partitions, the wires being $\frac{s}{3}$ in, apart to permit the birds to put their heads between them easily. A four-compartment cage made on the ahove plan might be 31 in . long, 25 in . deep by 11 in . high. It is, perhsps, rather low, but it answers for Norwich birds. The lower part could be used, when necessary, as a flight cage by removing the partitions. False bottoms must be provided with a $\frac{1}{}$-in. beading all round to keep the sand, etc., from falling off. Zinc cau he used for the sead drawers, but the water should not be kept in a zinc vessel, as this metal is said to be injurious. The cage wires should be $\frac{s}{6} \mathrm{in}$. apart, but the partition wires should be sin. apart, so that the young birds may be easily fed. The bottom stay should be $3 \frac{1}{2}$ in. high, with the lower inch cut off to form the front of the false bottom. Fix a

50z. of strong alcohol: let it stand in s covered vessel for about three hours, then add 350 z . of distilled water Heat gently for some hours until the odour of alcohol is no longer perceptible. Add to the licuor 8 oz . of distilled water in which 2 oz . of gum has heen previously dissolved. (7) Aniline red, 20 parts; gluten or gum, 100 parts: water 1,000 parts; and acetic acid, 100 parts The process is practically the same as with (6). (8) Dissolve 1 oz of anile crimson in 1 gal. of water. (9) For red cochineal ink, ruh together powdered cochineal, $\frac{1}{2} \mathrm{oz}$; carhonate of soda, 1 oz . distilled water, cochineal, $\frac{1}{2}$ oz. ; carhonate of soda, loz.; distilled water, 3 pt . or 4 pt ., snd stir frequently duriug two days; then add cream of tartar $\frac{3}{4}$ oz., alum $\frac{3}{4}$ oz. Warm gently, and stir until all the carbonic acid has passed away. Add gum arabic $\frac{40 z .,}{}$ alcohol $\frac{1}{2}$ oz. Filter, and make up the solution to 15 oz . with distilled water. The ink bhould be at once bottled, and kept well corked. (10) Rub 1 part of carmine with $12 \frac{1}{2}$ parts of liquid water-glass. Dilute with 112 $\frac{1}{2}$ parts of rain water, allow to stand for a few days, and pour off. (11) Buchner's carmine ink is made by dissolving together 12 gr . of pure carmine, or 3 dr. powdered drop lake, and 3 oz , of aqua-ammonia. Add to this 20 gr . powdered gum.

Making Table Framework, - The accompsnying sketch illustrates an easy method of making the framework of a table. The front and back ure cut out with the ends shown, in one piece. The ends are mortised into the back and front, and the legs, which should be about 2 in . square, sre halved at the top and glued to the

Breeding Cage for Small Birds,
perch parallel with the bottom stay about 2 in. behind it and $1 \frac{1}{3}$ in. lower than the top of the stay. This forms a feeding-perch. A perch should also he fixed on each side of the cross-piece for the young birds to stand upon while being fed. An egg drawer should he provided for each compartment. As cleanliness is an important consideration, the front should be removable, which is easily grranged by forming a framework of wood $\frac{1}{2} i n$. square justlarge enough to fit inside the front. In this framework build the tront, and fasten it to the body with a couple of small brass hinges at the top. A small thumbscrev on each side towards the hottom should enter from the outside into the front and thus keop all tight. On raising the front, the perches come out and the whole of the inside of the cage is easily reached at cleaning time. Whitewash is frequently used for the intarior of the cage, but hlue enamel is better, as its smooth, hard surface affords no protection to vermin, and it is easily cleaned.

Recipes for Red InIrs.-(1) To make bright red ink, over $80 z$ of bruised cochineal pour lgal of hoiling water,
\&nd let it stand. Now hoil soz. of srazi wood in $\frac{1}{2}$ gal. of soft water for half an hour, aud in two days time mix both together. Dissolve 2 oz . arabic in 1 qt . of water, snd when cold add one solution to the other and stir well. Cork the mixture up, and in seven days strain through muslin and bottle. (2) Pour 2 parts of 90 per csnt. alcohol over $\frac{2}{5}$ part of finely rubbed fuchsine. and dissolve by gently ${ }^{6}$ heating. Dissolve 1 part of gun arabic in 20 parts of water, boil, and then, whilst stirriug, edd the fuchsine solution in a thin jet. (3) Dissolve 30 gr . of No. 40 carmine in 1 dr . of ammonia, and add 6 gl , of acacia and sufficient water to make 1 oz. The tint is regulated by the amount of water added, (4) Grind 1 part carmine with 15 parts acetate ammonia and is parts water. This is allowed to stand for some time, strained, and then thickened with a few drops of dissolved white sugar. (5) Dissolve thar. of powdered drop lake and 18 gr . of powdered gum arsbic in 3 oz . of ammonia water. (6) Dissolve $\frac{1}{2}$ oz. of aniline red in

Making Table Framework.
sides, with two or three screws put in from inside the frame. After the legs are fixed, the blocks are glued in the corners.

Crystoleum Painting, - Instructions on making crystoleum paintings are here given. Procure a pair of couvex cabinet-size crystoleum glasses, costing about 9d., from any artists' colourman, together with sable brushes and the usual oil colours, megilp,ppalette knife, etc. Trim the photograph until it is s little smaller than the glass, which, after cleaning, should be well brushed over on the concave side with starch paste. Press the wetted photoraph into close coutact, and work out the creases by graph into ciose coutact, and work out the creases by rubbing from the centre to the margins with the bowl of the photograph if necessary-untilall shiny spots or air hubbles are removed. When dry, rub away nearly all the paper with sandpaper, finishing off with pumice powder. The picture may next be rendered transparent by the use of 2 parts of Canada halsam to 1 part each of white wax and paraffin wax or, preferably, poppy oil. Orite wax and parain wax or, preferably, poppy oich is a preparation sold for this purpose, may be used. The colours, thinned with megilp and rendered opaque by mixing with white, are laid on the glasses. The delicats and sharp touches are placed directly on the film, and the deeper and bolder work is done on the second glass. A strip of paper should bs pasted all round the edges of the front glass so that the two glasses may be kept from absolute contact. A piece of csrdboard is then glued to the back of the picture, and the two glasses being placed together are bound round the edges with paper. The paper may also he removed by ruhbing whilst damp, but this method is very risky. Considerable trouble may he saved and moreeven results obtained by using "Novitas" stripping P.O.P. The film strips readily on placing in warm water, and may be transferred to any article (previously costed with a strong solution of gum arabic) by lifting on a sheet of parchment and stroking out air bubbles as hefore mentioned. Eastman's transferrotype csn also be used for the same purpore.

Strength of Conerete.-It has been found that the strength of concrete regularly diminishes as the proportion of cement becomes less. Approximately the results follow the formula $\mathrm{F}=150-10 \mathrm{~B}$, where $\mathrm{F}=$ crushing force in tons per square foot, and $B=$ quantity of ballast to I of cement. (Hee vol. iii," "Notes in Building Construction," pp. 208-9.) Sutcliffe's"Concrete" quotes three tests by Kirkaldy for strength of concrete beams as follows. (1) Beam of 1 Portland cement and 1 coke breeze, seven days old, 3 in. bioad, 5 in. deep, 72 in. clear span. Breaking weight loaded in centre averaged 3 85 cwt., or allowing half - weight of beam between supports a gross central load of 4007 cwt. (2) Beam of 1 Portland cement and 2 crushed bricks, two or three months old, 12 in . broad, 8 in . deep, 60 in , span. Breaking

it is called, in plank and in board. To obtain the tirure it is necessary that the faces of the planks and boards coincide, as near as may be, with the direction of the medullary rays: the more nearly they do this, the higher the class of wainscot produced, Fig. 2 shows the ideal system of wainscot entting, where each board in the \log is made to fall exactly on the lines of the medullars lity's. This method of cutting is expensive, and liecessarily involves much waste of material. In Anerica, where the production of good wainscot stuff is now receiving special attention, the moditied system shown in Fig. 3 appears to be most popular. The figure in the outer boards of each group is obviously not so good as it is in the centre ones. When the divergence between the line of the ray and the face of the board is greater than 15° (see Fig. 3) the figure hegins to be poor, and in most American ports such material would be graded as "Below Clase III." It could hardly be described as wainscot.

FIG. 3
Fig. 1
Wainscot Oak.
weight loaded in centre averaged $13^{\circ} 25 \mathrm{cwt}$, or a gross central load of 15.08 cwt . (3) Beam of 1 Portiand cement to 6 gruvel, ninety days old, 12 in . by 12 in . by 36 in . span. Avernge breaking weaght on central $6 \mathrm{in} .=46^{\circ} 67 \mathrm{cwt}$. But it must be mentioned that the strength is subject to so many contingencies that experiments cannot be relied upon very closely. A reasonable practice is to let the thickness of concrete in inches equal the span in feet between main joists, and to put cross joists of ahout half-depth at half the distance apart.

Particulars of Wainseot Oak, - Oak boards and planks that show prominently a good silver-grain figure are spoken of as wainscot stuff. The term is not now, as was formerly the case, restricted to the oak bronght from any particular country. Russian wainscot, Austrian wainseot, English wainscot, and Americun wainscot nre the principal kinds now in the market. Russian whinscot oak is brought over in flitches, as shown in Fig. 1, Austrian stuff prinuipally in plank form. English walnseot also is mostly in plank, and American rít-sawed or quarter-sawed oak, as

Cleaning White Bucliskin Boots.-To clean a pair of sham buckskin cricket boots that have turned brown in places, first tree and then well wash them; let them get quite dry, then remove them from the trees and soften all parts, but more especially where the brown marks are, by well bending the leather backwards and forwards. Now put the boots on the trees again, give them a good hard brushing, and then well and evenly sponge into thern some wet " Blanco." When nearly dry, well rub them all over with in piece of chamois leather; and when quite dry, well brush them, and finish by rubbing with a piece of dry chamois leather on which some chalk is placed.

Particulars of Watchmakers' Eye-glasses. Watchmakers' eye.glasses are numbered according to their focal leugth in inches. A glass of short focus is stronger than one of long focns, and has to be used closer to the work. Thus with a 2 -in. glass, the work is held 2 in. from the glass, and so on. A $3 \frac{1}{2} \mathrm{in}$, or $4-\mathrm{in}$. plass is found the most convenient for ordinary work. If spectacles are not used, order a d.in. glass.

Recipes for Rubber Stamp Inks.-One method of making rubber stamp ink is to dissolve aniline in hot glycerine, straining while hot. A rubber stamp ink that will not smear or blnr burnished surfaces is made by dissolving 180 gr . of violet aniline crystals in 2 oz . of boiling distilled water. Add one teaspoonful of gly cerine and half a teaspoonful of treacle. Dissolve about 1 dr. of anilins violet in 5 oz . of methylated spirit and 5 oz . of glycerine. Black aniline does not answer so Fell, of glycerine. bsually mixed with a small quantity of violet or green aniline. Black ink for rubber stamps may bs made by grinding vegetable black or lampblack in glycerine and then thinning with a little alcohol. Dissolve 3 parts of aniline colour in 10 parts of distilled water, 10 parts of acetic acid, 10 parts of alcohol, and 70 parts of glycerine. The ingredients above mentioned form the bulk of stamp inks, and though thers ars many recipes not given here, they merely differ as regards the proportions.
Roof of Corrugated Iron and Felt. - Roofing felt is usually laid on close boards, but as it is proposad to also lay corrigated iron sheets, the boarding can be dispensed with. In order to arrive at the proper distance apart of the battens, it is necessary to remember that roofing felt is usually 32 in. wide. It should be laid by commencing at the eaves at one end of the roof and laying a strip along the roof just above the eaves. The next strip higher up should overlap 3 in., and this brings the battens 2 ft . 5 in . apart from centre to centre, as shown in Fig. I. The felt is nailed to the
transier should be held up in a strong light and tally marks pancilled on the back as guides to ensmie its being fixed true. Place the paper, face upwards, on a sheet of newspaper and cover it with an even coat of parnish. Then cut in around the design to form a thick edge. Work from right to left several times without recharging the brush, which should be of camel hair. Dip it in the varrnish, and to work out the surplus press it over a piece of string stretched over the varnish jar, or work it over a smooth piece of wood. Any good quick-drying clear varnish will do., It should stand sufficiently long to have a good "tack",-thatis, it should, when lightly to uched with the knuckle, feel sticky without bsing wat. With gold or metal transfers, to be on the safe side, have them a trifle too dry; if wet, loss of burnish or brightness will result. The place on which the design is to be fixed having been wiped quite clean, place the varnished transfer in position and press the thumb down the centre, working outwards to remove air bubbles; for a cycle frame, press well down with the palm of the hand or with a soft cloth. Allow the transfer to stand a few minutes, then damp the paper with a sponge moistened with warm water. Press down again evenly, and apply water more liberally with the sponge. The paper should water more readily lift if held by one corner, leaving every line of the design perfect. With thin paper the same procedure should be followed, the chief point to be observed being to avoid swimming the varnish on. In some cases better results ars gained by applying the varnish where the design is to ba fixed instead of varnishing the design. The paper being

FIG. I'

Fig. 2

Roof of Corrugated Iron and Felt.
battens with galvanised-iron nails. If corrugated iron sheets 5 ft . long are used and of say No. 20 or No. 24 gauge, they will reach over two batten spaces and allow of 4in. overlap at the ends. The sheets are usually fastened with round-headed galvanised screws screwed throngh ridges, not hollows, in the sheets, as shown in Fig. 2. By this arrangement the screw is kept clear of water flowing down the sheet, Corrugated-iron ridging cau be procured or a wooden ridge covering can be made. For securing the shests at the gables, the best plan is to make wooden barge-boards, as shown in Fig. 3, with a top table projecting 3 in. or 4 in . over the edge of the sheets. To carry the gutters without fixing brackets to the walls, some simple form of iron bracket can be nailed to the sides of the rafters or principals, as shown in Fig. 4.
Fixing Transfers on Cycles or Wood.-Transfers afford an easy method of decorating wood or iron; for wood they are generally printed in colours, often in imitation of inlays, though flowers, foliage, etc., may be shown if they give a pleasing finish. Gold decorations are chlefly used on iron bedsteads, japanned goods, and cycle and pianoforte makers' name labels. Generally speaking, transfers printed on stout paper are fixed with the minimum of trouble, but imitation gold transfers are mostly printed on thin tissue paper, which requircs some practice to yield good results; therefore, those who desire a few transfers for trade or clab purposes are udvised to have real gold printed on stout paper. For cJcles and japanned goods the use of a stove, though not necessary, is advised, as the clear varnish with which the design is finally coated will dry out harder than when finished cold. The transfers are printed on sheets and must he cut ont, leaving a margin of white paper aromed the edge; if printed on stout paper, the
removed, the frame should be hung in the stove at a temperature of about $150^{\circ} \mathrm{F}$. for ten minutes or so, the surplus moisture being first removed by a gentle the surplus moisture being frst removed oy a gentle frame from the stove, and whilst it is still slightly warm, apply a thin even coat of good clear varnish and stove again for twenty or thirty minutes or even longer: excess of heat will cause the gold to amalgamate with the asphaltum of the japan, and thus to turn brown. When there is no stove at hand, coat the design with a good spirit varnish or "transfer" parnish, Which acquires the requisite tack in a few seconds. The desigu is then placed in position and pressed well home. Allow it to staud ten minutes and then damp with warm water; press home agaiu and moisten more liberally; remove ths paper and surplus moisture and set aside in warmth for at least an hour. Should the result have a scaly or whitish appearance only, wipe over with a trace of riw linseed oil; rub free from oil and apply a coat of varnish over the design. Several coats may be given, at intervals of half an hour. Better results may be gained if, instead of successive coats of spirit or transfer varnish, one ouly is given to fix the design and kill any trace of oil; then finish with a coat of best copal or coach varnish. Colour transfers are fixed in the same manner. In the case of wood decoration, the same general principlo is employed, the design being fixed after the work is bodied up and the surface freed from grease, the subsequent coat of varnish used for protection being ofttimes discarded. White or transparent polish is applied by meaus of a pad and a lac surface built up that will give the appearance of inlay, Large designs require a rubber roller to press them well home. Transters, when not required for immediate use, should be kepr Hat between the leaves of a book in a dry place.

How to Read and Regulate a Mercurial Barometor -The followng notes are on reading alld resulating a mercurial barometer (Fitaroy pattern). The dial on the face is divided iuto set fair, fair, change, whet, very wet; these require no explaining. The numbers $29,30,31$, etc., refer to the height of mercury iu inches. One hand works round the dial as the mercury rises and falls; the other hand is stationary, but may be moved hy a small knob helow; this hand is set directly over the movable nand each day, and serves to show any change in the instrument. To regulate the barometer, it should be compared at a certain time, morning and evening of each day, with a standard barometer or with another burometer which is known to be accurate. If the readings are appreciably incorrect, open the back of the case and add or take away a drop of mercury as required; continue this treatment until the instrument reads the same as the standard.

Marking Out Involute Curves.-In marking out involute curves, first strike a circle as shown by the sketch ; divide this into a number of equal parts, as A, B, C, ete., the more the better; from each of the points draw a tangent to the circle DEFGHIJKI. Now, supposing the curve to commence from C, make D equal to the distance from C to B measured on the circumference of the circle, E twice the length of D, F three times the length of D, G four times the length of D, and so on; from C, through the ends of D, E, F, G, etc. draw the curve freehend. This curve may be de. scribed mechanically as follows. Take a cylinder of wood, and on this wind a cord with a loop at the end; place a pencil point in the loop, and the cylinder with
paper has undergone some preparation to render the characters visible. A great number of suitable prepgrit tions are known. The following is the composition of a sympathetic ink that becomes visible on being warmed Form a very weak solution of equal parts of blue vitriol and bal-ammoniac in water. Another, nitrato of nlekel and chloride of nickel in weak solntion. Another, dis. solve 25 gr . of chloride of cobalt in 1 oz . of water. Another, dissolve l part bromide of potassium and l part blue vitriol in 8 parts water and 1 part alcobol. Another dilute sulphuric acid with water. Another, make a weal solution of cohalt in nitro-muriatic acid. Writing made with weak tincture of galls is invisible till wetted with a with weak tincture of galls is invisible till wetted with a solution of sulphate of iron $1 s$ not visihle till moistened with a solution of galls. If a solution of alum be employed, the characters will be invisible till the paper be immersed in water. A solution of acetate of lead in water will not appear till moistened with a solution of sulphuret of potass, which renders it brown. To make a blue sympathetic ink, dissolve cobalt in nitric acid, and precipitate it by potash. Dissolve this precipitated precipitate of cohalt in acetic acid, and ada to the solution one-eighth of common salt; for the writing to appear, heat the paper. It is an awkward matter to write with a colourless fluid, 60 any of these inks may be mixed with powdered burnt cork. When dry, the blackness may be removed by the use of indiarubber.

Girders and Columns for Carrying Roof.-To carry a slate roof 30 ft . wide, with a clear headway of 16 ft . and with a span of 50 ft ., there will be required four cast-iron E stanchions abont 8 in . by 6 in . by ${ }^{2}$ in., with proper cap

Marking Out Involute Curves,

Girders and Columns for Cariylng Roof.
one end on a piece of paper : press the point on the paper and unwind the cord, keeping it tight, and the pencil will trace a curve similar to that shown on the sketch. Will trace a curve similar to that sho wn on the curve may be made by using an ellipse or any other form for the section of the solid from which the cord is unwound.
How to Sat Beetles,-To set a beetle, pin it through the right elytron (wing case) with an entomological pin, raising the body high enough to give sufficient space for the proper arrangement of the legs. The heetle is then pinned to a flat piece of cork, and the legs arranged, each joint of the legs being kept in position with common pins. Pins arealso used to display the antennæ, common pins. Pins are also used to display the antennæ, When dry, the common pins are withdrawn, and the beetle is removed to the specimen drawer and pinned down on a card hearing its common and its scientific name. Beetles may also be set with gum. On a piece of card drop a little gum where the legs of the beetle are likely to come. Pin the beetle upon the card, and draw each leg into position and keep it there till the gum has set. Then put the specimen away to dry. The gum set afterwards dissolved, and the beetle set free, by soaking in water. Each foot is then gummed, and the ingect is placed upon a clean card. it is advisable to kill the beetles as soon as caught, as some specimens are likely to be damaged hy long captivity. If, however, they mnst be kept alive till home is reached, each specimen must be kept in a separate bottle, tube, or box. lif kept together in one receptacle, they will not only damage each other in their efforts to escape, but the carnivorous kinds will devour the othere.
Making Sympathetie Inks. - Writing done with sympathetic or secret inks is not perceived till the
and base and good foundations. Two steel lattice girders in fifteen bays, with a depth of 3 ft .6 in., and each capable of carrying with safety 20 tons distributed, and six king- or queen-post trusses if of wood, or of trussed rafter design if of iron, with the usual purlins, etc., will also be necessary.
Filling Engraved Ivory. - Engraved work that is to be subsequently filled is executed in the nsual way, the cuts being kept as clean as possible. Then take a stick of the best black sealing-wax, break it into sinall pieces, and place in a $4-0 \pi$. bottle with stopper, if possible, pouring on sufficient pure epirit of wine to dissolve into a thick paste; then add of wine to dissolve into a thick paste; more spirit to make it run, but not too rively - eometracer or point, and with the side of the point fill the cuts and leave to set all night. If a number of knifehandles are to be finished, rig up a small lathe carrying a linen polishing dolly, made by cutting out into circles, from 6 in. to 12 in, in diameter, fifty or more linen sheets, and screwing them tightly in the centre on a mandril. The speed of the lathe causes these to become erect, and the ivory handle is lightly applied as the dolly revolves, the ivory handle is lightiy applied as the a little whiting to grip the superfuous wax on the surface of the handle.

Ridding a House of Bugg.-When bugs are breediug in plastar, it ie a very diffioult matter to get rid of them The buge are eadly killed, but the egge remain and constantly produce a fresh eupply. Treat the walls with good carbolic acid, washed on with a brush. lt must be corefully applied, because it causes very serious burns if spilt on the hands; the walls should not be otherwise touchad untll the bugs disappear, and if they appear in patches, treat those portions thonoughly.

Falls for Drains.-The falle for drains are governed by circumstances, such as when laid in flat aud when in hilly districts. When not sufficient the drains will silt up, and when too great the inverts are worn by the scour of the grit, etc., carried along with the sewage. In the latter case the falls have to be broken by steps. The minimum for drains should give a velocity of not less than 3 ft ., and for sewers 2 ft . to $2 \frac{1}{2} \mathrm{ft}$. per second. The maximum fall should give a velocity of about $4 \frac{1}{3} \mathrm{ft}$. per second. For a 3 -in, drain the fall to give this latter per second. For a 3-in, drain the fall to give this latter drain, about $\frac{1}{\sigma 0}$; for $9-\mathrm{in}$. drain, about $\frac{1}{80}$.
Developing Length of Arc. - The length of an arc cannot be developed accurately by geometrical means, but for all practical purposes the two following methods will be found adequate. In Fig. 1, let A a be ths are whose length is required. Draw the chord BA and produce it to 0 , making A o half the length of BA. From O, with the radius $C B$, draw part of a circle, and from A draw the taugent A D, cutting this circle in the point D. Then the line A D will be approximately equal in length to $A B$, being a trifle short of the real length. If the are subtends an angle of 60°, the error will be about one-thousandth part of the length. The second method is more accurate, giving results a trifle full. Let A B in Fig. 2 be the arc whose length is reqnired, and c the centre of the circle of which it forms a part. Bisect uho arc in D, and bisect D A in E. Draw ce and produce it. From a draw the tangent a F, cutting C E produced in the poiut F. Draw the etraight line B ©. Then a straight line of the length A F + F B

will be approximately equal in length to the arc AB. Apart from geometrical construction, the length of the arc may be measured by stepping a pair of dividers round the arc, counting the number of steps taken, and then sitting out the sams number of steps along a straight line. This will always give a result short of the actual length, but the smaller the opening of the dividers the more accurate will be the result. A more accurate way is to use a wheelmefna, or a special instrument called an opisometer. The length of the arc may be calculated as follows. Set out the arc either full size or to as largs a scale as possible, as in Fig. 3. Measurg the chord AB, bisect it, aud set up a perpendicalar cutting the arc in C. Measure $\bar{A} 0$, which is the chord of half the arc. Whe length of the arc is found by multiplying the length of AC, the chord of half the ayc, by 8 , from this product subtracting of hall the alc, by 8 , from this product subtracting by 3. If the radius of the carve is known , and also the number of degrees contained in the angle (V), the length of the arc may be calculated in another way, as follows. The circumference of the whole circle is found by moltiplying twice the radius by $3 \cdot 1416$. Then, as the circumference contains 360°, the length of the arc will be proportionats to the number of degrees it contains, and can be arrived at by a simple rule of three sum, thus, 360° : degrees in the are : : circumferencs : length of arc.
Preparing Iron Wire for Tinning.-One process of preparing iron wire for tinning is as follows. The wire, after it is taken from the annealing pan or oven, goes into the cleaning room, an outbuilding well ventilated so that dangerous fumes may escape. By the side of a wall in this room are troughs, either of earthenware or of wood, containing the chemicals. Secured in the wall just over the trough are two or three strong iron rods. The first trough contains grounds (old sour ale) and vitriol-say 5 qt . or 6 qt . of vitriol to 8 gal . or 10 gal . of grounds; it is made stronger by adding vitriol. The wire is left in this trough for from ten to fifteen minutes; it is theu taken out with hooks made of $\frac{8}{8}$-in.
or $\frac{1}{2}$-in. iron rod, and put into another trough containing clean water. It is here examined by the cleaner to see whether any scale, etc., is left on. If it is all right it is transferred to another clean-water trough, where it stays until all the vitriol is removed, the water then ceasing to bubble. The wire is then sometimes trans ferred to a trough containing a weak solntion of hluestous and spirit of salts for a minute or two only, as if it stays in this solution too long it turns copper coloured; therefore this bath is better omitted. The colour can, however, be removed by dipping the wire in a solution of ammonia previous to tinning. The wire then goes to the tinning room (a little at a time, as if the wire is left in the open air it must be re-cleaned). It is dipped in a solution of muriate of tin. The rings of wire are then put on the winders of the tinning apparatus, and the wire passes first through a shallow trongh containing, killed spirit, then through the bath of "grain-bar" tin, and between two hard vulcanite blocks which remove excess of tin. Cleaners wear clogs and rubber-covered legginge, and, as vitriol is used, not extra good clothes; therefore, when taking the wire from the chemical solntions it is advisable to use the hooks and

to hang it on the rods above the trough so that the liquid runs back into the trough.
Polishing Chisel Handles.-The better class chisel handles are finished in the lathe, the polish being applied with a. pad of wadding that has previously been used on flat woik, so that loose fluff may not be given off. After applying a small quantity of polish, the handle is oiled rather sparingly, and a handful of shavings left by the turner is held against it for the purpose of leveling and leaving a smooth surface for future operations; ling and leaving a smooth surrace of glasspaper is thus avoided. The next rubber the use of glasspaper is thus avoided. The next rubber necessary. Polish for turned work consists of $\frac{1}{2} p t$. of methylated spirit, loz. of gum sandarach, loz. of seed lac, loz. of gum benzoin, and 1 oz . of best quality bees. wax dissolved in sufficient turps to form a paste; add to tho above after careful straiuiug.

Renovating Vensered Furniture, - Unless the reneer is very badly damaged it would be better to replace the defective portions with new veneer: small places cas bs filled in with a mixture of equal parts of beeswax and resin; melt in an old iron spoon on ladle and add a little dry colour-Venetian red fol mahogany, and umber for walnut. Press in with a slip of wood, level off with a kuife or chisel, and finally smooth down with glasspaper. The old veneer may be removed by heating a flat-iron and pressing it well against the veneer ; the latter can then be readily prized up by means of a stout kuife or chisel. The old glue can be removed with hot water and rag; the rough surfaca which is left must be planed up and glasspapered iu order to leave a surface fit for polishing.

Recipe for Boot Slze for Kip Work.-To make a boot size that will give a brilliant polish as seen in factory made split kip uppers, boil soms cheap glue, broken up very tine (or it may bs dissolved in a glus pot), to prevent it burning; it should be quits thin, but not watery. Then boil some soap, and when both the glus and soap are well dissolved, add the latter to the former, well stir, put in a few drope of ammonia, and atrain through muslin. li, when cold, the substancs is thicker than cream, warm up again with more water. If it is old stock that is to be revived, logwood chips can be boiled with the soap.
System of Steam Heating.-Ths diagram shows radiators in five rooms of a three-storey house. This apparatus is on the one-pipe system. The boiler is in the basement. The main steam circulation can be $1 \neq$ in.. with single radiator branches of l-in. pipe. The larger rooms ($6 a y$ l 16 ft . by 14 ft . by 9 ft .) will require radiators with 22 ft . of surface each, and the smaller rooms (say l2ft. by 10 ft . by 8 ft. .) 12 ft . of surface eaoh. Endeavour to get the rising main from the boiler up to its highest point as quickly as possible, and without any radiators on it. It will be seen that this pipewould havesteamand condensed water travelling in it in opposite directions, and this is a flequent causs of noise. The thin pipe ($(2$-in.) shown at the foot of the risiug main is a drip to take the water

Steam Heating.
from this point to the boiler. All radiators are correctly shown as connected on to the falling pipe. The fall of the main from its highest point is lin. in 10 ft . Radiator branches rise from the main to the radiators. There is only one counection to each radiator, and this has a valve to control it. A trap or cistern is not needed, as the condensed water is returned to the boiler. A cold supply service is laid on to the boiler with a stopcock, and, as the water-ling falls, water is allowed in to make good the losp. The loss, however, is very trifling, and sometimes the water may not need replenishing for days. A steam boiler with 150 ft , capacity will suffice, one that is a little larger, however, requiring loss frequent attention. There should be an automatic draught regulator.
Dyeing Stockings Black.-For a fast black dye for stackings that bavs become green by exposure to the 6un, dissolve 11 b . of copperas and 2 oz. of blue vitriol in 1 gai, of water; place the stockinge in this, raise gradually to the boll, and wring out. Then place them in a bath made by bolling 5 lb . of logwood chips in 1 gal. of water; raise to the boil, and keep boiling for about half an hour ; pass through tepid water two or three times to remove the excess of logwood, and dry. Lay them out fiat before they are quits dry, and hot press.
Making Collapsible Boat.-In the "Berthon" collapsible boat the stem, the stern-post, and the keel are permanently joined together. The fore and aift stringor's ars hinged at their ends to the stem and stern-post on each side, those uppermost being blocked out in order to allow the stringers to fold down to the keel. Wheu
opened for use, the stringers are kept in position by the thwarts and struts under them resting on the keel. The hinges are about $1 \frac{1}{2}$ in. apart up and down the posts, and are covered with leather', which is kept pliable by castor oil, neat'sfoot oil, or both. Shredded soap, disenlved and mixed with the paint, would keep the painted canvas pliable. For one percon ths size of boat would be: Length, 7 ft . ; beam, 3 ft .; depth, less keel, about 20 in. the width, when closed, about 8 in. ; approximate weight 30 lb . The wood used for these boats is Canadian elm; the canvas covering is doulile, the stringers and air space being between; on opening the boat the air enters space being between; on ope

Making Alcoholic Solution of Gelatine.-To maks an alcoholic solution of gelatine to be used as a mountant for glazed prints, cover with water 1 oz. of gelatine, and allow to stand till quite soft; then melt dowu in a steam bath. While hot, add sufficient spirit of wine till the liquid just begins to appear cloudy; if too much is added, the gelatine will precipitate out.

Design for Garden Vase.-The accompanying sketch bhows a garden vase of the most common pattern. It rests on a slab aupported by three pillars, and the height of the whole might be about 5 ft . By making the slab as ghowh, sufficient space may be obtained on which to

Design for Garden Vase.
place a number of small flower-pots. The model of the vass is most conveniently made of plaster-of-Paris; ths pedesial may be made either of plaster or wood. The moulds are of plaster, and from them the finished vase may be cast in cement. When making cement castings from plaster moulds, first varnish the inside of the mould to prevent the absorption of the oil by the plaster. It is possible to make the vage without a mould by constructing a framework of wood to form the incide of the vase, covering the framework with cement, and running a zinc template round it.
Loosening Slide of Cornet.-To loosen the slide of a cornet without damaging the instrument, pour a little paraffin oll on the sllde and let it stand for a few hours; then wipe off, and gently warm.
Rewpainting a Locomotive. - If the old paint is in a very bad condition, chip it off with a chipping hammer and scrape as lovel ns possible; then sive the engine two conts of lead colour (white-lead and patent driers in coats of lead colour (White-lead and patent driers with hard stopping, then fill up and rub down with pumice-stone and water, and give two more coats of lead colour. If the paint is in fairly good condition, clean off all grease with turps and a serapsr and give two coats of lead colour. Stop ths bad places with hard stopping and sandpaper down. Now give two coats of Brunswick green ground in oil and thinned with turps. Line and green ground in oil wand drop black ground in oil and thinned with pick out with drop black ground in oil and thinned use turps. Varmish with best body varnish. Do not linseed oil, and patent driers uned.

Recipes for White Ink.-The following are recipes for white inks. White egg-shells are powdered in a mortar with clean water, and the powder isuriad. Dissolve l part of white gum ammoniac in 3 parts of aceulc acid; a gentle heat will aid this. Strain through muslin, and add 1 part of powdered egg-shell. To thin the ink, dilute with acetic acid. Write with a quill pen or sable brush. Pure whiting or Ohinese white may be substituted for the egg-shell, Another and simpler recipe is to mix with a weak solution of arabic gum any one of the following. Flake white, French zinc white, white-lead, freshly precipitated barium culphate, starch, or mag. nesium carbonate. The white substance must be reduced to an impalpahle powder before mixing.
Lead Flashings "Burnt-in'" to Stane.-The method of burning-in lead flashings abutting against stonework 16 illustrated by the accompanying tigure. A groove, about $\frac{1}{2}$. to $\frac{5}{8}$ in. wide bylin. to lind in. deep, is cutinto the atone, the back of the groove being a little wider than the front. Into this the lead flashing is fixed as showu at A; a piece of dry deal, about 2 ft . long by $2 \frac{1}{2} \mathrm{in}$. wide by $] \frac{1}{2}$ in. thick, made to the section 26 shown at B, is fixed over the groove and kept close by means of struts or weights. On the upper edge, three or four pouring holes and airvent holes or notches are cut as shown by the dotted lines, into which molten lead is poured to fill up the groove. A greater length than 2 ft . cannot very well be done at one pouring, and to prevent the lead flowing out
small quantity of common salt is added, say $\frac{2}{6} \mathrm{oz}$. to the gallon of solution.

A Book Rack whth Sixteen Divisions.-The book rack here illustrated will hold sixteen books. All the wood is $\frac{1}{4}$ in. thiok, except the divisions, Which are ồin., and the centre division carrying the numbers, which is lin. thick. In front should be a printed slip taken from the beok list; it may be pasted on and can be renewed as alterations take place. The ornamental coping is planted on, and can be made to any design. The space allowed between the divisions, which is, of course, the space taken up by each hook, is only $\frac{1}{3}$ in., but, if the collector has two books, the space is made fin. wide, with a corresponding increase in the size of the case. The ornamental coping may be $\frac{g}{8}$ in. broad and

Lead Flashings "Burnt-in" to Stone.
at the ends they should be stopped with clay or patty. After pouring the lead, the piece of wood is removed, any feather-edges on the lead are trimmed off, and the face is hatched with a blunt hand-chisel to a herringbone pattern. Sometimes the face of the groove lead is staved to make it fit tight after shrinkage by cooling, bnt this is not a good plan, as the stonework is "stunned," and this results in a crumbling away after being wetted and exposed to frost. Flashings are not stepped in tooled stone walls, but are fixed in grooves cut parallel and rakiug with the roof.
How to Make Nickel Solntion,-To make 1 gal. of nickel solution, dissolve 11 b . of double sulphate of uickel aud ammoniain as much hot rain-water aswill completely dissolve the crystals. Let this get cold, then filter it through calico into the vat in which it is to be worked, and make up to 1 gal. with clean rain water. If best nickel salt is used, it will not bo necessary to add either ammonia or table salt, these being employed to correct some fault in old and poor solutions. In working nickel solutions, they become too acid when ineufficient anode surface has been provided. To correct this excess acidity, add liquor ammonia in small quantities until the solution ceases to redden blue litmus paper. When a solution ceases to deposit white nickel, a very

\qquad

\qquad

Composition for Repairlng Ebonised Frame.-To make a suitable composition for repairing an ebonised picture-frone, crush a small quantity of gilder's whiting and mix it in a pipkin with eufficient dry lampblack to make a slate-coloured powder. Now pour a small quantity of very thin glue into the middle of the powder and mix the latter into a ball, well kneadlng with the bands. Place this putty in a wet state on the frame and build upall sharp edges to correspond with the original work. When dry and hard, sandpaper the repaired parts until level and smooth. Finish with a coat of black enamel which gives a good hard surface.

Sterlising and Peptonising Milk.-Tbe best method of sterilisation is to place the milk in bottles provided with screw or plug stoppers, put the bottles in a stean steriliser, and gradually raise them to $100^{\circ} \mathrm{C}$., keepiug them at that temperature for at least half an hour; but by using an antoclave the temperature could be raised to $110^{\circ} \mathrm{C}$., and about ten minutes at that temperature would be even more efficient. The milk would not have the burnt taste that it has when boiled over the fire, but it would not taste like new milk. It is very desirable to sterilise milk either before or it ier it has been peptonised, otherwise the bacteria present would grow at such a rate as to render the milk unfit to drink in a very short time. Sterilisation is only nearly perfect at a boiling heat, and for perfect sterilisation sometimes two or three boilings are essential.

Temporary Water Supply during Relaylng of Main.-The simplest method of maintaining a water supply whilst a defectire street main is being relaid is to cut off the ends of the defective main at the points between which renewal is necessary, to cap the ends
or prefcribly three, good coats of colone made with white lead, boiled oll, black pigment, and turpentine. Glasspaper each coat, which should be quite dry he fore the next is applied. Of course, the board should previously have been planed or glasspapered smooth. (1) Give a coat of flat drop black and japan gold size containiug tib. of flour emery to 1 pt, of black pig. ment. When dry, coat again; but add i part of turpe to 3 parts of gold size ueed in the former coat. (2) Coat thinly but evenly with common black and driers and 2 parts of linseed oil to 1 part of turpentine. When dry, spread quiokly a mixture of 3 parts (by measure) of best ivory black ground in turps and 1 part of japan gold size, and dilute with turpentine. (3) Give two conts of black mixed with boiled oil smooth, when dry, with flour emery paper, then coat with black mixed merely with turpentine. (4) Coat with common dark lead colour or with common black paint, and then with a mixtare of ivory drop black ground in turps, copal, or carriage oil varnish and turpentine. The greater the quantity of varnish used the greater will be the gloss: but some varuish is necessary to bind the colour. (5) Apply japan black and stipple a finish flat. (6) Give two coats of paint containing an excess of driens. Glasepaper the board after the first coat. (7) Give two coats of varnish colour, containing just enough varnieh to produce an "egg-shell" gloss. When thoroughly hard, rub down with felt and pumice powder, and leave for a few hours before using. (8) The new board is well sized and then coated twice with oily, dark lead colour or common black paint. Before twenty-four bours have elapsed, apply a mixture of ivory drop black ground in turps, japan gold size or copal varnish, and enough turps to give a thin, watery consistency. This should produce a flat and lustreless black surface. (9) Grind

of the pipes that are to remaln, and fix $\frac{4}{4}$-in, or $2-\mathrm{in}$. (according to the number of houses to be supplied) wrought-iron plpe with screwed jointe, for easy removal afterwards, as Bhown in the accompanylng illustration. This will act as a by-pass, and supply all the branches that are not disturbed. Those that come in the defective part can be connected to the by-pass by means of tees. part can be connected to the by-pass by means of tees. covered with earth out of the trench, to protect it from frost during the time the new portion is being laid. After the latter ls done, the blank sockets can be burst off with hammer and hand chisel, and the connecting joints made between the old and new pipes.

Making and Applying Blackboard Dressings.The characterictice of a good blackboard surface are intense black and absence of glose; the former is intense black and absence of glose; the former is desirable, inasmuch as the greater the contrast between clearly will the characters fhow up. But that all gloss should be absent is more important still, as unless the lighting of the room is very favourable, a board having a glossy surface is sure to cause annoyance and trouble. A glossy board reflecte the light, and, in consequence of this, it will be found that from some part of the room, at any rate, chalk marks on the board cannot be seen clearly. Therefore, the aim in blackening a board must clearly. production of a suriace containiag as little gloss as poseible. There is no best way of blackening a board, as all dreasings will, sooner or later, become polished by the constant friction of chalk and duster; and, in a general way, coatings that are less liable to this polishing action have another drawback. This is the difficulty of rubbing out the chalk marks that to come extent is possegsed by all coatinge in the composition of which an possessed by alife material, such as emery or pumice powder, enters, and which contain little or no bindiug agent in the form of shellac or gum. The following recipes and instructions are given as the result of much experimenting on the part of those who have afterwarde published the results, and it is believed that below will be found almost every recipe of importance that has been made known during the last twenty yeare. The compositions given in recipes Nos. 1 to 7 are all applied over two,
lampblack in spirit varnish or alcohol, add gufficient flour emery to give a suitable surface, and thin with spirit varnish. Apply to the smooth board with a paint brush; allow to become thoroughly dry and bard, and rub down with pumice if too rough, (10) Dissolve in 4 pt . of alcohol (95 per cent.) 8 oz . bbellac, and add lampblack 12 dr ., ultramarine blue 20 dr ., powdered rottenstone 40%., and powdered pumice-stone 6 oz . Shake the preparatiou and apply it with a new flat varnish brush as quickly as possible to the board, which must be free from qrease. Keep the bottle well corked. Instend of alcohol, the shellac may be dissolved in a solution of borax in water, and coloured with lampblack. (li) Dilute silicate of soda (water glass) with an equal bulk of water, and add sufficient lampblack to colour It. Before being added, the lamphlack should be ground with water and a little of the silicate, (12) Give the new board two coats of lampblack mixed with boiled oil and patent driers, and, when quite dry, coat with a mixture of bunnt lampblack and turpentine. To prepare this mixture, place 4 lb . ampblack on a flat piece of tin or iron on a fire till it becomes red; take it off and leave it until gufficiently cool, when it must be crushed with the blade of a knife on a flat board quite fine; then mix with $\frac{1}{2}$ pt. of ppirit of turpentine, and apply with a size brush. (13) One gallon of blackboard dressing may be made by rubbing into a thick paste 10 oz . of powdered pumice-stone, 6 oz , of powdered rottenstone (or infueorial silica), 12 oz, of lampblaok, and sufficient methylated opirit. Mix this with the remainder of a gallon of epirit in whlch 1402. of shellac have been dissolved. Apply two coats, constantly stirring the paint. Apply the second coat lightly. This quantity of dressing is sufficient for 60 sq . yd. of board. (14) Flist coat with a mixture of bhellac varnish and lampblack, and when dry, with three coats of a mixture of t gal. Ghellac varnish, 5 oz. lampblack, and mixture of $\frac{1}{2}$ gal. shellac varnish, 5 oz. tamplack, thin with alcohol. Allow each cont to dry before putting on the next. (l5) Give two or three coate of a golution of 10 parts of shellas in 90 parts of alcohol to which has heen added 1 part of lampblack, $1 \frac{1}{2}$ parts of ultramarine, 5 parts of powdered Rochelle salt, and 7 parts of powdered pumice-stone. (16) Apply a dressing made by digsolving

10 parts of Tvory black, 6 parts of flour emery, and 5 parts of ultramarine. (17) Grind equal quantities of dry red lead and pumice powder in good varuish thinned with turps; add suffioient lampblack, and thin with turps. If desired, substitute wood naphtha for the alcohol and gold size for the varnish. (18) A good imitation slating is produced bs applying pulverised slate or quartz rock, using silicate of soda (water glass) as the medium. (19) Give two or three coats of asphaltum dissolved in petroleum naphtha. (20) In many schools the walls are made to serve the purpose of blackboards. The walls are first coated with a size made by dissolving llb. of glue in 1 gal. of water and adding a little lamphlack. When dry, apply one of the ahove dressings. (21) Most of the compositions mentioned ahove are of the nature of paints, but stalns are sometimes employed for of paints, but stains are sometimes employed for methods of staining boards are here given. Break 1 oz . of nutgalls into small pieces and steep for half an hour in $\frac{1}{2} \mathrm{pt}$. of vinegar contained in an open vessel. Add loz.
of salts), 1 part of nitric acid (aquafortis), and 1 part water. Make warm, and place the vessel on a hob in a fireplace with a good draught to carry off the fumes. Dip ths silver articles one by one in the mixture until all the gold has been dissolved; then rinse well in clean water aud rub in sawdust or hran until dry.

Under-carriage for'Bus.-An under-carriage fora'bus is illustrated by Figs. 1 to 3 . Fig. 1 is a front elevation of the bed, as finished, and Fig. 2 is a plan of a pair-horse, close-futchell carriage (bottom part only). First draw this full-size, and from it make a pattern for the futchells A. The bed is first got out straight and square all ways; the futchells, of extra tough ash, are also square, tapering slightly at the back end. To frame them in, mark the centre of the bed on the top, and cramp the futchells on the bed at equal distances from the centre line; test with a wax line from the centre to see that one does not throw out more than the other. Then strike along the side with a marking awl, take away, and

Under-carriage for 'Bus.
of steel filings, allow to stand untouched for two and a half hours, and then apply it with a brush. The second method is to brush in a solution of culphate of iron, which should be allowed to soak into the wood, and then to sponge with a colution of nutgalls until sifficiently black. The third method is to apply a boiling solution of $\frac{1}{2}$ lb. of logwood in water; this should have stood for twenty-four hours and should then have been strained. When dry, give another coat, and when this is dry well rub the surface of the board with straw or something similar, and then apply one or two coats of a boiling solution of 4 oz . of copperas in 1 pt . of water. Chalk marks are not easily rubhed out on this at first, but the difficulty is lessened in a few days. The above instructions are on treating new boards, but recipes Nos, 9 to 20 are also suitable for renovating old surfaces. If for this purpose recipes Nos. $1-7$ are also employed, proceed as if treating a new board which has already received its preparatory coats of oil paint. It may be mentioned that at many schools blackboards are successfully re-blackened by a weekly or bi-weekiy application of ordinary black writing ink.

Removing Gold from Gilded Silver.-Gold may be removed from gilded silver by the following method. Mix together, in an earthenware, porcelain, or enamelled iron cup, 4 parts hydrochloric acid (spirit
square the marks on to the back and front of the bed. The top of the futchell when let in should be about $\frac{7}{8}$ in. down from the top of the bed, and the mortise is cut a full $\frac{1}{-1}$ in. lower behind than in front, to give the necessary pitch to the carriage. With the compasses strike off the felloe piece bearings B (Fig. 2), also the transom bearings C (Figs. 1 and 2); mark off the spring bearings D (Figs. 1 and 2), and the bearings for the splinter bar E (Figs. 2 and 3). This bar comes underneath the futchells, and is compassed as shown in Fig. 3 . Knock apart, lighten the hed down as desired, and carve it and the futchells and eplinter bar. Drive the futchells into place again, run the holes through for the felloe pieces, fit the ironwork, and finish off. As will be seen from Fig. 3 , the two centre rollers bolts are put through the futchells first, and then through the splinter bar; usually the holt end should be much longer than when received from the makers.

Cleaning Interior Stonework.-To clean interior stonework, wash it with dry soap and water, using a painter's ordinary brush. Now make a strong solution of American potash, thicken it with whiting to the consistency of cream, and paint it over the stone. After a few minutes wash off with a sponge or soft brush and cold water. If necessary, repeat. Do not let ths mixture stay too long on soft or crumbling stone, or it may do injury.

Colourlng Spirlt Varnishes.-Spirit varnishes are coloured with coal-tar dyes soluhle in spirit, and usually known as "spirit soluble" dyes. As a rule, very little dye is recuired. Perhar's the best way to apply it is to make a concentrated solution of the dye in spirit, and add this drop by drop to the varaish till it is sutficieutly coloured. The names of soma of the dyes are magenta, methyl violet, methyleve blue, brilliant green, Bismarck brown, aurantia, bosin, nigrosin, etc.

Repairlng Worn Stone Steps,-One way to repair worn stone steps when they are built in the wall is to eut the old tread away to a depth of 3 in. and then bed a 3-in. slab of hard York stone in sand and cement. If not built into the wall, aud not too badly worn, the steps may be taken up, the treads reworked, and bedded and pointed in sand and cement, with a thin slab of stone bedded under as a riser to make up the original height.

Scantlings for Timber Roofs.-The accompanying table shows at a glance the respective scantlings for collar, king-post, and queen-post roofs. As to the various adaptabilities of these roofs, it may be stated that collar roofs are not adaptable for roofs above $18-\mathrm{ft}$. span, because the timbers would be abnormally large, the expenditure would be exorbitant, and the roof would be unsightly. King-post roofs are applicahle for roofs of $18-\mathrm{ft}$. to 30 -ft. spau. Queen-post roofs are applicable for roofs 30 -ft. to $45 \mathrm{I} \mathrm{I}^{\prime}$. span.
pitch, 5 parts; bleached shellac, I part; glass meal, 7 parts; gum elemi, 2 parts; and mastic, 2 parts. A very strong solution for glass or porcelain may be obtained stromg casain dissolved in a soluhle silicate of soda or from cassin dissolved in a soluhle silicate of soda or all cream and stand it in a warm place till it curdles. It should then he filtered, washed with water, tied in a cloth, and bolled in water. It should be allowed to dry on blotting-paper, and can then be kept for a long time. A waterproof cement for attaching glass to wood, slate, etc., ls made by mixing together litharge, 3 parts (by measure) ; white lead, 3 par'te ; plaster-of-Paris, 3 parts; and powdered resin, 1 part. Make into a paste with boiled linseed oil, and use at once. For a transparent cement, boil isinglass in spirit of wine. A cement to repair porcelain or glass and to withstand heat is made by rubbing up in a mortar white of egg and a little dry lime. Paint this on the hroken edges; put the article together, then paint strips of calico with the mixture and lay them over the broken parts outside, and allow to stand for several days. A coat of oil paint could then he put on, and would render the whole watertroof, silicate of soda or potash (commonly known as water glass) sticks well to glass, and will stand heat. Either of these, however, attacks and slightly roughens the glass. Another heat-resisting cement for glass is the following. Pulverise together in a mortar $\frac{1}{2}$ oz. of powdered glass and 1 oz . of Huorspar until they are reduced to an in. palpable powder, then mix with 3 oz . of silicate of soda

Description of Roof.	Span.	Tie Beam.	Principal Rafter.	King Post.	Queen Post.	Strut.	Straining Beam.	Purlin.	Straining Sill.	Common Rafter.	Collar.	Rildge.
Collar Roof.	Fet.	Inches. \begin{aligned} & 2 \times 2 \\ & 2 \frac{1}{2} \times 2 \\ & 3 \times 2 \\ & 4 \frac{1}{2} \times 2 \\ & 5 \times 2 \\ & 5 \times 2 \\ & 5 \frac{2}{3} \times 2 \end{aligned}$	$\begin{aligned} & \text { Inches. } \\ & 7 \times 1 \frac{1}{2} \\ & 7 \times 11 \\ & 7 \times 1 \frac{1}{2} \\ & 9 \times 1 \frac{1}{2} \\ & 9 \times 1 \\ & 9 \times 12 \end{aligned}$									
	8 10									$\begin{array}{ll}3 & \times 9 \\ 3 & \times 2\end{array}$		
	12									$3 \frac{1}{1} \times 2$		
	14									4×2		
	16									4×2		
	18	7×3	41×3	$4 \frac{1}{4} \times 3$								
	20	9×4	4	5×4		3 + 4		7 7×4		32 4 4		
King - post Reor.	22	9×4	6×3	$6 \times 3 \frac{1}{3}$		4×23		8×4		$4 \frac{1}{2} \times 2$		
	24	$9 \frac{1}{2} \times 4$	$6 \times 3 \frac{1}{4}$	6×4		4.2		8×5		$4{ }^{1} \times 2$		
	$\stackrel{26}{28}$	9×5 10×5	6 64 $\times 4$	6×4 6×6		1 4 $\times 3$		$88^{\frac{1}{3}} \times 5$		4,		
	30	11 $\times 6$	6×4 6	6×6 7 7		4 4 6 $\times 3$ 		8×5 8×6		+		
						4×3						
	32	10×4	6×4		5×4	$4 \times 3{ }^{1}$	$7{ }^{12} \times 4$	8×4	$4 \frac{1}{2} \times 4$	4×2		
	34	10×5	$6{ }^{6} \times 4$		6×4	$4 \frac{1}{2} \times 3{ }^{\frac{1}{4}}$	8×4	$8 \frac{1}{2} \times 5$	5×4	$4+\times 2$		
Queen-postRoof.	33	10×6	$6^{6} \times 5$		7×4	$5 \times 3 \frac{1}{2}$	$8 \times 4 \frac{1}{2}$	3 ${ }^{\text {a }} \times 5$	5×4	$4{ }^{4} \times 2$		
	40	10×6 11 11	6×6 7×6		7×5	5×4	8×5	83×54	$5 \times 4 \frac{1}{2}$	$4{ }^{4} \times 2$		
	42	11.4	7×6 7×6		7×6 8×4	6×4 6 \times	81 8×6 8×6	8×6 9×5	5 $\times 1 \times 4{ }^{\frac{1}{2}}$	+ 4×2		
	45	$1 \mathrm{lV}_{3} \times 6$	74×6		8×6	6 $\times 6$	8 8×6	9×6	6×4	5×2		

Cements for China and Glass.-There are many cements for ropairing china and porcelain. For large articles, plaster-of-Paris worked up with alum solution may be used; or plaster-of-Paris may be stirred iuto a clear solution of gum arabic. This should he used immediately, but is useless if the vessel to be monded has to hold water. A cement which is said to stand both heat and water is made by calcining and grinding oyster shells. These are then reduced to the finest powder possible with a muller, and the whole is beaten into a paste with white of egg. In using this preparation the broken parts should he pressed well preparation the broken parts should he pressed well made by placing in a wide-mouthed botitle a small quan. tity of glue, just covering it with water, and allowing it to stand over-night; next day the excess of water is poured off aud the glue is covered with methylated spirit. The hottle is then placed in a pan of water and heated until the glue is melted, then a little whiting is shaken into it, the bottle removed from the pan, cooled, and tightly corked. sometimes a small piece of gum mastic, together with some ammoniacum, is added to such cements. Another useful cement for the purpose can be made as follows. Cover $\frac{1}{2}$ oz. of gelatine with strong acetic acid, and, after standing, melt it down by placing the hottie in hot water. Both these cements are ready for use if they are placed for a few minutes in hot vater. Another cement for glass, etc., is made by coagulating milk with acetic acid and washing the casein in water. It is then dissolved in a cold saturated solution of borax, and a clear solution obtained, which is mixed with finely powdered quicklime. This should be applied to the broken parts quickly, and the whole bound tightly with cord and gently heated. A ealphur paste for porcelain is made with sulphur, 7 parts; white
and work it into a smooth paste, which sets very rapidly. A reliable cement for repairing glass and china goods is A relable cement for repairing glass and china god acid. With the following cement, the article is required to dry slowly in a warm place; 10 parts of white lead and 6 parts of pipeclay, carefully dried, are incorporated with 5 parts of boiled linseed oil, heated on a water-bath. To repair a broken washhand basin, cover the outside of the parte to be joined with ordinary oil paint, then lay on a strip of calico, or thin canvas, and paint that outside. This is not very neat, but such a patch lasts for years. A solunot very neat, but such a patch laste forice turpentins, tion of 8 oz. strong glue and $\frac{3}{4}$ oz. Vill unite glass and metal. To join glass to wood, make a cement by melting 1 oz . beeswax with 1 oz . resin, and stirring into it 1 oz Venetian red. Use whilst hot, and warm the glass. If the wood is to join the edge of the glase, a groove in the wood will assist in holding it. Roughening the surface of the glass where the join is with emery powder will also help the cement to stick. In cementing white also help the cement to stick. In cementigg Freuch chalk over the glass, then coat the baek of the letters to about $\frac{1}{6}$ in. With white lead and japanners' gold size, which should have been mlxed together twelve hours before. Press the letters well down, and clean tha cement from the edges with a chisel knife, Another cement for the purpose, and one which dries quickly, cement be made by mixing together 1 part white lead, 2 parts litharge, 3 parts boiled linseed oil, and 1 part copal varnish. The following cement has been reeommended for uniting chlna to metal. Melt resin 20 parts, and stir in plaster-of-Paris 2 parts, and boiled linseed oil 1 part. If kept in a closed bottle, thls cement may be used at any time by simply heatling it.

Brugh French Polish. - Brush polish is another name for spirit varnish. In a general way, 4 oz of best shellac to 1 pt . of methylated spirit will answer for applying by means of polish rubbers. If the polish is to be applied with a camel-hair brush, it must be thicker-say 6 oz to lpt. Some polishers mix equal parts of polish and best brown hard spirit varnish; if too thick, more polish or spirit is added; if too thin, add more varnish.

Making Cardhoard Pulp. -To make a small quantity of the cardboard pulp, cut a suitahle piece of cardboard into small pieces, soak iu water for an hour or two, and then beat it, in small quantities at a time, in a mortar until it is reduced to pulp.
Photographic Paper that does not require Toning. -Printing-out paper that would give a rich brown tone with siraply washing and fixing and no toning can easily be prepared. The prints may be made on paper, linen, silk, wood, etc. Procure some pure Rives or Saxe paper (Whatman's smooth drawing paper is also suit. able) and soak it for about ten minutes in a salting bath made as follows. Beat 180 gr . arrowroot into a cream with a little water, avoiding lumpe. Boil 150 oz water and pour in the cream slowly, stirring the while; boil for five minutes. Dissolve 120 gr . ammonium chloride, 200 gr . carbonate of soda, and 60 gr . citric acid in 50%. water, add to the arrowroot solution, and filter through muslin. The arrowroot or sizing serves to prevent the silver salts sinking into the paper, and gives brighter prints. Hang up the paper by the two top corners in a room free from dust. As soon as the paper is dry, cut it into sizes suitable for the sensitising dish, and put a pencil mark on the back of the paper in order to distinguish the sensitive side. So far the operations may be carried on in full daylight, but the remainder of the work must be done in an orange or yellow light, such as

Fig. 2
Preparing Photographic Paper that does not require Toning.
would be safe for handling P.O.P. The paper is next floated face down wards for threc minutes on the surface of the sensitising bath, which is composed of silver nitrate 60 gr., citric acid 25 gr ., water loz. With practice it is quite possible to float large sheets of paper, but the beginner should nse pieces not larger than li in. by 10 in . See that the solution well covers the dish; if not, level up with the wedges (A B C, Fig. I). Take the paper by the two opposite corners and lower the near end X on to the surface of the solution, drawing into the near corner. Lower the part Y into position. Lift each bide again slowly and, with a clean glass rod, break any air bubbles adhering. The paper may also be coated by pinning flat on a clean board and pouring a pool in the centre and spreading with a Blanchard brush made by binding some swansdown calico aronnd a strip of cellulgid, as in Fig. 2. This is convenient when short of solution, but unless carefully done an uneven coating is almost sure to result. The sensitised paper is pinned up to dry, which may take place quickly. Print in the usual way, but much deeper than for albumen paper. An image of a dull violet colour is given, which, when washed and fixed in a 10-per-cent. solution of hypo, becomes a rich red brown. The prints are then washed and finished as usual.
Deterioration of Silver-plating Solutions. - If a silver-plating bath is exposed to strong sunlight, a small portion of the free cyanide will absorb carbonic dioxide from the air and part with its cyanogen, and thus become converted into potassium carbonate. The loss of free cyanide may easily be made up by adding a small portion of potassium cyanide dissolved in distilled watar. When silver-plating baths are not in use, they should be closely covered to prevent this loss, and to keep out dust. They should also be well stirred an hour or two before being used again.
Cutting a Glass Bottle.-For cutting a glass bottle, a small jet made by drawing out a glass tube, or the mouthpiece end of a clay tobacco pipe should be connected to the gas supply by means of a rubber
tube. Stand the bottle on a table and fill it with water to the height at which the bottle is to be cut and make an ink mark around the bottle at the level of the water. Now empty the bottle, and with a triangular tile make a deep ent on the lip of the bottle aud, having lit the gas-jet, place it on the mark; after as few seconds remove the flama, and touch the part with a match stalk wetted; a crack will form at once, or after two or three trials. Now place the flame in front of the crack and lead it down the neck of the bottle to the ink maxk, then right ronnd the bottle.
Fecipe for Black Harness Polish.-A good hatness polish consists of beeswax llb., soft soap 6 oz., ivory black ${ }^{3}$ lh., and Prussian blue $10 z$., ground in linseed oil 2oz., and oil of turpentine $\frac{1}{2} p t$. Mix well together aud put in a pot. To use, lay a little on the leather and polish lightly with a soft brush or rubber.
Cleaning White Canvas Shoes.-In cleaning white canvas shoes having white leather facings, first tree the shoes, or fill them with soft paper. Well wash and scrub them, then give them one or two coats of "Blanco," made up in water to about the consistency of cream. Apply this with a sponge and, when nearly dry, brush out with a clean brush. When quite dry, take out the paper or trees and give the shoes a good hard brushing to remove all the "Blanco"" except what is necessary to leave them a clean rongh white.
Removing Old Paint from Iron.-Oue method of re moving old paiutfrom wrought-iron plates is to steep the latter for about twelve hours in a solntion of common caustic soda (llb. to the gallon of water), and scrape off the softened paint with a knife as the plates are remoped.

Photographic Dark-room Lamp. - Accompanyiug this is a sketch of a serviceable ruby lamp to burn either

Photographic Dark-room Lamp.
gas or oil. The lamp should have three illuminated sides, the front one to take ruby, orange, or opal glasses. The most convenient plan is to have these glasses fixed in frames so that they can be run in grooves on one side, as shown in the illustration; thus either one or all three can be used as required. With such an arrangement, it will not be necessary to regnlate the lamp from the outside. The opal slide may be pushed in front when development starts, and may be run back when the image is fairly out. For'slow plates, the orange slide is nsed alone; for isochromatic plates, the ruby blide; and for very rapid plates, the orange and ruby together:
Removing Red Ink Stains from White MarbleTo remove red ink stains from white marble, cover them with a little chloride of lime mixed with water, aud wash off in about half an hour.
Brittle Gold.-The following are some of the causes of brittle gold. (a) Oxidation of copper and absorption of the copper oxide by the molten metal. (b) A pasty condition of the molten metal at the moment it is poured into the mould or ingut. (c) The mould may be too hot or too cold at the time of pouring the metal (d) Absorption of some impurity from the flnx. (e) Some impnrity in the added copper or silver. The impurities in added metals may be arsenic, phosphorus, iron, or nickel in the copper; lead or zine in the silver. Im puritiee in the flux may be grit and iron in the salammoniac, and free mercury in the corrosive sublimate. In melting the metale for lo-carat gold, use a plumbago crucible lined with finely powdered charcoal and puit the copper in first, then add the silver and gold. When the mixture is at the point of fusion, throw on its surface about two tablespoonfuls of finely powdered vegetable charcoal and finely powdered best sal-ammoniac intimately mixed. Use no other flux. When completely fused, stir the whole with the point of a red-hot iron rod, bring to the proper fluid condition for pouring, and hold a strip of wood to the mouth of the crucible to keep back loose flux whilst pouring the matil into the mould.

Staining Wooden Playlng Bowls.-In re-staining bowling green bowis, any grease, dirt, oil, or varnish must be removed by re-turning in a lathe or by well scouring with strong soda water and pumice powder, or powdered Bath brick. When the bowls are quite clean and dry, proceed as with new howls. Boil in an old iron pot for several hours 11 b . of logwood chips, old irom pot for several hours lib. of logwood chips, wood, $\frac{2}{2} 1 \mathrm{~b}$ of indigo blue, 2 oz . of lamphlack, 1 oz . of nut galls, and 1 gal. of water. Strain through flannel, and apply hot; two or three coats may be necessary if the bowls are of hard wood, and the blackness may be inteusified ay brushing over, when dry, with another stain made by steeping plenty of rusty nails or iron turnings in common vinegar. A French black stain gives very good results.
Making up a Fishing Ine,-The requisite materials for making up a fishing line are a good length of tanned water cord, some short lengths of pointed sticks, and some hooks. The latter will vary according to the kind of fishing; for eels or night lines, eyed hooks or those with the shank flattened are generally used, but for day fishing strong gut hooks are best. Cut the cord into lengths of 10 yd. or 12 Jd ., according to the width of the river, tie one end to a stick, and at the other end fasten a heavy lead sinker. Abont fonr hooks are sufficient, and the first one should he fastened ahont 18 in . from the weight and the others a little more than lft. apart. To secure the gut
it has thickened and is cooling, stir in a small quantity of silicate of soda and a few drops of oil of cloves. (3) Ordinary gum paste is mads from equal quantities of picked gimm arabic, white sugar, and water. The solution is evaporated till it is thick, and about three whites of eggs added per pound of gum. These should have been previously beaten up with a flavouring. The whole is strained through muslin, and evaporated until lt will sot. (4) Dissolve a heaped-up tsaspoonful of powdered almm in a breakfast cup of cold water, and with this alnm water mix the paste, crushing all lumps with a flat piece of wood. Boil slowly, stirring until the stick will stand alone. This paste does not become mildewed or offensive. Do not cover up too tight, and do not keepitin a tin, or put a tin-mounted brush in it, because of rust. (5) A quick-drying paste is mada hy mixing 100 parts of flour paste with 5 parts of dextrine or equal parts of glue and paste. (6) There are several materials from which an adhesive paste or gloy for securing labels could he made. By treating gum arahic with water; by treating dextrine (British gum) with water; by boiling glue for several hours with water, borax, and carbonate of soda, or by using fish glue. The first method is by far the best, yielding a stronger gum than any of the others. (7) Ordinary flour paste, made with the finest wheat flour and a small quantity of flne white sugar, keeps good for any length of time if a few drops of carbolic acid are added. (8) Four parts (by weight) of fine glue are softened in 15 parts of cold water, and then moderately heated until the solution becomes quite clear;

Making up a Fishing Line.
hooks to the line, make a loop and tie a single knot (6ee Fig. 2), which, when tightened, will have the appearance of Fig. 1. Pass the loop of the gut over that of the line, and draw the book through the loop on the line. To secure eyed hooks, form a loop in a piece of finer cord than that used for the line, about 8 in . long, tying it in a similar manner to Fig. 1. Pass the loop (Fig. 3) through the eye of the hook and over the point and draw it up to the eye or the book and over the point and drawitup to
form a tie, as shown hy Fig. 4. For day fishing the hook may be secured to the line as described for Fig. 1, but for night lines for eels use a swivel to prevent the line heing twisted off. If hooks with flattened shanks are used, tie a donble knotin a piece of cord similar to that used for the eyed hooks (Fig. 6). Pull the two ends and the knot will assume the form of a figure 8. Put the shank of the hook through both loops of the 8 (Fig. 5) and pull the knot tight, then cut off the ends. In (Fig. 5) and pull the knot tight, then cut of the ends. In as possible, then draw up the line tight, so that the hooks hang clear of the line.
Recipes for Various Pastes.-The following information on making adhesive pastes for office and other use may be relied on. (1) Dissolve a teaspoonful of powdered alum in 1 qt. of water, and stir in enough flour to make a thick even cream. Then stir in a teqspoonful of powdered resin, and pour in a cupful of boiling water. After stirring, pour the whole into a convenient earthenware vessel, and add a few drops of oil of cloves. (2) Steep about $\frac{z}{2} 1 \mathrm{~b}$. of small piecee of gelatine in ahout 11 b . of water till they are soft. Then heat the whole to dissolve the gelatine, and pour into the mixture, while still hot, about 2 lb . of flour paste and 1 pt. of water. Heat this till it boils, and when
6.5 parts of boiling water are now added, with constant stirring. Iu another vessel 30 parts of starch paste are stirred with 20 parts of cold water, so that a thin, milky fluid is obtained without lumps. Into this the boiling glue solution is gradually stirred, and the whole boiled for a short time. After cooling, a few drops of carbolic acid are added as a preservative. This paste may be used for leather, and if preserved in corked bottles will keep good for yearis. (9) A paste possessing good keeping qualities is made by adding 15 grains of corrosive sublimate to l pt. of ordinary flour paste. Of course, corrosive sublimate is a deadly poison, and must be handled with the utmost care. (10) The gum used for envelopes, as also for postage stamps, is dextrine, which can be bought as a powder at the chemist's ; for use, it is dissolved in water. (ll) Billposters' paste may he made by beating $\frac{1}{2}$ quartern of wheat or rye flour with a little cold water. Pour slowly into this 1 gal. of boiling water, stirring the while until it thickens. The paste should be made in a galvanised pail, which should then be placed on the fire for a minute, the paste being coutinually stirred. For use, thin with cold water. A tablespoonful of powdered alum shonld be put in with the flour. For a billpesters paste that could be thinned down as required, mix parve that could gum tragacanth with a little warm water to a powdered gum tragacanth with a little warm water to a will yield a strong gum with 10 gal. of water. To make a concentrated paste for hillposters, mix common starch with a little water in a bowl, and then pour about five or six times its weight of boiling water on it while it is being vigorously stirred; this forme a stiff jelly, which may be readily thinned for use by admixture with war'm water, (12) Paste as used by bookhinders ís mado
thus: Put a teaspoonful of best white starch into a cup, and make into a creamy paste with cold water; then pour boiling water over the starch, stirring quickly. When cold, squeeze through a piece of fine muslin. (13) To make shoemakers' paste, put some rye flour in a pot, pour on boiling water, and well stir. Do not pour on much, as the secret of making good paste is to make it as stiff and firm as possible. There must be no lumps, so, as there is such a little water added, the paste requires a lot of stirring, and even after it is cold and ready for use an occasional stir greatly improves it. Sometimes dextrine is added to Bhoemakers' paste. (13) This is a recipe for a cheap flour paste suitable for laying linoleum and oilcloth. Mix rye flour with a little cold water, then add boiling water, well stirring the paste while the water is being poured. Stir in some glue size while both are hot. The more size added the greater is the strength of the paste. A little alum dissolved in the paste is a preservative. If the paste is too thin, boil it to evaporate some of the water. (15) A waterproof paste for fastening tickets on ironwork and tin can be made by mixing a little rye meal with a solution of glue and water and a little Venice turpentine. If too thick, thin with Venice turpentine. Another paste for this purpose can be made by mixing 1 lb. flour with ib. sugar. Boil carefully to thicken without burning. Add oil of cloves or other preservative. Another, 120 parts of gum arabic and 30 parts of tragacanth gum are separately steeped in water. A solution of 30 parts of tragacanth gum in water is stirred until it forms a viscous emulsion, and a solution of 120 parts of gum arabic in water is added and filtered in a fine cloth; 120 parts of glycerine are incorporated with the liquid, in which 25_{5}^{3} parts of thyme oil have been dissolved. Finally, the liquid is increased to about 2 pt. by adding distilled water. Glue thus made is very adhesive, and to remain in condition should be keptin air-tight bottles.

Keasuring and Charging for Gauged Arch.-Gauged arches are usually measured at per foot superficial as

Measuring Gauged Arch.
"extra on facings only on the cost of the general brlckwork." Measure the whole surface of the face and soffit; for the face the mean length is taken midway between the soffit and the top of the arch. Measure the cutting to facinge, and, if less than 6 in . Wide, at per foot run. Give the name and quality of the bricks, and whether straight, segmental, or semicircular; whether set in cement or putty, and how pointed. The ordinary facings should not be deducted. Centerings also must be charged. The cost will vary according to the price of labour and material in each locality. The example illustrated shows the method of taking out quantities as described above:-

$\begin{gathered} f t . i n \\ 311 \\ 11 \end{gathered}$	ft. in. Super.	
388	43	Gauged cambered arch, in best red rubbers, and setin putty.
	14	Add sofft.
64	${\underset{6}{R}}_{\text {Run. }_{4}}$	$\begin{array}{cc} & \text { ft. in. } \\ \text { 42-in. circtular and Bkew- } \\ \text { back for fair cuttinge } & \left\{\begin{array}{c} \text { Extrados } \\ \text { Skewback } \\ 4 \end{array}\right. \\ \text { So } & 2 \\ \text { docings } & 1 \end{array}$

Laxton's Price Book gives the following. "Gauged arches not extra only, the brickwork and facings being deducted ius the measurements. Of the best washed malm stocks, or red bricks, camber, segment, or semicircular, gauged, rubbed, and set in putty, at per. foot super.: labour only, ls. 7d.; labour and materials,

2s. 10d. With regard to rough-axed arches, measure the face and soffit, and describe as reduced brickwork; "Extra only on facings." "The best way, perhaps, is to number the arches, give length, allowing about 6 in. louger thau opening, width of soffit, and depth, and describe as extra labour cutting and waste to rough arches. Laxton also says: "Extra only on facings. Red or malms, common segmental arch axed soffits, and all labours at per foot super, : labour only, 5d.; lahour and materials, 9 d . To find the value of extra only on facings, take the difference per thousand between the building bricks and the required facings, divide by ten, and the result gives the price in pence and fractional parts per foot super. Thus, stocks 40 s ., and facings 80 s., difference, 40 s . divided by ten, gives 4d. per foot; or, stocks, 40s., and facings 85s., difference 458., gives 4id., and so on.'
Distinguishing Hydraulic Lime Mortar.-So as to ascertain whether lime is hydraulic or not, after the mortar has been mixed, take a small quantity of the mortar, sufficient to make a ball about 2 in . in diameter, and also a pat (on a piece of glass or a plate) about $4 i n$. diameter and $\frac{1}{2}$ in, thick. Let these remain until just set, then place carefully under water. If the lime is hydraulic, they will become harder and be quite firm by the next day, with the exception, possibly, of the outside skin; if not hydraulic, the sample pat and ball will be found to have fallen to pieces.

Heating Two Rooms from One Fireplace.-Below are some suggestions as to a suitable hot-water scheme of heating two rooms from one fireplace. The sketch shows a single line of pipe, which is all that can be shown on a plan drawing. There are, however, two pipes running in the direction shown, one at the ceiling level and the other along the floor skirting. Any ordinary grate can be fixed in the fireplace of the small room, but the fire-box should be of good size both in width and depth, as a large fire does better work than a small one and does it more economically. A suitable boiler should be placed at the

Heating Two Rooms from One Fireplace.
back of the fire. From the top of the boiler carry a l-in. flow-pipe, first up to within a few inches of the ceiliug, ther along as shown in the sketch to where the farthest radiator stands. Drop down to the radiator and then proceed along the skirting and connect np to the second radiator. The fireplace will heat the small room ; while the large room, if there is no fire in it, will need two 25 ft . radiators in the coldest weather. The l-in, circulating pipe must rise from the boiler at least 1 in . in 10 ft ., and it must have an equal fall from the farthest radiator to the boiler. There must be a $\frac{s}{}$-in. expansion pipe at the highest point of the circulation (over the farthest radiator) and a small cold-water feed cistern somewhere above the highest point of the circulation, with a $\frac{1}{2}$-in. feed pipe coming down and joining the return pipe at any point, or it cau enter the boiler low down. There must be an air cock on each radiator.

Paving Material for Stables and Cowhouses.-The floor of a cowhouse or stable should be tormed of hard, impervious material, but should not be so smooth as to be slippery when either in a dry state or wet or coated with cowdung. Blue bricks or tiles having a surface formed of about 3 -in. raised squares, and a groove $\frac{1}{2} \mathrm{in}$. deep and nearly lin. wide, would be the best material for the purpose; this gives a good foothold when covered with cowdung or other similar matters. Granolithic concrete might be made to assume this surface by inserting ribs of wood when laying the concrete and taking them out when it is set. The hardness should be counteracted by covering the floor with a thin layer of straw, peat moss, or other bedding material. The inclination of the floor should be very slight, for physical reasons; lin. in the whole leugth from manger to gutter being ample.

Black Ling Method of Copying Drawings.-The following process will produce black lines on a white gronnd from an ordinary drawing. hoak 150 gr . of gelatine in 5 oz . of water, then place the containing vessel in a saucepan of hot wate: uncil the gelatine is dissolved. Mix together 100 gr . each of ferrous sulphate, ferric chloride, and vartaric acid in $50 z$ ol water. Add this to the warm solution of gelatine, and coat the paper quickly whilst the mixture is still hot by rubbing it orer the suriace. Choose any closegrained paper that is not too absorbent, pin this down flat, aud apply the sensitising solution as evenly as possible with a sponge or a Buckie or Blawchard brush. The paper, when dry, is exposed to sunlight for ten minutes to half an hour, according to the density of the drawing on top of it, the two being kept in close contact in a frame or by laying both on a cloth-covered hoard with a heavy shect of glass above. A faint yellowish image is printed, which is developed with oxalic acid 20 gr ., gallic acid loogr. water 30 oz . It is an advantage to have a test negative at the side, with strips of the paper, which may he withdrawn as printing proceeds and developed as a guide to exposure. Under-exposure is shown by a sort of fog or veil over what should be the clear portions. When development is complete, pass the print through a bath of water rendered acid with oxalic acid or sulponnric acid; theu thoroughly wash in running water. When placing to dry, press the print between blotting-paper. This process, sometimes known as the ink process, was introduced by Porterin about 1860.
How to Make an Opal Printing Frame. - A quarterplate photographic printing frame in which the whole of the picture can be examined at once can be made thus: Substitute for the usual hinged back of a half-plate frame a piece of $\frac{3}{-1}-10$. board as shown in Fig. 1, sinking in it a recess A for the opal about $\frac{3}{8}$ in. deep, or equal to the thickness of the opal to be used. The recess should be a

How to make an Opal Printing Frame.
little longer than the opal to allow room for the springs \mathbf{E} and E , which elip the opal and hold it firmly. Two pegs are fixed at 0 and D to engage with holes in the frame and ensure accurate register. The back is held down by fold-over springs (see Fig. 2). By a method sometimes cmployed to prevent slipping, the back of the opal is touched with a composition of Canada bulsam and wax.
Cements for Celluloid, Xylonite, etc.-The following is a good cement for celluloid. Shellac 1 part, dissolved in 1 part of spirit of camphor and 3 to 4 parto of 90 -percent. alcohol. This should be applied warm, the broken parts being held together securely till the solvent has evaporated. A cement for ehonite is merely a marine glue which can be made as follows. Dissolve pure indiarubber in naphtha by means of heat, then add 2 parts of shellac to 1 part of indiarubber ; continue heating till the whole is melted. Whilst hot, pour the mixture on metal plates to cool. When using, remelt it, and apply hot, at the same time warming the articles to be joined. Squeeze the glue well out when making the joint. A cement that will stick xylonite or ebonite together may be made by dissolving pyroxylin (collodion cotton) in acetone or camphorated spirit to the thickness of cream. To make a cement for joining celluloid, etc., to gold 01 other metal, dissolve five or six pieces of gum mastic, each as big as a large pea, in as much alcohol as mastic, each as big as a large pea, in as much anconol as is required to make them liquid. Sorten about $\frac{1}{3}$ oz. of then dissolve it in strong brandy or rum, making onough strong glue to fill a 2-0z, bottle. A small piece of gum ammoniac or galbanum is next added, and stirred about till dissolved; pounding in a mortar would assist this. Heat is necessary to render the cement fluid. Another recipe is: soak loz of isinglags till it absorbs 3 oz . of water, and add 40 z . of spirit of wine (85 -per-cent. alcohol). Dissolve as much gum mastic as 4 oz . of alcohol wili take up, and add it to the isinglass solution. Powder 2 dr . of gum ammoniac, and mix it with the rest. The whole may be ground up with pestle aud mortar if done
qnickly, so that the alcohol does not evaporate. Keep the cement in closely corked hottles, and heat it when about to use. To cementxylonite, etc., to glass, use either of the following. (1) Dissolve 2 parts of white shellac and 1 part of Venice turpentine in 7 parts of methylated spirit, and pour off the clear liquid. (2) Heat Canada balsam on a stove until it is hard, then dissolve l part allow to dry on, then moisten with a little of the warm solvent employed in making, and press to the glass. Lip glue (that is, a mixture of glue size and sugar) might be used, but it would give way if exposed to damp.
Brazing Steel Articles,-A suitable solder for use in brazing small steel articles muy be made in the proportions of silver 18, brass wire 2, copper 1. Melt in a crucible; when cold, hammer into a thin sheet, or granulate ; while molten by pouring into water. For granullarticles, a solder that will flow at a lower temperature than brass wire should be used. To braze or solder the article, clean the parts to be united and coat with pulverised borax which has been previously heated cut off a narrow strip of the solder, if in the sheet, and place on the parts to be united, then heat until the solder fuses. The solder should be used sparingly.
Working a Circular Moulded Stone Cap.-When working a circular moulded stone cap, work the atone first to the parallel thickness required, and draw on centre lines at right angles to each other, their point of intersection being the centre of the circular cap. These lines should be "boned" through the beds so that they are in the same plane and coincide with each other, dividing also the circumference into four quadrants, to facilitate the working. This being done, scribe in on the top bed (with compasses or trammel) the nose line, which is the extreme size of the stone, as at A and the wall line Bin the accompanying

Working a Circular Moulded Stone Cap.
figure. On the bottom bed scribe in the wall line B^{\prime}, the fillet line c, and any of the other members or fillets projected down. Now work the nosing all round, squaring in from the top bed, and gauge on the two parallel lines the width of the nose. Next, take a chamfered check out roughly as shown on section at A, D, D, F, and clean in the fascia E; this may be squared in from the bottom bed, or a concave template may bs used for guidance, squaring in only four of the points at the centre lines instead of the whole line. Rough the mouldings out, and clean them in, with the assistance of templates and reverses. Lastly, finish the cap by taking off the weathering from the top bed.
Stretching Paper on Drawing Board.-To stretch drawing paper on a board cut the paper $\frac{1}{2}$ in. less than the board all round; then turn it over and sprinkle the back with water, spreading it over the whole sheet and leaving the $\frac{1}{2}$-in. margin dry all round for the glue. Let the free water dry ofr and then turn over the paper, talking care to place it iu position so that it need not be moved, as, the paper being moist, it drags heavily when beiug shifted. Place a full length straightedge on top of the paper, keeping it $\frac{2}{2}$ in. inside the edge of the paper, put a heavy weight on each end of the straightcdge to keep it from shifting, and then turn up the dry edge of the paper all along. Glue it down with thin hot glue and, after pressing the edge to the hoard, wipe off all superfluous glue with a clean cotton cloth wrung out in very hot water. This should be done carefully, as lumps of glue that harden on the edge will throw the tee-square ont of truth. Do the same for all the other sides, stretching the papsr as tightly as possible, and doing the longest sides first. The paper should he allowed to dry while the board is lying flat, as otherwise any free water underneath will drain down to the giue and prevont it setting properly. When the paper dries it will be found to be dead flat and stretched as tight as a drum. Drawing paper that is to be pinned down should be stretched and fixed from alternate corners, drawing us tight as possible.

Drilling Hard Steel Watch Pinions.-When drilling hard steel watch pinious, commence with a hard and sharp drill, and drill a little way only; then, hefore it ceases cutting, withdraw the drill and resharpen it, and so on until the hole is deep enough. On no account keep on drilling for a single revolution after the drill ceasss to cut, but constantly re-sharpen. It is principally the backward and forward motion of a how that causes the bottom of the hole to "glaze" when drilling tempered steel; consequently a watch lathe in which the motion is always in one direction is bettor: While a drill retains its cutting edge the work will not glaze. Having got the workglazed, the surface can be roughed by a piece of brass wire into which fine emery or oilstone dust and oil has been hammered at the tipend. Use the brass wire as a drill for a minute or so, then thoroughly clean out the hole and commence again with a sharp drill.
Bamboo Rocking Cnair,-A working sketch of a base rocking chair with beech lockers and hamboo frame is here given. The rockers are made in two parts from latin. stuff. The two pieces A for the base cau be joined together either with four hirch or hamboo rails, 15 in. logg when finished, and the front should have castors. The top rockers B are 17 in . long, and form the base on which the sides of the chair will be built; $1 \frac{1}{2}-i u$. or ld-in. canes should be used for this work. The two uprights should be fixed to the rocker with hardwood dowels, fitted into holes bored in the rocker at one end and into the hollow tube of the upright at the other end. These dowels must be a perfect fit, as upon them the
wood is dry and perfectly clean, brush over with common malt vineger, to kill any trace of ling or soda berore applying varnish or staining medium. Woodwork that is required still darker in tone shonld be brushed over with one or more coats of bichromate of potash, 2 oz . to each pint of water. In order that the latter may be effective, the work must be perfectly free from oil, varnish, polish, or wax; otherwise a staiued varuish will he necessary to bring all the work to an equal tone or colour.
How to Make a Fishing Reel,-Fig. 1 is a back view, and Fig. 2 a section, of a $4 \frac{1}{2}$ in. reel for a fishing-rod. It would be cherper to make the fittings, as to buy a single set would cost nearly as much as a reel. A pattern may be made of the back piece and handles, from which castings may he made. File the back piece, and drill the screw holgs and the hole for the spindle. This should be made of a piece of $\frac{3}{8}-1 n$. steel rod, turned down to $\frac{5}{i 6}$ in. at the back and $\frac{1}{4}$ in. diameter whare it passes through the reel, the outer end haing fitted with a nut as shown. The spindle should bs riveted and brazed into ths back plate. A brass forrule is bored out to fit on the spindle to form a bearing for the reel, through which it is driven tightly, a little shallac varnish being used to give greater security. For the woodwork, procure some thoroughly dry walnut, cociss, or ebony, and turn it to the sizes shown on the

stability of the chair greatly depends. The two rails for the slde and arm of the chair should be fitted, filled, and, after the uprights have been glued and fixed, scrswed into position with round-headed screws. A piece of bamboo should be bent as at 0 , and fixed with nails as a stay between the arm and back of the chair. The herringbone work between the arm and bottom rail should now be fixed. The pieces for this work, after being fitted, should he filled with dowels so as to strengthen the arms. The two sections when set should he joined together with the six cross rails, which should be 15 in . long when finished. The rails to which the upholstering will be fastened should be filled right through with deal dowels to give a hold for the nails. The hsrringhone work should now be added to. the back, and after ths work should now be added to. the back, and a for fixing to the base with two rocking chair springs.
Cleaning Watch Plates.-In cleaning watch plates, inmerse them in henzine and brush them with a clean and soft watch brush and a very little dry chalk. The appearance when finished depends greatly on the original quality of the gilding and the age of the watch.
Removing Paint from Old Wood.-To remove paint from old wood, apply freshly slaked, hot limewash, to each bucketful of which from 2 lh . to 4 lh . of common washing soda has been added; use a common fibre-not hristle-brush. As ths paint softens, scrape off with a painter's scraping or chisel-shaped putty knife. Repeat as often as necessary, using a thinner solution as the paint is removed. The above pickle will also darken the wood. Swill off with plenty of clean water, and when the swurface of the

How to Make a Fishing Reel.

drawings, accuracy in fitting being essential. The handles may be of ivory or metal, and the spindles turued out of a piece of ${ }_{3}$-in. iron wire, or a couple of No. 10 wood screws may be adapted for the purpose.
Executing Designs on Sheet Copper.-Raised images, etc., are produced by stamping ths copper. The art, of engraving these steel dies is named "diesinking." Raised designs in copper are allo "produced by punches or similar tools. This is named "repousse work. ${ }^{2}$ Raised images can also be produced on sheet copper by drawing the design with a varnish that will resist the action of acid, and then etching the exposed parts in a bath of dilute nitric acid. A similar result may be obtained by electrical action in a bath of dilute sulphuric acid, the plate to be etched being attached to sulphuric acid, the plate to be etched being attached to to the negative pole. The process may be reversed, if desired, by carefully scraping the desiga on a varnished plate and depositing copper on the exposed parts in a bath for electrotyping.
Repairing Worn Stone Steps,-This is a simple method of repairing stons steps which are worn mors or less right across the tread. Take a plan of the staircase, and have new treads sawn, $1_{3}^{\frac{3}{3}} \mathrm{in}$. thick; also fix new risers, $1 \frac{1}{r}$ in. thick, with proper cramps to the old tread, and allow the new tread to project tin., so that the pointing can be neatly finished. The tread will he greatly improved by the additional in the first riser is obviated by always keeping a stout mat in position.

Tools for Dressing Granite, - Fig. 1 represents the punch that is used with the hammer for removing superfluous waste aud for pointing the face to almost any degree of fineness. Its cutting edge is sharpened to a stumpy pyramidical point. Fig. 2 shuws a hammer-headed chisel used with the hammer for dratts, margins, mouldings, etc. The pitching tool shown at Fig. 3 has a bevelled instsad of a cutting edge, and is used with the hammer for pitching and knocking of irregularities or waste lumps on block. Fig. 4 shows a jumper; the tool illustrated is sometimes known as a hand-drili. This is chisel-pointed and slightly round-nosed; it is wider at the cutting edge than the diameter of the tool, so that it clears itsell in cutting ar drilling circular holes, for which it is used. Fig. 5 shows a hand hammer (sometimes termed a mash or maul), which is made of steel and varies in weight, though 5 lb . is a good average. It is chiefly used with the punch for removing wasts and also for chiselling, jumping, etc. The spanl or spall hammer shown in Fig. 6 varies in weight from 12 lb . to 16 lb . it has a square edge of about $1 \frac{1}{4}$ in., and is a very effective tool for knocking off rough lumps. Fig. 7 shows a pick, nbout 14 lb . to 16 lb . in weight, which is chiefly used for diessing the inequalities of the rough or rock face, close to the finished surface, or Por leaving it with a picked face, and also for scabbling blocks roughly to ghape. At Fig. 8 an axe of about 12 lb . or 14 lb . weight is shown. It is
holes are put at an average distance of 4 in. to $4 i^{2} \mathrm{in}$. apart, though they can be spread a little if the stone is thin, say up to about 1 ft . 6 in. thick. The grain, too, makes a difference, as in cutting the tough way the holes Fant to be closer together than for cutting with the grain. The jumper is from 5 ft .6 in to 6 ft . long, and has two bits, one for pitching, say, about $\frac{3}{4}$ in., and the other (called the bottomer) for pitching about $\frac{1}{h}$ in. lese. It is used with both hands.

How to Make Indelible Inks.-Many attempts liave been made to produce an ink which cannot be removed by chemical means, and the most satisfactory ink has been found to be a solution of Chinese (or so-called Indian) ink in acidulated or alkaline water. Hydro. chloric acid is used for the acid solution, and ceustic soda for the alkaline water. With steel pens only the alkaline may be used. Indian ink is a preparation of carbon in a very fine state of division, and is not affected by any chemical. Another indelible ink is made thus: Saturate boiling water with borax, and add as much brown lac gum as it will dissolve, and then add lampblack. This ink dries with a gloss. An indelible aniline ink may bo made by rubbing 60 gr . of aniline black with 60 drops of strong hydrochloric acid and 1 oz . of alcohol. Dilute this blue liquid with 3 oz . of water in which $\frac{3}{2}$ oz of gum has been dissolved. Or mix lamp. black with a solution of 5 parts (by weight) of lac and

chisel-pointed for removing the inequalities left by the pick and for dressing the etone similar to tooled work, showing the marks or indents in parallel lines. Fig. 9 shows a patent axe. The body of this is of irou, with a slot at each end, in which a number of thin plates of steel, chisel-sharpened and of equal length, are inserted and tightly bolted together. This tool produces the finest description of face next to polishing. Fig. 10 shows plug and feathers for coping or splitting granite. The plug is conical and of soft mild steel, and the feathers are thin pieces of iron, slightly hollowed and bent to fit the hole. Holes are jumped in the and bent to fit the hole. Holes are jumped in the
granite about 5 in . or 6 in . deep, the distances apart granite about $5 i n$. or $6 i n$. deep, the distances apart
varying with the tenacity of the material, and ths feathers are then inserted. The plugs are driven in and are afterwards tapped with a heavy hammer till all have got a hold; then harder blows are given in quick succession, and the fracture or bplit made. In the West of England and in the granite districts of America tha pluss used in splitting granite ars about 5 in . long, $\frac{1}{2}$ in. wide, and sin. thick, and, instead of beiug conical, taper wide, and in. inick, and, instead of beiug conical, taper
to about $\frac{1}{3}$ in. (see Fig. li), while the steel foathole are about 4 in. long, semicircular in section (see Fig. 12), and tapered upwards to almost a point, as shown in Fig. 13. The feathers are made of mild steel, and are supplied in long lengths by the steel merchants, the rods being a semicircle of $\frac{1}{2}$ in. diameter. Steel has supersedediron on account of its durability and greater cheapness in the long run. As has been remarked, somstimes a hand drill long called a jumper, but a jumper proper is shown by Fig. 14 ; this is in use in all Cornish quarries on account of the speed with which holes for cleaviug can be mads with it. Thirty holes may be made in halp an hour with this tool, though the average is twenty holes por hour. Three-and-anhali-inch to $4-1 \mathrm{n}$. holes are deep enough to cut even the big blocks of Cornish granite used for the docke. The

1 part of borax in sufficlent water. Impure Indian ink (by analysis) contains much animal glue, therefore if a sinall quantity of bichromate of potash be added to it, after being exposed for one hour to sunlight it should prove indelible. Another, mix together 30 of of pulverised verdigris, 6 oz. of sal-ammoniac, 20 z . of lampblack, and 35 oz . of water. Shake well before using. Hausmann's indelible ink is said to be mads by mixing 1 part of Trinidad asphaltum with 4 parts oil of turpentine and sufficient colouring matter-plumbago for black and vermilion for red. This is said to be the recipe for Verminion for red. indestructible ink : Mix 25 gr. of powdered cobalt with 200 gr . of oiloof lavender ; for blue-black ink colour with 3 gr, of lampblack, and for a red ink with sufficient vermilion. To make Gaffard's indelible ink, mix together 1 part of lampblack, 12 parts of potash water glass of the consistency of syrup, 1 part of aqua ammonia, and 38 parts of distilled water. For indelible markiug ink, taks $\frac{1}{2}$ oz. of any pigment used in making ticket inks and ldr. of salts of steel; mix with linseed oil to inks and 1 dr. of salts or Steel mix with insead ond (not rubber). Indelible ink for glass or matal is made by boiling under cover borax 1 oz , shellace 20 oz , and water 18 oz . (fluid). Colour with lampblack and levigated indigo, and in two hours drain off and bottle. In certain salety papers, which have bsen invented, ths ohject has been to introduce into the paper a chemical which should yield a black compound in contact with the ink. By Bellaude's patented process, calomel, or a salt of iron, copper, or lead is combined with the paper. Calomel is preferable. If combined with the pulp, 25 per cent. by weight of calomel is added; if fixgd to the surface of the paper by gums or gelatines only 4 per cent. of calomel is necessary. The ink used io 1 part of prussiate of potash and l part of hyposulphite of soda in 2; parts of thin gum solution.

Maling Hair Wash.-To make a hair wash to remove scurf, uee tincture of cantharides, 1 dr. ; rum or rectified spirit, 1 pt. ; carbonate of ammonia, 1 dr. ; and carbonate of potash, 1 dr. a small quantity of eau-de cologne may be added if desired. Shake till dissolved. Rub well into the ecalp until a lather is formed; then wash out with water. Liquor ammonia would make the lotion stronger. A little hair-oil or lime cream should be applied to the hair next day, as the lotion removes the natural oil. This wash does not dye the hair. A liquid soap for ehampooing may be made in the following manner. Dissolve 4 oz , of castile soap (cut into shavinge) in 5 pt . of methylated spirit, and add a few drops of essential oil of lemon or bergamot.
Setting Out Mitre Lines.-When setting out a mitre block for mouldings meeting at right angles as shown at A (Fig. 4), it is only necessary to draw a sqnare on the top block as ebown at ABCD (Fig. 1), and then the diagonal AC is the mitre line. When the mouldings meetatan obtuse or acnte angle, as B or C (Fig. 4), the better plan is to set out the mitre on a piece of board, as at Fig. 2. Smooth up a board and shoot the edge, then gauge a line about $\frac{1}{2} \mathrm{in}$. (say) away from the edge and
supports life, is exhansted, and is replaced by carbon dioxide, which, as already seen, is incapable of supporting life or light. Hence the necessity for ventilation, which is defined, in the book mentioned ahove, as "the dilution or removal; by a supply of pure air, of the products of respiration and combustion in ordinary dwellings." The average amount of carbonic acid given off hy adults is 06 cub. ft. per hour, hesides ahout 550 grains of watery vapour. A cubic foot of coal gas yields, on combustion, 0.52 cub . ft. of carbonic acid and $1 \cdot 3$ cub. it. of watery vapour ; while an ordinary gas burner may be reckoned as equal to at least three adults in its effect on the atmosphere. The atimosphere of the home, to be of the standard degree of purity, should not contain more than 0.6 part of carbon dioxide in 1,000 , and In order to maintain this standard it is necessiry to supply at leust 3,000 cub. ft. of fresh air per head lor healthy persons, whilst the sick need at least 4,500 cub. ft. of fresh air per hour. In actůl practice, however, it is found that, in England, the air of a room cannot he changed more than three times an hour without ge changed more than thiee times an hour without, and moving at the rate of more than 3 ft . per second, becomes a perceptible draught; but if the temperature

set out the required angle, as shown at FHG; now bisect this angle as shown, then H is the mitre line. A bevel should now he set to the mitre line, as shown, and then applied to the mitre block. Reference to Fig. 3 will make this quite clear.

Principles of Ventilation.-The following shor't summary of the principles of ventilation is taken from Messrs; Notter and Firth's "Practical Domestic Hygiene." The composition of pure dry air may be taken to be as follows. Nitrogen, 79.02 by volume, 76.84 by weight; oxygen, $20.94 \mathrm{~b} . \nabla ., 2310 \mathrm{~b} . \mathrm{W}$. ; carbon dioxide (carbonic acid), $0.04 \mathrm{~b} .7 ., 0.06 \mathrm{~b} . \mathrm{W}$. There are also present in the atmosphere, which is free from colour, taste, or smell, a certain quantity of watery vapour, with various impurities : and Lord Rayleigh and Prof, Ramsay have recently shown that about 1 per cent. of what was considered to be nitrogen is an elementary gas called argon. The nitrogen in the air is incombustible, and incapable of supporting life, and evidently acts as a diluent of the oxygen, which is necessary to life, combustion, and light. Carbon dioxide, or carbonic ácid, is produced in all processes of combustion, and by the breathing of men and animals, as well as by the procese of putrefaction. The watery vapour in the air prevents undue evaporation from the hody and from plant life. I'he physical properties of the air are weight, expansion and contraction, and diffusion. The pressure of the air at sea-level is equal to $14^{\prime 7} 75 \mathrm{lb}$. per square inch of surface. The pressure on the atruosphere is never constant, but varies with the temperature and with the presence of moisture. The ventilation of ordinary dwellings is rendered necessary by the fact mentioned above-that when air is breathed or used upin combustion, its oxygen, which
be, say, 70° F., the velocity of the air may be greater than ${ }^{\prime}$ 'ft. per second without causing an unplessant sensation of draught. Each adult in a room should have an air space of at least 1,000 cub. ft. ; but in lodg-ing-houses the allowance is only 300 cub. ft. In Board schools the regulation minimum allowance is 100 cub. ft. per head; in factories and workshops, 250 oub . ft. per head in the daytime, and 400 cub . ft. at night; for military barracks, 600 cuh. ft. per head; while in hospitals the allowance ought to be quite 1,500 cub. ft., if not the allowance ought to be quite 1,500 cub. ft., if not The question of floor space is of considerable importance, and it is recommended that the lowest limit of floor space should be not less than one-twelfth of the cubic space. "It cannot be too well understood," say the authors of the above-mentioned excellent manual, "that cubic space is of no value when it is principally ohtained by means of lofty ceilings. The space at the bottom of a well, if crowded, would speedily become unwholesome, although the air space above is unlimited; similarly, people have heen known to die of suffocation in a crowd, thongh in the open air." A room, therefore, need not exceed 14 ft , in height, and 12 ft . is sufficient. Minimum floor areas prescribed are for soldiers in barracks, 50 sq , ft. each: for children in schools, 8 sq . ft . (hut in newer schools the allowance is sometimes extended to 15 sq . ft .) ; patients in hospitals, 100 sq . ft . to 150 sq . ft. and more. From the foregoing facts it is deducible that proper ventilation is a means of renewing the air in an apartment without creating a draught; the inside air being constantiy kept up to the staudard of purity previously etated. An agreeable atmosphere for a loom has a humidity of 60 per cent. and a tem. perature of $60^{\circ} \mathrm{F}$.

Safety Valves of Range Boot-boilers.-The num ber of weights, which really means the weight of metal with which the vaive is loaded, is controlled by the pressure of water in the boiler, and not by the size of the range. The customany method, when fixing dead-weight valves, is to have all the weights on when the boiler is firsc charged, and then to lift them off When the boiler is firsc charged, and then to lift them off diately water runs, put a weight on to stop the leak, and then put on one more weight-it is ususl to put one weight more than is just necessary to prevent the valve leaking. This kind of valve should not be used on an apparatus having plug-cocks, that can be shut suddenly, as the sudden closing causes a shook in the pipes, and this may cause the valve to lift and eject water on and this may cause the valve to lift and eject water on each occasion that the tap is used quickry. A An. valve independent boilers. A boiler having more than $20 \mathrm{sq} . \mathrm{ft}$. of effective heating surface ought to have one l-in. valve or tro $\frac{3}{4}$-in. valves. The six ring weights on a valve are not always sufficient if the house is a high one, with the cistern at the topand the range at the bottom; in this case lead rings or a solid lead weight are used. The presoure in feet should be stated when ordering these valves.
A Workman's Tea and Sugar Case.-Figg. 1 and 2 illustrate a convenient little case in which workmen can carry tea or coffee and sugar to work. It is made of scrap pieces of tin, buch as come from an old corned beef tin. The side piece is tinned round, seamed, and coldered. The division piece, seen in Fig. 3, is next soldered in, and the bottom cut out and fixed. In cutting this, care should be taken to leave sufficient stuff to form the
the surface, excepting those portions to be etched, with a solution of 1 part wax in 4 of turpentine thickened with a líttle finely powdered white-lead The ilabaster is then immersed in water for from 20 to 50 hours, according to the effect desired. The wax is then washed off with turpentine and the etcher parts brushed with plaster-of-Paxis. The real slabaster is etched in a similsr manner, very dilute acetic or hydro chloric acid taking the place of the water. Another means of decorating alabaster is to colour it, but this is adopted as a rule only with the initation material. Pigments that are not decomposed by contact with sulphate or carbonate of lime are added to the gypsum whilst in the wet state. Busts, medsllions etc., are coloured with sienna in powder or ground in etc., are coloured with sienna in powder or ground in water. For architectural purposes, the colour is added imitation materisl. Real alsbaster may be coloured by applying hot liquid dyee or stsins ; the materisl itteelf should be sufficiently hot to cause the liquid to simmer. For blue stain use tincture of litmus or an alkaline solution of indigo ; for brown, use logwood extract; for crimson, use alkanet root dissolved in oil of turpentine; frimson, use ald, use a mixture of equal parts of white vitriol, for gold, use a mixture of equal parts of white vitrion, colution of sap green; for red, use tincture of dragun's blood, alkanet root, or cochineal; and for yellow, a tincture of saffion. The rough alabsster is polished in the following manner. It is first rubbed with pumice powder ol dried shave-grass (equisetum) and water, and

FIG. I

A Workman's Tea and Sugar Case.

lap joint. The lid, Fig. 4, fits tight over a narrow rim soldered round the inside of the top edge. The division is placed beyond the centre to afford a larger space for the eugar than is required for the tea or coffee.
Working in Real and Imitation Alabaster,-Alsbaster is a soft, semi-translucent white sulphate or carbonate of lime; sometimes it has veins of yellow, red, or brown. A common msterial generally known as alabaster is made of gypsum (plaster-of-Paris) by a special process, and is hardened by subjection to a heat of about 300° or ;5\% F., for from 12 to 24 hours. When almost cold it is immersed in pure water or in a weak solution of alum for a few minutes. These operations have often to be repeated. Sometimes the imitation alabaster is suspended in an alum bath until the alum crystallises on the surface. The material is then polished with a wet cloth. The real alabaster is worked in much the same way as is marble. It is easily turned in the lathe, strong chisels of the kind used by carpentels being employed for the straight work, and point tools for roughing out. For tul'uiug hollows the chisels are ground round. The cutting turglug hollows the chiselsare ground round. The cutting alabaster is also easily worked in the lathe with tools such as are used in ivory and brase turning. It is a common practice to construct alabaster ornaments in two or more pieces and then to cement these together. The following cements are recommended for the purpose. (1) Mix the curd, formed by adding $\frac{2}{2} p t$. of vinegar to $\frac{2}{2} \mathrm{pt}$. skimmed milk, with the whites of five eggs. Well beat together and sift in sufficient powdered quicklime to form a paste. (2) Mix together by the aid of heat equal parts of plaster-of-Paris, yellow resin, and beeswax. (3) sift powdered quicklime into thin rice paste. (4) Melt 2 parts of yellow resin and stir in 1 part of plaster-of-Paris. Apply hot to the warmed alabaster. (5) Plaster-of-Paris mixed merely with water is a simple cement. Powdered sulphur may be added to this. A means of decorating imitation alabaster is by etching. This process is executed by covering
afterwsrds with a paste of powdered and sifted slacked lime and water. The final lustre is given by friction with finely powdered talc or French chalk. Another method of polishing is firat to amooth the surface with rifflers, scrapers, or glasspsper, snd then to remove all tool marks with fine sandstone or gritstone, such at robinhood stone, water-of-Ayr stone, or anake stone. Then rub with pumice, either in lump or powder, snd water, following with putty powder and water. Soap and water, following with putty powder snd wster. Soap and Water finish the polishing, or, instesd of thie, calcined cushion. Methods of clesning alabaster and its imitation are the following. (1) Immerse in milk of lime (slaked lime in water) for some time, wash in water, and when di'y dust with a little French chalk. (2) Apply benzol or pure oil of turpentine. (3) Wash with soap and water contsining a little ammonia or soda. (4) Rub with soap and wash in hot water. If stsined, spply fuller's earth, pipeclay, whiting, or quicklime for three or four hours and then wash off. (5) If very dirty, wash with dilute aquafortis or dilute muriatic acid. (6) Mis pumice powder with verjuice and sllow to staud untouched for two hours. Then rub it into the alabaster with a sponge, and wash with fresh water applied with a linen cloth, afterrvards drying with clean limen l'ags.
Maising Hydraulic Cements.-Hydraulic cements, such as Portland cement, are made elther by gimding and huiniug natural cement stones-that is, stone containing carbonste of lime or chalk and silicate of alumina or clay-or by griuding together in the wer state clay or mud and chalk, drying, and burniug. The materials must be exceedingly fine; that is why Thames and Medway muds are preferred to clay. Paving stones as a rule are composed principally of silica, and are too hard to be ground fine enough. The material might however, he mixed with Portland cement and moulded into artificial stone blocks.

Colouring Venetian Blinds.-Pine laths are generally finished with size and varnish, the latter alone imparting a sufficient hue. For a more pronounced tone, yellow ochre or lemon chromo may be mixed tone, Jellow ochre or size; for walnut, add vandyke brown for With the size; for walnat, add
mahogany, add burnt sienna. For lathe that for for been already painted the use of self colours is advised, such as green, blue, or yellow enamels, though, as a rule, special preparations are used, with turpentine or resin varnish as the basis. The varmish green with which venetian blind laths are coated is made of ground mineral green, 2 lb . ; white lead, 5 lb . ; with turps enough to mix. Then add 7lb. of turpentine varnish. Mix the other ingredients before adding the varnish.
Making an Extension Ladder. - The extension ladder illusirated in Figs. 1 to 3 will be found useful for light work. Thwee to four 8 -ft. to $12-\mathrm{ft}^{2}$. lengthe of straight-grained red deal, about 3 in. by 2 in., can be jointed together, the wood being free from knots and oval in section. Oak or ash is suitable for the rounds, old whesl spokes often being used for this purrounds, old whes (Fpokes often being used for this pur-
pose. The iron (Fig.4) should be about $\frac{1}{4}$ in. thick and
glue. The wood or other substance must be heated before applying. (7) Boil 11b. of common glue in 2 qt. of skimmed milk. (8) Indiarubber solution is a good water. proof cement. To make it, cut loz. of pure indiarubbe. into fine threads with a sharplnife, place in a dry, widemouthed bottle, and add 4 oz . to 6 oz . of solvent; cork the bottle loosely and allow to stand in a warm place (away from any flame) until the rubber has entirely dissolved. If the material is too thick for use it may bs diluted by adding a little more of the solvent and allowing to stand until it is absorbed. The solvent may be any of the following: Coal-tar naphtha, chloroform, oil of turpentine, ether, petroleum naphtha, bisulphide of carhon, and benzine. (9) Pour 1 pt. of vinegar intol pt. of milk; clear it of lumps and let it settle, then mix the whole well together. Sift in quicklime and stir to a thick paste. (10) Make glue with linseed oil instead of with water, boiling wellin the ordinery way. (11) Marine glue is quite waterproof and can be recommended. The true marine glue is a combination of shellac and a solution of caoutchouc in benzole. To make it, dissolve 1 part of indiarubber in 12 parts of solvent (see above), and add 20 parts of powdered shellac, heating the

Making an Extension Ladder.

24 in. wide. These irous should be welded, and prepared with screw holes as shown. They are fixed with screws on the sides about three rounds from the top before the sides and rounds are fixed together. So that the ends of the lengths shall fit tightly into the irons, and at the same time be easy to release, they should be tapered a little, as shown at A and B (Fig. 1). To allow for this, the long dimension of the iron should be about tin. less than that of the two sides.
Recipes for Waterproof Cements.-Below are some reliabla recipes for waterproof cements. (1) Rub magnesia with a little concentrated solution of mag. nesium chloride; apply this cement at once. It is soluble in acids, but not appreciably so in water. (2) Dissolve by the aid of heat 1 Oz . of gum sandarach and lozn of gum mastic in 1 pt . of alcohol, and add 1 pt . of turpentine and lqt. of strong vellum glue at boiling point, (3) Canada balsam is a good transparent cement. (4) Melt 4 parts of glue with a small quantity of water and 1 part of Venice turpentine. (5) Soak 6 parts of glue in water, and, when soft, pour off the excess; the softened material is melted by heat, and 1 part of bichromate of potasia, dissolved in the least quantity of water, isadded. Thiscementshould be kept in the dark till required, then melted down by heat and applied. On exposing the cemented parts to light the material becomes insoluble. (f) Make a strong solution of gum arabic, and sir plastor-of-Paris in it, to make a thick paste. Apply with a brush. This takes longer to set than ordinary
mixture cautiously over the fire. Another recipg is: 1 part of caoutchouc or indiarubber is dissolved in 12 parts of benzine or naphtha with the aid of gentle heat. In from ten to fourteen days, when the solution is complete, 2 parts of asphalt are melted in an iron vessel, and the caoutchouc solution ispoured in very slowly, in a fine stream and under continued heating, until the mass has becoms homogeneous and nearly all of the solvent has been driven oft. It is then poured out and cast into greased tin moulds to harden into dark brown or black cakes. This cement requires considerable heat to melt it, and to prevent it from being burned it is best to heat a piece of it in a water-bath until the cake soitens and begins to be liquid. It is then carefully wiped dry and heated over a naked flame, under constant stirring, up to about 300° Fahr. The edges of the article to he mended should, if possible, be heated to at least 212° Fahr., so as to permit the coment to be applied at leisure and with care. The thinner the cement is applied, the better it binds. (12) A good waterproof cement, which is really a marine glue, is made by melting together 1 lb . of guttapercha, 2 oz . of linseed oil, 2 oz . of pitch, 1 oz . of shellac. and 4 oz. of indiarubber. This cement should be used as hot as possible.

Mortar for Pointing.-In making mortar for flat pointing, 1 of lime or cement to 2 of sand may be used. A struck joint with the upper edge pressed in, and done as the work proceeds, is generally more durable than flat pointing.

Proparing Chlorides of Lead. - There arg two chlorides of lead-the dichloride and the perchloride. The first is prepared by precipitating a solution of lead nitrate with hydrochloric acid. Or in place of the lead nitrate, acetate may be nsed, and common ealt solntion iustead of the hydrochloric acid. The precipitats is heavy and crystalline, and, dissolved again in boiling water and cooled, separates again as needls-shaped crystals. To produce the perchloride, dissolve the dioxide in strong, well-cooled hydrochloric acid, whereby a yellow, strong oxidisiug solution is obtained. From this, water and alkalis may be made to throw down the dioxide.
Stove for Heating Six Laundry Irons. - The accompanying sketch shows a stove tbat is euitable for heating six laundry irons by gas. The body is made in one piece of at least No. 16 gauge sheet-iron, the pattern being a rectangle 21 in . by 15 in. Punch a row of holes along each side parallel with the burners, and bend the iron to shape: the angle at the apex should be about 90°. Next cut out the hotitom, allowing for folds as shown, so that it may be riveted in position: also cut out an end that will fit and completely close the back end, making an allowance romnd this pattern for riveting also. In the top of the end pattern cut a hole in which is riveted the end of the
probably under the combined influence of heat, water, and pressure. Granlte is largely ueed for heavy work where great durability is lequired, and for ornamental columne and other parts of structures, heing then usually polished. It is only used as a building stone in nsighbourhoods where it occurs in abundance It is hard and difficult to work, and therefore is expensive. Granite is usually regarded as being a very durable stone; but whilst on account of its hardnees it is undoubtedly good for resisting beavy wear, it does not resist the corroding influences of the atmosphere so powerfully as is often supposed. Felspar especially ths pink potash varisty, ylelds in time to atmospheric influences, breaking down ultimately to a soft, incoherent mass of kaolin or china clay, and it is by no means uncommon to find beds of granite which have been exposed to the air for ages weathered in this manner to a considerable depth. The corrosion that has been ohserved in granite structures is, of conrse, has been ohserved in granite structures is, of conrse, mand a roughening of ths surface, due to the corrosion of the felspar crystals. If iron be present in any form, it may accelerate decay, especially if it be irregularly distributed in the form of marcasite (FeS). This is indicated by the production of Iron stains on the surface of the stone on exposure to the weather. As a general rule the smaller the grain of a granite

Stove for Heating Six Laundry Irone.
ventilating pipe. Next bend up angle pieces of a size convenient for supporting the heel of the iron; rivet pieces in the ends of these, and then rivet the full length to the sides as shown. Bend up two angle pieces and rivet these slong the bottom, as guides for the stand carrying a pair of radial burners. Rivet the ends in the hood and the bottom, aud the stove is complete.
Notes on Granite and other Igneous Rocks. Uuder the name of granite are included many rocks differing largely in appearance, properties, and mode ol origin, bit agreeing in their geueral petrological character. The granites are all distinctly cryatalline, the size of the crystals varying from a few inches in leugth, as in the porphyritic granites of shap, to an leagth, as in the porphyritic granites of shap, to an grained granites. Granite is composed essentially of three minerals-quartz (SiO_{2}), usually white and glassy; felspar (a silicate of alumina and potash, or some other base), often in large crystals; and mica (a complex silicate of alumina and other hases), in Haky crystals, usually of small size; scattered through the mass there are very ofteu crystals of garnet and other there are very orteu crystals of garnet and other rock depends mainly on the colour of the felspar and the mica. When pink felspar is present, the colour is pink; whilst when the felspar is white and the mica black, the granits is grey. The colours vary considerably, according to the proportions in which the various constituents are present. Granite is usually classed ass au igneous rock ; but whilst lit is probable that some of the granitcs have been formed by fusion, there are others which have certainly been produced by the metamorphism of stratitied rocks without fusion,
the more durable it is likely to be, and at the same time the more easily will it bs worked. Syenite closely resembles granite, except that the mica is replaced by hornblende or if both mica and hornblende are present, it is a syenitic granite. The oyenites are often darker in colour than trus granites, and are hard and tough. Igueous rocks other than granite are not used to any large extent, except in local itiss where they ars abundant. The porphylites are compact rocks of igneous origin, consisting of a felspathic baes, in which are crystals of quartz, felspar, and other minerals. They contain from 50 to 80 per cent. of silica, and vary in colour and in chemical and mineralogical compoeition. Porphyrites are mainly used in England for road metal.

Fixing Indian Ink.-There is no method of absolutely fixing indian ink rubbed in water from the stick; alum or liquid ammonia is, however, commonly added for the purpose. Before waterproof ink was invented, it wis customary to strain the sheet of drawing paper with glued edges on to the drawing-board, make the drawing with stick ink, wash It all over rapidly with a wet sponge, aud then let it dry befare colouring. The rapid washing took off the surplus ink without smearing, and did not materially reduces the blackness of the lines. Waterproof or fixed ink is by far the best thing to use for lines, and stick ink for washes and shading.
Testing Clock Pallets-To ascertain whether the pallets of a thirty-hour American clock are correct, place the pallets acalnst the 'scape-wheal teeth, with the point of one pallet against the point of a tooth. The point of the other pallst should then come midway between two teeth. If this is the case and the distance is correct, the depth will be rlght.

Eright Silver Plating. - Silver is deposited in a dull or matt condition, which needs brushing and polishing to bacome bright. For a solution to give bright deposits in special parts, place 3 fluid oz. of carbon bisulphide in a Winchester bottile, and add 3 pt. of old silver-plating solution, and shaks well. Then add enough strong solution of potassium cyanide nearly to flll the bottle, and set it aside in a cool dark place for twenty-four hours. Use 1 fluid oz. of this mixture to each 10 gal . of the ordinady plating solution, and stir well hefore. putting in the urticles. A current at from 2 to 4 volts pressure will be suitable. Too much brightening solution will make the work patehy and brown. Some platers use a plating solution strong in free cyanide to put on the first or striking coat, and finish off in one containing less cyanide. Striking solutions are notalways necessary.

Distingulshing Boiled from Raw Linseed Oil.-In distinguishing boiled linseed oil from raw oil, it must be remembered that the raw oil is usually of a pale yellow colour, a sweet nutty odour, and a mild taste, whilst boiled linseed oil is usually more or less brown, and has a varnish-like or burnt odour, and an acid taste.

Recording the Opening of a Door,-A little appliance devised for recording the opening of doors, etc., is shown in front elevation in the accompanying illustration. The device consists of a small clock-movement (preferably of the twenty-foul hour type), the hour-wheel spindle of which is made to carry a light frame of brass or aluminium to hold a dial-card D. At one side of this dial is a standard B, of fairly stout sbeet-brass, which is secured to the
one would not answer) may bs cut. Each roller fs now divided, one-half of each taken, and the pair dowelled tagether to form a pattern. The turner should leave a taper in each ring to enable the pattern to bs easily drawn from the saud. The half pattern with the parallel rings is lifted straight from the sand; the other half is withdrawn by screwing out of the sand. As this causes the pattern to move andways in the mould, the latter must be mended afterwards, or, better, the plain neck at one end (it thers is one) should be attached loosely so that it may be withdrawn first; the end motion then carries the pattern into the space left. A few rollers only may be built up of turned pieces in the manner described, a neck being arranged with collar at each end for holding the parts together. A cast screw is likely to cause trouble if required to actuate a nut. The rollers could be made of hard wood, but a special tool would be wanted for the screw-cutting lathe. Any jobbing ironfounder would maks the eastings if supplied with the pattern. In turning the pattern, consider the shriuking of the metal during casting, double contraction being allowed for the plain half roller.
Boxing Out Panels of Carts.-For boxing out the pillars and bottom sides to take the panels on vans, carts, etc., a right- and left-hand router, as Fig. 1, and two or tharee of various sizes for boxing or cleaning out, as Fig. 2, are required, as are also a few ordinary firmer chisels and a good mallet. For taking out a corner pillar on one edge only, set the iron in the grooving router (Fig. 1) to nearly the depth required, adjusting the distance on the plllar by the iron fence on the bottom;

Recording the Opening of a Door.
inside of the wooden case, and to which is pivoted a lever L, cut from sheet.brass. Attached to this is a spiral spring s , which draws downward the arm of the lever it is attached to, when a cord fixed to the end of the opposite arm is released. When the door to which the device is applied opens, a, short length of soft blacklead pencil or a crayon inserted in a piece of thin tubing forming a holder on the lever at P describes a line on the dial-card. This indicates the hour of its occurrence, and also, as the dial rotates, the duration of time of such release, since the pencil-point, after moving from the centre, remains stationary at about $\frac{1}{}$ in. from the circumference of the card until the cord is again pulled taut. In fitting it up, the case of the instrument is secured firmly to the wall behind the door. A small hook is screwed in the latter, about 1 in . from the axial line of tha hinges and also on a line with the hole in tbe case through which the cord passes. Then, the door being closed, the cord must be of such a length as to retain the lever in the position shown in the illustration, when hooked on the door. The front of the case may be glazed if preferred. Dial-cards can be made of Bristol board, and the twelve (or twenty-four) hourly divisions shonld be drawn curved as shown, their radii being equal to the distance between the pencil-point and the fulcrum of the lever. Each division may be subdivided to denote halves and quarters, and numbered if necessary. Dimensions are not given, as they must be proportional to the size of the clock used.
Pattern for Cast-iron Roller.-In making, say, a roller about 6 in , in diameter by 50 in . long, threaded With sixteen threads in 9 in . half-way round the roller, its other half having a straight thread, proceed as follows. First make a plain pattern of one-half the coller from which to obtain four castings. Allow for metal to turn off the threads and for facing at the joint. Two half castings being faced and fastened together, the parallel rings may be turned out. The other two halves peing attached to each other, a double thread (a single

Fig. 1

FIG 2
Router Planes for Boxing Out Panels of Carts.
this has a stud welded into it which works through a slot in the handle, being kept in place by a wing nut on the top; run this to the depth set. With the mallet and a chisel, knock out the wood to form the rebate, using the chisel bevel side downwards, when the wood will work out quite easily; take it down to the depth of the groove, set the iron in the boxing router (Fig. 2) to the depth the recess has to be, run it along the pillar, keeping it flat on the face, when it should clean the wood ont square and true. Where a rebate bas to be made in a bottom side to take a panel, two grooves must be made with tbe router, keeping just inside the lives, chopping with the router, keeping just inside the cleas, chopping the gauge lines with a T-plane, trying the panel while the work proceeds to ensure a good fit.

Glass Embossing by the "Brushing-oat" Method. -The brushing-out metbod of embossing glass is executed as follows. First coat the glass with asphaltum (Brunswick black). Now lay on the stencil, which is made of tinfoil. With a soft brush go over the stencil with soft soap; the latter is employed to keep the turpentine which is afterwards used from getting under the edges of the stencil. Now with a soft brush dipped in turpentine rub off the Brunswick black through the stencil; then take off the plate and wash with cold water. The work is now ready for the hydrofluoric acid to bite off.

Setting Beetles.-The following shows how beetles should be set. Place a card upon a board or cork and pin the beetle through the right wing to the cork. The legs are next extended and the card is brought up to form a rest for them; they are then fixed by a little gum. Then put away to dry, and when set release from the card by dipping into warm water; then lightly touch the underside of the feet with gum, and place upon a clean card, beariug name, date, locality, etc. The beetles may also be set by means of card braces or pins, left to dry, and placed in the cabinet with the name, etc., upon a separate card. Further information on the subject is given on $p .226$.

Making a Removable Tlle Hearth.-In the case uuder cousideration it is not necessary to take out the stove before the tile hearth can be laid, and another advantage is that the hearth is easily removed when occasion requires. The tiles should ench not bs less than 3 in. square, but ordinary designs can now be got in 6in. tiles; plain 6-in. tiles coloured teapot brown, buff, percock blue, etc., to harmoniss with the general colour of the room, are, however, recommended in place of the design, Fig. I shows an iron curb or fender that can be bonght of almost any size for any oldinary fireplace. Fig. 2 is a plan of the hearth it is wished to convert, and Fig. 3 shows the curh or fender in position resting ou the foor boards just up to the hearth. Two countersunk holes are first drilled through the top of the curb, as shown at A. A (Fig. 3), and the curb is screwed down to the floor with two long wood screws, with the heads flush with the top of the curb. The feuder or curb is thus easily removable, being secured to the woodwork of flooring by only two screws, These curlos, shown in section by Fig. 4, are about 3 in. high. so that there is plenty of room inside the curb to bed the tiles directly on to the existing hearth and leave a 2 in. projection or curb round. The curbs can be hought
quickly and lightly on the surface of the cement, aud pat them down evenly to a level surface with a piece of wood. If any of them are too low, or do not bed, they can bs easily picked up with the point of a trowel laserted in the joint, and a little cement can be added or taken away as required; the tile can them be rebedded. After the tiles are all bedded, with a rag rub some stiff cement well into the joiuts and then polish the tiles with a dry cloth.
Tuftlng Chair Bacles.-If it is required to button and tuft some upholstered chair backs ths following materials will be necessary. A packet of buttons to match the covers, a ball of twine, a straight needle about 6 in, long, and a regulator. The last is a sharp-curved blade, something like the pointed end of a large packing needle, set in a wooden handle. Mark the positions of the buttons; one dozen will be sufficient for a large chair back. Now insert the point of the regulator through the canvas at the back, and work it freely all round, forming a hollow in the inside of the squab; thread the needle with twing and push it through the back, drawing it out on the front. Take up a button and push the threaded needle through the tag of the button; slip the button on the

from about $4 s$. each unjapanned; they arg mads in a variety of designs, but a plain cur'b with bevelled edges looks very well. It is desirable to buy it unblacked and looks very well. it is desirable to buy it unblacked and The tiles may now be put in their places, as shown in Fig. 5, cutting and fitting those that require it. To cut the tiles, cut through the glaze on the top with a small steel chisel ahout 4 iu . long and 1 in . Wide on the cutting edge, and then tap smartly along this cut on the back of the tile with a small hammer. After a little practics they will be found to break quite easily. The tiles should not flt too tightly, and a space of abont tin. should bs at each joint. If any of the tiles require a piece taken right out of them, it is simpler to cut them straight acyoss and then cont the small pieces off afterwards; the joint will hardly be noticed if no cement gets into it whilst laying. When the tiles have been cut and fitted, take them up and put theminto apail of water, pencilling a number on the back of each so that they may be returued to their correct positions. Before preparing the cement bed to receive the tiles, try the hearth to see it it is level. Make a "ecreed," as it is called, out of auy piece of wood ahont $\frac{1}{2}$ in. thick ; cut out at each end that the cuds rest on the top or the iron curb, and the body just clears the hearth by about 9 in. (see Fig. 4). It will be seen that by working this backwards and forwards, keeping the ends hard down on the fender, it will screed or scrape the cement hed to a lavel surface, and the back part can easily be worked to the same level. Next mix up in a pail some neat Portland cement rather soft, and float over the whole of the hearth, rather sort, and float over the whole of the hearth,
acreding it down to a level surface. Lay all the tilos
twine and pass the needle back through the stuffing, about $\frac{1}{2} \mathrm{in}$. from the other end of the twine, so as to have the two ends of the twine'at the back with the button attached on the front; tie these ends as tight as possible, and thus draw the buttons well in and throw up a tult all round. To prevent the twine cutting the canvess when tying up, put g_{s} tufting washer, made from clippings of leather or stout cloth, between the ends betore the knots are tied. To secure deep tufts, leave the euds of the twine long enough to reach the side of the back frame; a tack is knocked halp-way iu the wood, the ende of the twine are pulled tight aud lapped round the tack, which is then driven home. The buttou should then lie satisfactorily.
Cleaning Badger Skin.-To clean the skin of a badger, place the latter hair upwards upon the table and procure a basin of warm water, soap, sponge, and towel. Now proceed to wash the head, using no more water than necessary; do not allow water to get upon the under side. Then suck up all the water the sponge will take, and Then suck up all the water the sponge will take, and finish the drying with the cloth or towel. If this aning.
Tollet Cream for Chapped Hands.-Several materials, such as white petroleum jelly or benzoated lard, could be used for making a cheay toilet cream for chspped hands. Cocoanut oil, sceuted with a little oll of lavender, is a good cream. The following is a more complicated recips. Melt together bouzoated lard, $1 \frac{1}{3}$ lb.; spermaceti, 20 oz; and white wax, $\frac{1}{2}$ oz. Add rose water 2 oz., and oil of bergamot I $\frac{1}{2}$ dr., and stir thoroughly till cold.

Dyeing Canvas or Cloth a Blue Colour.-By the indigo process of dyeing canvas, a reduced bath is made as followe. Take 10 gal. of water and add 5 oz of finely powdered indigo, $14 \frac{1}{2}$ oz. of dry slaked lime, ond 9녹oz. of copperas; stir the bath and keep it covered, and 91 oz. of copperas; , tir the bath and keep it covered, indigo disappears. Steep the canvas in this for two hours then remove and hang up in the open air to oxidise. I the canvas is not sufficiently blue after exposure, repeat the dyeing process. Pass through a bath of dilute sulphuric acid (1 part acid to 20 parts water), and then wash thoroughly in clean water, without soap.

Fixing Pictures on Canvas.-The following is a method of mounting to produce the appearance of oil paintings. Make a ctout deal frame, and stretch over the front unbleached calico, fastening it with tin-tacks, and taking care that all folds and wrinkles are pulled out. Now turn the picture face downwards on a newspaper, and, having trimmed to the size of the stretcher, damp the back with water. The sponge should be passed over several times until all curl is removed. When the water has soaked in well, coat the back with stroug paste; then drop the stretcher down and rub well with a dry cloth on the back of the canvas. The picture should be well rubbed down at the edges of the stretcher, as a good hold must be secured there. If the edges are inclined to curl, put the stretched work face down on a clean table and place weights on top. Cont the picture with size, allow to dry, and finish with best quality paper varnish.
Mastic Asphalt for Laying Wood-block Floors.The mastic asphalt used for laying wood-block floors is suplied in blocks weighing $\frac{1}{2}$ cwt. each. A concrete foundation for the fioor should be provided, and this should be brought to a true surface with a skin of neat cement. The asphalt is heated in an iron cauldron with gufficient bitumen to bring it to a proper consistency, and the blocks are dipped into the heated mixture one by one as they are laid. Sometimes a mixture of pitch and creosote oil is used instead of mastic. Such work as this is usually done by specially experienced workmen.

Wood-block Floor laid with Mastic Asphalt.
The blocks are often grooved along the sides as shown in the accompanying illustration, and the apphalt entering into this groove keys them together and prevents them from rising.

Putting Facework on Granite.-The usual faces put on in the triade (the fineness of face varying as to the punched, picked, single-qxed, patent-axed, and polished faces. Rockwork is a cheap face, being left in itg natural atate as cloven, and merely pitched to a face line by a chisel, though exception is generally taken to any part of the rustic work being inside the pitched line of face. Some engineers also stipulate that there ghall be only a certain amount of rock left on the face, as on the Tower Bridge over the River Thames and in the extension to the dockyards at Devonport, where the rock is limited to 1 in . beyond the face line. Rockwork faces have also come into vogue a great deal lately for house building, but for this class of work each stone has a margin draft run around the face, generally about $1 \frac{1}{2}$ in. wide. A good example of this kind of face worlk can be seen at Fry's Chocolate Works at Birch, the stonework for which building was worked in West Cornwall. Blocking or ashlar for big engineering jobs, such as piers, harbours, and the big masonry dams now in progress in various parts of England, are also made to a rockwork face. Punched faces are used where the faces are required to be down to a given level for varions purposes, such as pavements, edge kerbs, and channelling for streets, and for stones destined to occupy places where a fine face is not required, as the quoins, heads, and sills at the backs of houses. The inside faces to small piers and harbours are generally punched. Picked faces are employed on dockwork and for coping for piers. Good examples can be seen at all docks of recent construction, notably at Portsmouth and Southampton and at the Devonport extension. The outride faces of lighthouses are also picked faces, with margin drafts. These faces can are also picked faces, with margin draits. These faces can
around, then punched close and tooth-axed. That the tooth-axe is undoubtedly a great labour-saving tool is a fact that is confirmed by its universal use in Cornwall whence practically all dock-work granite comes. In tooth-axivg these faces, care should be taken to cross
 are in one line, the marks would appear to run in lines. Single-axed faces are slightly better than picked faces, a further operation being required, namely, that in Which the single axe (or, as it is called in Cornwall, the chopping axe) is put on after having punched the face and regulated it with the tooth-axe. Singleaxed faces are less expensive than the patent-axed face They are used for eteps and risers, and are sometimes put on the soffits of arch stones for bridges that have patent-axed fronts. The Broomielaw Bridge at Glasgow is an example of patent-axed fronts and single-axed soffits to the arch stones. The bedstones for heavy machinery alco have single-axed faces, which make agood level bearing. Patent-axed faces are the finest that can be put on granite with tools. The first example of patent-axed faces seen in England is believed to have batent-axed races seen in England is beli 1851 . Patentaxed faces vary in fineness according to the number of cuts or blades of steel in the hammers. Thus there are four-cut, six-cut, eight-cut, ten-cut, and sometimes twelvecut hammers. These faces are first drafted around, then punched carefully off to about $\frac{1}{4}$ in. high to the drafts, carefully avoiding all holes; then tooth-axed till about $\frac{\lambda}{6}$ in. high to the drafts, and finally worked right down by the single axe; then, if for a six-cut face, the four-cut is run over it, then the six-cut. The mason should always be sure to single-axe right down, as the patent axe is not intended to take anything off, but simply to mark over the face in a uniform manner. If for a finer face than six-cut, the other hammers are put on in rotation until the required number of cuts is put in. The reason for putting them on in due succession according to the number of cuts is because these hammers are costly both to buy and to sharpen, and that to put an eight-cut hammer on, say, after a four-cat. would probably cause the blades to bow or to splinter up. The Tower Bridge and Putney Bridge afford good examples of patent-axed work, some of the stones having eight-cut work on them, especially on the finer mouldinge to the Tower Bridge. The cost depends on the number of cuts required, as a six-cut requires one more operation than a four-cut, and an eight-cut one more than a six-cut, and so on. The cuts on the faces are put on square to the beds of the stone, and on circular work radial to the centre. The patent axes, generally called bush hammers, are gharpened on the grindstone, the blades being screwed out for that purpose. Polished faces are the most expensive. These have to be worked up to a six-cut face, the cuts being crossed diagonally to make a harder face. Then the stone is put on the machines, which rub it with iron rubbers, fed first with sand and water, then with emery, and finally finished with fiannel and putty powder (oxide of tin). The greatest care should be taken, in working off the faces with the tools, that no dead hard blows are given, as these stun the stone underneath where the blow is given, and, though this cannot be detected at the time, the bruises show after the polishing has been put on.
Making Blue Mottled Soap.-The manufacture of blue mottled soap is a difficult operation. In making soap by the cold-process melt 66 lb , palm kernel oil and 33 lb . cottonseed stearin or tallow by a very gentle heat and bring the mixture to a temperature of $100^{\circ} \mathrm{F}$. , then stir thoroughly, and, while stirring, pour in a caustic soda lye of 65° Twaddell, at about $70^{\circ} \mathrm{F}$. very slowly, taking care that it is well amalgamated. The amount of lye to be used varies from 70 lb . to 90 lb . When the ingredients have been thoroughly crutched together, pour into a frame. Now mix in a challow trough 2 ib . of ultramarine (washing blue) with some oil until it forms a cream. With a wooden frame long enough to reach the bottom of the soap frame, the blue may be disseminated through the soap. Dip the wooden frame into the blue and place it in the soap, moving it from side to side until the soap is sufficiently mottled; the cover up the soap frame and allow to stand for three days, when the soap may be cut up.

Dyeing Green Cloth Black.-The following is a description of how to dye green cloth to a black colour. Two baths are required. For the first, 5 lb . of logwood chips and 1 lb . of sumach are boiled in 2 gal . of water and strained. For the second, 5 oz. of sulphate of irou (copperas) and 3 oz . of sulphate of copper are dissolved in 2 gal. of water. Place the cloth in the first bath and raise gently to boiling point; theu wring the cloth out, place it in the secolld bath, raise to the boil, and boil for about half an hour; again wring out and pass through two or three lots of clean, tepid water; then again wring out, partly dry, and fnally press with a hot iron.

Design for Flower Stand.-Flg. I shows a metal stand complete with the flower pote in position. Fig. 2 is a plan of the top, which should be of hard wood, turned circular in form, with a bead round the lower edge, as shown in section (Fig. 4). The top may be left plaiu, and polished or varnished, or ornamented by a strip of thin brass, having a vandyked edge, serewed round the upper portion (Fig. 1). Each tube should be the same length, a piece of waad being cut to the size of the tube and driven into it. An iron or brass plate, as shown in Fig. 5, should be screwed to this end of the tuhe, but before screwing on the plates a slot must be filed to allow the bracket straps (see Fig. 3) to pass through. These straps should be of strip brass $\frac{1}{2}$ in. by to thick, curled at one end, and then sorewed to the underside of the top, as shown in Fig. 3. The bottom of the pillar is a brass casting (see Fig. 1), into which the tube may be screwed at the top; on the underside ls an iron sorew pin, having a square centre, sorewed at the one end to fit the casting, and on the other to take a kuob. The scroll feet should be of strip hrass lin. wids by $\frac{1}{1} \mathrm{in}$, thick, fastened in the centre by an ornamental knob and ball nut. Each of these feet should have a square hole, through which the iron pin

Design for a Flower Stand.
at the bottom of the pillar will pass and be fastened with a knob. This makes the frame rigid (see Fig. 1). The middle shelf should be of wood, with the brass strip ornamentation as befors described. Fig. 7 shows the method of fixing this shelf, whilst Fig. 6 shows a repoussé brass clip fastening it and the outside scrolls to the pillars. The outside scrolls at the foot should be of brass strip $\frac{1}{4}$ in. by i^{i} in., fastened to the tube pillars and the sccoll feet with round-headed screws. The thres upper scrolls are for ornamental effect, but they also have a little tongue screwed to the top of the upper table to hold the scrolls carrying the outer hanging pots. The brasswork should be polished and lacquered. The scrolls may be bent in a vice, using a pair of roundsorod pliers for the bends and square-nosed pliers for the corners. A piece of hard wood, about $1 \frac{1}{4}$ in. thick and rounded at the top, would be useful when making the scroll portions.

Hints on Oilstones.-The oilstones in most general use are four in number-the Turkey, Washita, Charnley Forest, and Arkansas. The Turkey stone is known as white, giey, or black, but generally its colour is a mixture of brown aud blue shades. It is a closegrained stone, and, though not used for very fine edges, it cuts quickly and is suitable for ordinary use. It wears away rather irregularly. The Washita (Ouachita) stone is yellowish-grey in colour, and theugh it wears away quickly it does so much more regularly than Turkcy stone. The Charnley Forest stone
is of a greenish-slate colour whth sometimes small brown or red spots. The lighter the colour of the stone the more serviceahle it will be. Arkansas oilstone is a compact white stove resembling Washita stone, but it has a finer grain. It wears well and cuts slowly, being largely used for finishing the edger of slowly, being largely used for finishing the edgen of into the box made to receive it, not with white lead, but with a mixture of hat glue and dry red lead. White lead is taken up by the oil used with the stone and tends to harden its surface. When an oilstone has been in use for some time its surface is apt to become hard, especially if certain oils are used with it. The reason is that the pores of the stove are closed by the viscid or gummy oil, which contains particles of steel rubbed off in sharpenWhich contains particles of steel rubbed of in sharpening when the stone isin this condition it is uot touched itself; therefore the stone fails to sharpen the tool. a mixture of oil and turpentine is often applied to hard stones to cause them to cut better; for this pnrpoae, also, they are sometimes boiled in soda water. Hard oilstones may be made to give rough edges to tools by sprinkling a very little flour emery on them after the oil has been applied. Neat'sfoct oil is the very hest for oilstone use, allothere hardening the surface much more quickly. Soap has been recommended for the purpose. The stone is wetted and rubbed with soap and more water is applied until a lather forms. This is allowed to dry, and when the stone is required for use it is merely necessary to wet it slightly. Oils in common use for stones are sperm, olive, aud sweet ail; these are often mixed with heavy petroleum. It is sometimes required to cut an oilstone into pieces, and this may be done by rubbing across it the edge of a sheet of sorft iron or mild steel, using sand and water as required. Or, instead, a piece of hoop iron (such as that used on casks) may be used with emery either wet or dry as the cutting agent. Another method is to insert a piece of an old small-toothed hand-saw into a wooden black and to rub the stone on this. The teeth are, of course, set uppermost.

Details on Working Marble-British marbles are quarried in blocks and roughly scabbled to shape on the ground; they are then taken to the sawmills and sawn to the required sizes, either as slabs or scantlings. The saws generally used are long thin blades or strips of iron about 4 in. wide and in in. thick; these are fastened lightly in a frame by means of wedges and acrews. The frame is then drawn backwards and forwards, either by manual lahour or by steam power, the cut being fed with sharpflint sand. After the marble is taken from the saw it is worked to the required form by means of chisels and points of various sizes, either with the hammer or mallet. Saw kerfs and chisel marks are removed, and a smooth surface produced, by rubbing the surince of the stone with iron ol other hard rubhers, and sharp sand and water. The rubbers ars shaped to fit the several profiles and faces. The polishing is effected by rubbing with grit stanes of varying degrees of fineness, finishing with a pad of felt sprinkled with putty powder (oxide of tín). Several machines are employed for working marble, the principal one being similar to that of au iron-planing machine; marble is similar to that of autiron-planing machine; marble is ally. All steel taols used in working marble are tempered to a deep straw colour at the cuttiug edge.
Maling Night Lights.-Night lights are usually made of cerasin, or of a mixture of cerasin or paraffin with stearic acid, the latter heing in the proportion of from 5 to 10 per cent. These lights are moulded, the wick being placed in the mould, or arterwards put in attached to a piece of tiuplate. The lights are then placed in small cardboard cases; they are used in a saucer of water. The moulds may be cast in metal; for small quantities they may be made liks bullet moulds, to open into two parts ; "out for large quantities they may be in the form of shallow troughs with circular depressions and plungers to fores the lights out after they are cold. Probably the latter method nould be preferable.
Preparlng Litmus and Turmeric Papers.-To prepare ordinary litmus paper, powder 1 oz . of litmus and boil it with 4 oz. of water, filter, and wash the residue with a little hot water, adding this to the filtrate. If blue litmus paper is required, cut blotting-paper into strips, dip them in the solution, and hang up to dry. If red litmus paper is required, add one or two drops of nitric acid (just sufficient to change the colour ot the solution to red and no more) and dip unsized paper in this. For careful work the litmus must be purifled before using. To make turmeric paper, treat loz, of powdered turmeric with 4 oz , of warm methylated spirit. Allow this to stand for a few hours, when it should be filtered; blatting-paper should then be dipped in the eolution and allowed to dry.

Bronzing Zino.To make zinc resemble brass, mix 1 pt . of best oak varnish with $\frac{2}{2} \mathrm{pt}$. of turpentine; well stir, and then add gradually 1 lb. of best gold bronze. When these materials are thoroughly mixed, apply with a brush in the usual way.
Making Walking Stiolss from Rhinoceros Hide.To maks walking sticks from rhinoceros strips, they must first be straightened by damping and suspending from a nail with a weight at the lower end. When thoroughly dry they shonld be trimmed by knife, rasp, file, emery, etc, and made as smooth as possible. Now French polish them without any "stopping," thus allowlng the polish to penetrate. When a good surface has been obtaingd and a ferrule put on, the work is complete. This produces a semi-trausparent appearance, tinted by the polish, and broken abruptly by large dark, or even black, patches. The nsual preservatives replace the semi-transparent appearance by a whitish opaque appearance, similar to wood. The elastlcity will also suffer in the latter case.
Potash Lye for Soapmaking.-The amount of water requirgd in making a potash lye for soapmaking depends upna the process; in the cold process very strong lyes of about 70° Twaddell are used (that is, containing 35 per cent. potasb) ; therefore about $21 b$. of water would be required for it; but for the boiling process weaker lyes of about 14° up to 35° T. (that is, containing 9 to 20 per cent. potash) are employed; for the lattor, roughly 41 b to 91 l . of water would be required. Caustic potash behaves like caustic soda in soapmaking when only a small quantity is added, the bulk of the alkali being soda; but if the potash is in excess, then the result will be a soft soap.

Softening Leather Machine Belt. - A new belt may be softened by sponging it with warm water, then well rubbing it with dubbin. On the Eide next the pulleys give it a little castor oil now and agrain, and cleanse occasionally as above.
Sharpening a Boot Cllcker's Knife.-The point of a clicker's knife wears away, and many workers sharpen this part only: therefore the knife gets stumpy. Sharpen the knife for á length of about 3 in., bearing most on the part near the handle. To commence, hold the emery strop on the board with the handle just raised so that the tip of the knife gets done the least. Hold the knife so that the back is worn away rather mors than the edge. Have a piecs of upper leather between the emery and the wood. The better plan is to have two sides of leather, and always to keep one to have with old emery; thus the knife can be given a few rubs on the new stuff, and finally on leather only.
How to Make Black Barness Oil.-This is a recipe for a black harness oil. Melt 3lb. of pure tallow without letting it boil, and pour in gradually 1 lb . of neat'sfoot oil. Stlr continually till cold, so that it will bs thoroughly amalgnmated, or else the tallow will harden in lumps. Then colour by adding bone black.
Cutting Moulds for Stone.-In cutting moulds for stone from a full-size drapring, the latter or a tracing is placed over a sheet of thin zinc (No. 9 is a useful gauge), and the profile pricked through with a finepointed steel scriber. The ginc is then cut to shape with a pair of tinman's shears, or cut with a emall hammer aud chisel on an iron plate, as near to the line as possible, and afterwards carefully filed to the required form. A long coruered chisel with a V cutting end will cut the straight edses of the mould better than the shears; by drawing the tool over the sams line a fow times, and bending the zinc backwards and forwards, it readily breaks off, and a few touches of the file are all that is necessary to give it a true edge.
Particulars of Red Sandal-wood,-Red sandalwood is frequently confounded with red sanders-wooda much better-known and commoner material. Red saodal-wood is brought to EngIand from somewhere on or near the Malay Iblands. The wood is sometimes called coral wood.

Embrocation for Sprains, ete.-This is a recipe for an embrocation for sprains and bruises. Dis6olve camphor 22 gr, in methylated spirit 6 dr., and thoroughly mix with dilute acetic acid 2 Z oz., one-fourth vart of the yolk of an egg, and 6oz. of turpentine.
Black Drawling Ink.-The best black ink to use for drawings is China ink rubbed down by working with a circular motion and light pressure on the slab. Heating the slab or lsaning heavily upon the stick makes the ink muddy and prevents it running freely. For ink that is to bs used for all papers-drawing paper, Bristol board, or tracing paper-nothing should be added; but for cloth
tracings a little oxgall or soap should be added, as it helps in causing the ink to How. Also, sprinkle the tracing cloth with dry chalk and rub it well in afterwards, dusting it off to get as much of the oil out of the cloth as possible. "Artists' Black" is a liquid ink said to be specially suitable for drawings intended for process roproduction. It can be used equally well for flnished drawings on cloth or other tracings; it has a dull black finish, whereas the China ink has a glossy black appearance.

Design for Oxford Picture Frame,-Fig. I illustrates a design for the corners of Oxford picture frames. The lozenges are level and form the top surfacc, the interior being carved $\frac{1}{8}$ in. deep and scored. A section of the lozenge is seen in Fig. 2, and a section of the chamfer part of the moulding in Fig. 3. For frames of large size, the

Fig. 4

Design for Oxford Picture Frame.

length midway of the sides is relieved with an in. termediate ornament, shown by Fig. 4. The moulding illustrated is $\frac{7}{8}$ in., so that for larger or smaller sizes the lozenges should be correspondiugly reduced or enlarged. The frame is finished in the natural wood, being polished or varnished.
Plumbers' Astragal, Slip, and Expansion Joints.An astragal joint consists of a soldered, joint with ornamental monldings, or astragals, round the pipe. A slip joint is simply oue end of a pipe slipped into the end of another, which is enlarged to receive it. This is similar to that of an ordinary iron rain-water pipe. Expansion joints are of many kinds. An ordinary one is similar to a slip joint, but an indiarubber or asbestos ring is used instead of any packing or jointing material which would becoms bard. An astragal joint is generally used on outside lead soil pipes. Slip and expansion joints are used for waste pipes, but chiefiy for those through which hot water passes.

Flat Grounds for Plate Glass.-One of the best backings for plain or bleaded grounds on glass is mads by grinding the colour in nut oil; bind with sugar of lead; thin with benzoline. This will stand the heat or frost without cracking. A good background for fascias well protected is made by grinding the colour in milk; this is applied as distemper, stippled; a very pure colour is produced by this method.

How to Make a Saw-sharpening Machine.-The saw-sharpening machine shown in the accompanying illustrations may be made as follows. Cut from a piece of good hardwood the main standard A (Fig. 1), 12 in . square at the base and 9 in . or 10 in . square at the top. Two pieces B are fastened to it with bolte, one on each side, being also secared to sleepers fixed in the ground or to the floor-beams, as the case may be. Two pieces O (Fig. 1), 3in. or 4 in . by $1 \frac{1}{2}$ in., with the grain following the curve as nearly as possible, should be cut from a piece of oak and similarly fixed with bolts to the main standard. At the upper end of each piece there is a bearing D to carry a small shaft which is shown separately at Fig. 2; this shaft has fast and loose
dotted line in Fig. 3, as shown in Fig. I. It is then secured in place. A belt leads from an overhead or intermediate shaft to the pulleys. There are set-offs on the ring at M (Fig. 4), with holes in them to receive the small pins or bolts N (Fig. 1); this ring forms the appliance for canting the swing-carriage N^{\prime} (Fig. 1) to any desired angle in order to give lead to the saw teeth when they are being gulleted. The swing-carriage is made of iron, and, with the exception of the centres o (Figs. 1 and 5), handles P, and the bolts N (Fig, 1), is in one piece; there are bosses to receive the centres, which ars held in place by means of small studs as shown. Between these centres the spindle that carries the emery wheel runs. The handles P P are used for bringing the

pulleys, and a grooved pulley for the hand which drives the emery wheel. Cut ont a piece of plate-iron to the shape shown at Fig. 3, hore holes in it at EE, and tap them to receive the studs, which are referred to later on. FF indicate the studs that pase through the slots G in Fig. 4. At H (Fig. 3) six holes are bored to receive the stont screws that secure the plate to the oak bearingpieces (see J, Fig. 1). A narrow ring is riveted on the plate at K (${ }^{\prime}$ ig. 3) ; it should be small enough outside to allow the ring ehown at Fig, 4 (see also L, Fig. 1) to pass over it easily, as the latter has to he revolved partially on it. The large centre hole is to allow a gut or rope band to lead to the emery-wheel washers for driving the wheel. After the plate J(Fig. 1) has been shaped, bored etc., it is heated and bent to a right angle along the
two small studs passed throngh the holes in Fig. 8, and gerewed into the top holes E (Fig. 3). A dust-guard may be made from a piece of sheet-iron, and secured by means of a stud to the front of the swing-carriage N^{\prime} (Fig. 1). The mauchine should be given two or three coats of good paint.

How to Make Celluloid Varnish.-To make a soBow to Make cornish the material to use is not colluloid, but trinitrocellulose, sold under the name of collodion cotton. This is solnble in amyl acetate. Acetone is also a solvent for collodion cotton, and may be used in place of amyl acetate.

Making Mechanical Dental Plates.-This is an outline of the processes and methods adopted in making a plate in mechanical dentistry. From an impression in composition malke the plaster model not less than 3 ju. deep from the edge of the teeth to the base. When dr'y, immerse it in melted stearine for filteen or twenty minutes, then allow it to stand and dry. Press over the model some thin sheet lead, sufficient to cover the palate; take it off, cut away the edges, and try it on the model. Now flatten the lead duplicate, lay it on the metal plate, carefully mark the latter with a pencil gind cut it out with shears. Mix some casting sand, as sold at depots, with just sufficient water to bind it; if too at depots, with just sumcient water to bind it if the zinc will spurt when being poured. Having damp, the zine will spurt when being poured. Having on the work-bench, base down wards; place the iron casting ring, which should be 4 in . deep and 6 in. across, on the bench encircling the model, and shape the sand well round the sides of model, pressing it down with the thumb until the ring is full. Give the ring a few bharp taps on the side with a small mallet and the model will fall out; turn it over and place carefully on the bench, and the monld is ready. Melt some zinc in an iron ladle, taking great care not to make it too hot or it will burn and become useless, and when melted pour very carefully down the sides of the mould until full. When set, knock it ont, and a facsimile of the plaster model will be found. Presuming the piece of plate is ready, anneal it over a spirit-lamp, and, when cold, bend it up with a pair of half-round smooth pliers, so that it will lie on the model. Now melt lead in a ladle sufficiently deep to allow the insertion of the zinc model, which should be well oiled all over. Place it in the molten lead and allow to cool down, wheu it may be knocked out of the ladle, a few sharp blows with a hammer separating the zine model and lead. The counterpart is now complete. Commence striking up by placing the metal plate betweeu them, taking great care that it is in the correct position. Place them together on a pad on the bench, and give a few them togethel on a pad on the bench, and give a few weight. Take out the plate and remove all signs of lead, and anneal it, as it becomes hard and liable to crack. Place it between the part and counterpart and strike mp ggain, until the plate fits the plaster model correctly. the tooth or teeth, it is supposed, have been ground to fit the gum. Take a small piece of plate sutficient to cover the back of the tooth, and cut two holes in it to admit platinum pins. Having done this, ent off the pins, platinum pins. Having done this, clut of the pins, tooth. Now tile off the edges of the backing, so that none is visible, taking care that the backing is long enough to rest on the plate when the tooth and plate are in position on the model. If bands or clasps are to be attached they should be made to fit the teeth they are to embrace quite accurately, bending up with smooth pliers, supposing the plate is $16 \cdot \mathrm{car}$ at gold, the bands or clasps should be of another quality-a gold which contains a certain amount of platinum, which makes it very tough. The plate being ready and made to fit quite clone to the necks of standing teeth, so as to prevent any food getting between plate and palate, place the plate on the model, the tooth in position, and the bands or clasps, taking care that these just rest on the plate; retain them in position by applying a little warm beeswax and resin mixed, and the case will be ready for soldering. Mix a little plaster-of-Paris with a little pumice-powder and water till rather stiff, and spread it on the soldering-aoal. Take the plate, with attachments, off the model very carefully, and embed them in the plaster and pumice, bringing it well round the tooth and clasps, so that they remain stationary; then allow to set. Having done this, pour boiling water over the whole until every particle of wax is removed, and allow to stand and dry, say, for one hour. Place the coldering-coal in a warm place, allowing the whole to warm through; grind lump borax on a slab with water, then with a camel-hair pencil paint the parts to be united-tooth, clasps, and pius at back of tooth; cut emall pieces of gold solder and place them along the the flame is . The soldering requires much care, as if the flame is directed too suddenly the teeth will crack and be quite spoilt. First direct the flame all round the bedding of pumice and plaster, gradually bringing it to the case until this reachee a dull red heat; the solder will then begin to flow. Great care is required to exclude any draught or cold air coming in contact with the case, or
the teeth will crack instantly. Allow to cool very gradually, remove the beddiug from the coal and place in water, when it will break np; wash the case and theu with small half-round files and scrapers remove any projections of solder; remove all file-marks with water-of-Ayr stone and water. Heat one tablespoonful of nitric acid with two tablespooniuls of water in a poreelain pan over a spirit lamp, place the case in it, and it will assume its natural colour. With the circular brush of the lathe, polish first with very fine pumice and water. finally with crocus and oil. Then wash thoronghly, and the case is ready for the patient's mouth. Of course, skill in the art of mechanical dentistry plate work comes only with experience.

Straightening Ivory Walking-stick,-To straighten a bent ivory walking-stick, procure a length of dry deal a bent ivory wadking-stick, procure a length of dry deal or pine stiaight groove with a round-nose plane the size of the diameter of the stick; secure the stick with narrow lead staples in the groove, and stand in the sun. Turn the stick in its bed daily until it is straightened,

Preparation of Collotype Plates.-The process of collotype is based upon the peculiar property of gelacollotype is based upon the peculiar property of geladried at a high temperature, of absorbing water and refusing greasy ink in some places, whilst in others it refuses water but will take the greasy ink. The latter are those parts that have been exposed to light, the former unexposed, and there are degrees between the two. First, a reversed negative is required; this should be thin and soft, such as is suitable for bromide priuting. Plate-glass several times larger than the desired picture is finely ground with emery powder aud coaied with a substratum of albumen and water glass; the plate has to be re-ground each time it is used. Place in a 20 oz. bottle some bits of broken class and add 4 oz . albumen (the white of fresh eggs) ; 2 oz. water glass solution (commercial) ; and 50 z . water. Shake this violently to a froth, allow to subside and filter through ilter-paper. The ground-glass should be well rinsed to remove every particle of emery powder. Grease must be avoided, as this leads to the film tearing from its support, the greatest trouble in collotype. 'Ihe plate is then coated with the substratum as in varnish ing a negative, except that no heat is necessary, and it is dried guarded from dust. The plate is then again rinsed and dried, and is ready for coating with the sensitive film. Hard gelatine leads to the production of flat prints, and the soft gelatine breaks up after few im pressions. Burton advises the use of equal parts of No. pressions. 2 (Nelson's) gelatine, and gives the following formula: No. 1 gelatine 1 oz , No, 2 ditto 1 oz, bichromate of potassium $100 \mathrm{gr}^{\circ}$, alcohol 1 oz., chrome alum 2 gr, and water 20 oz . The potassium bichromate is dissolved in 2 oz. water, and then ammonia is added till the solution smells. The gelatine is allowed to soften and is then dissolved by heat; the two are mixed and then the chrome alum is added in the form of 40 m . of a 5 per cent. solution. The alcohol is merely added to make the colution flow better, and should be added immediately before use. Finally filter through swansdown calico. The plate is next heated as hot as the hand can bear and held with a holder in the left hand, whilst a pool is poured in the centre. The excess is ponred off, and, after a slight rocking to ensure an even film, the plate is placed in the drying oven, the thermometer on the ontside of the door of which should indicate a temperature of about $120^{\circ} \mathrm{F}$. Drying should take about three hours, not more. When dry, the plate is ready for printing from the negative. The two films are placed face to face in a stout pressure frame and exposed to a bright light. The negative must have a safe edge fitted as in carbon printing. Printing is judged by an actinometer, the simplest form of which is a piece of albumen paper exposed behind a thin quarter-plate negative. When printed sufficiently, the plate is laid face down on a sheet of black velvet and the back exposed for a short time to form an insoluble coating near the glass, and to prevent tearing. Development merely consists in wash ing the plate entirely free from the hichromate, when the lights will be found to have swollen considerably. When drying the plates care must be taken not to open the door or drying marks may be caused. All the operations up to the coating with the bichromate solution may take place in ordinary light, and even after coating the plates are comparatively insensitive until dry. More care mnst, however, be takeu to protect them from light than would be necessary for ordinary P.O.P. or albumen paper.

Removing Grain Marks from Ivory.-To remove black grain marks from ivory, scrape the latter, being careful to keep to the original contour, A plan adopterd with valuable pieces is to engrave a design on the sus face, and to fill with sealing-wax dissolved in spirit Leaive this to set, then polish off, thus hiding the objectionable marks.

How to Make Fly-papers.-In making fly-pr parg, melt I oz. of powdered resin with 3 fl . dr, of colza oil (which need not be very pure) in a small pot get on the bar of the kitchen fire. When thoroughly melted, stir well, and apply while hot with a small varnish or paste brush to old nawsparer leaves.

Notea on Gesso Ornamentation.-Gesso work, to a small extent, has been employed in the decorative arts for a very long time; hut it is only of late years that gesso has been recognised as a material with which effects can be obtained by simple and easily acquired methods. The possibilities of gesso for decoration ure almost limitless; the material enters into the compositiou of panels for furniture, it forms the most effective friezes, etc., and can be employed on caskets, hrackets, picture frames, and the score of fancy articles which nearly every home contains. Gesso is a kind of plaster decoration, presenting a raised and indented surface, which may afterwards he coloured. It differs from stucco, to which it is akin, in not carrylog within itself a hardening principle that is awakened by mere slaking with water. Stucco hardens like plaster-of-Paris; gesso contains glue, oil, etc., for binding the chalk which is its chief ingredient. 'Gesso can be applied with a brush; atucco can he pution better with modelling tools. Gesso is for lower relief and finer work than stucco. The body stuff of gesso must be whiting, chalk, killed plaster-of-Paris, or something similar; hone-stone and pumice have been used. Glue, linseed oil, pitch, resin, and turpentine are employed to bind the stuft together. Very little oil is required, less resin, and still less pitch; all three may be left out. This is a reliable recipe for gesso: Mix 10 oz of glue in 21 pt of water, 8 oz . of white resin in 1 pt. of linseed oil, and 2 oz of pitch in $\frac{1}{2}$ gill of Venice turpentine, Mix together by the aid of heat 6 parts of the glne-water, 1 part of the resin oil, and ${ }^{1}$ part of the pitch solntion. "Gilders'" whiting that has already heen crushed to a powder, or Goaked and converted into a paste, must then be stirred into the hot solution; with the paste, less water will be wanted in the glue solntion. When of the right consistency for application With a briush, this is called "thick whits"; gilders" "stopping" is ths 6 "me stuff brought to the consistency of dough, and the "compo," used for making the ornament round a frame for subsequent gilding, is gesso. Resin varnish and some kinds of driers may be used with glue and whiting to make gesso. Water and linseed oil when shaken up together form a mixture, and if to this some Whiting is added, gesso is left as the water dries out. This, having the consistency of cream, is applied to the sized or lacquered wood hy means of a hrush. The decoration may be brought into higher relief by applying two or more coats, and, whilst still soft, the composition may be modelled with the brush. If left fiat, a good ground for painting upon is formed. Some idea of the appearance of a piece of gesso work when completed can bs gained by imagining a plaster cast of some figure decorated with silver and gold, and tinted with metallic colonrs. The effect of well-executed work is rich and harmonious. It is quite possible, of course, that instead of being harmonious it may be garish and vulgar ; the worker alon is to blame if a pleasing effect is not secured.

The Preparation of Lampblack.-In producing the various grades of lampblack, soot oil, which is the last oil obtained in tha distillation of coal tar freed from naphthaline as far as possible, is hurned in a special furnace. In this iurnace is an iron plate, which must always he kept glowing, and upon this plate the soot oil trickles from a vessel fixed above. It is decomposed, and the smoke (soot) rises into four chambers through small apertures. When the quantity of oil destined for decomposition has been used np, the furnace is allowed to stand nndisturbed for a few days, and only aiter this time has elnpsed are the chamherg opened. In the fourth chamher is the very finest lamphlack for lithographers' use; in the third is tine five grade employed in making printers ink; while the thist and second contain the coarser soot, which, well sifted, is sold as flame lampblack. From grade No. I the calcined lampplack for papermaker's is produced. For preparing this lampblack, iron capsules with closing lids are packed tightly with the coarse lampblack, and the cover is smeared with fine loam. The capsules are next placed in a stove and semi-calcined, this causing the olls to evaporate and the remaiving lampblack to become odourless. The capsules are rllowed to cool for a few days before being opened, us the soot dries rery slowly, and easily ignites in contact With air if the capsules are opeusd too goon. For the purpose of preparing completely calcined lamp. black, the semi-calcined substance is packed into fresh capsules, these heing closed up well. After a calcination lasting two days, the capsules are opened, and the lampblack, which is found to be in compact pieces, removed.

For the roanufacture of goot black another furnace is employed. Asphalt or pitch is thrown in through the doors, air being excluded as far as practicable, and the amoke escapes through the chimney to the soot chambers $1,2,3,4$, and 5 , and in these chambers the soot assorts itgelf. The asphalt or pitch is burned up completely, and the furnace is then lelt unopened for seyeral days; then the outside doors are slowly opened and alr is admitted. Later on the doors can bs opened altogsther, if the soot black is quite cool. Chamber 4 contains the fnest soot hlack, and this ls used in the manufacture of leather-cloth and ollcloth. In the other chambers is fine and ordinary flame black, which is sifted and packed in guitable barrels. Calcined lampblack may also be produced from it, the operation being the same as for oil black.

Notes on Working Tortoiseshell.-Tortoiseahell is supplied almost entirely hy the carapace or shell of the hawksbil " tortoise, which frequente the warm waters of the East and West Indies. The shell always consists of thirteen plates, and these are generally torn apart and tied togetber for convenience of carriage. Tortoiseshell sells at from 2cs. to 24 a a pound, and very often a single large plate will be more than 1 lb . in weight. Much time and money have heen expended in endeavourg to find a means of melting tortoiseshell, but without success, and so it is joined by a kind of welding process. The edges to he united are shaved and scraped to a Peather edge, and laid together with a piece of fresh shell upon them; the whole is then subjected to a moist heat (as of hot water), which softens it, and it is then put under great pressure until the parts are united, after which the Gurplus thickness is removed as waste. Another method of welding tortoiseshell is to first file it clean, and lap one edge over the othar, taking care that no grease remains, wet the joint with water, and hold it in a hot pair of pincers, so constructed as to cover tin. or 5 in. of the joint. Remore the pincera and apply more water, and the joint will be found secure. The pincers must not be so hot as to hurn the shell. In some cases it is possible to form a good joint by cementing, and then one of the following caments is used.: (1) Dissolve in 125 parts of 90 per cent. alcohol 30 parts of shellac and 10 parts of mastic, and add 2 parts of turpentine. (2) Dissolve in 58 parts of 90 per cent. spirit of wine 5 parts of mastic and 15 parts of thellac. and add 1 part of turpentine. In making tortoiseshell combs, two are cut out of one strip, and while soft a deep zigzag cnt is made down the centre of the strip to iorm the teeth of the two conhs, which thus fit closely to each other. Aa quickly as poseible the two parts thas divided are torn asunder, as in a lew seconds they wonld reunite. This is a difficult operation, and liable to prove costly if much waste results. To form the knobs aud other raised parts seen on fancy tortoiseshell combs, the shell is heated, and while in a pliahle state is gradually worked and pressed up into a mould of the reqnired form, and suhsequently smoothed and polished. Material which has heen thus treated cannot be reshaped if brokev, for on re-heating it takes its original lorn, from which it cannot bs altered. Combs are usually made of more than one thickness of shell, and as many as six thicknesses are sometimes welded together. When patterns are to be carved into ths work, extra thicknesges are welded on. Shell from the claws is used when a streak of unusually, light colouring is required, and the under or "belly" shell, which is almost transparent, is used for the amber shell-work. In finishing tortoiseshell, it is first scraped, and then polished with pulverised charcoal and Thter on a woollen cloth perfectly free from grease. This is followed by water and washed chalk or whiting, the articls being moistened with finegar. Finally it is hand-rubbed pith dry whiting or rottenstove. By another method of polishing, the hory is scraped smooth and level and is nhbed with very flue glasspaper or Dutch rushes, and afterwards with felt dipped in fluely powdered charcoal and water. After rubbing with rottenstone or putty powder, it is finished with a soft washleather damped applied by the palm of the hand.
How to Malse Shaving Paste.-This la a method of making a good shaving paste. Dlasolve 1 lb . of caustic potash in 2 pt . of watar, and now melt 2 lb . of tallow and $\frac{t h}{}$. of cocoaunt oil in a large pan, add the canstic potash solution gradually, and boil together. Continue boiling and stirring until a uniform paste is formed which, when rubbsd between the finger and thumb with a little watsr, feals sompy and fres from grease. Allow to cool, and determine whether the soap is thin enough for the tubes; if it is, heat the soap and fill hot; If it is not sufficiently thln, add water and boil
again. Add auy dasired scent prevlous to flling. An easy way of making shaving piste is to cut any good soap into shavings and boil with about four to six times ita weight of water till dissolved.

Cements for Mica. - Mica may be cemented by moistening the edges with a solution of gelatine in strong acetic acld. Another cement for mica is made by soaking gelatine in cold water and pressing out excess of moisture in a cloth. Then heat it on a water bath until it begins to melt, and stir in alcohol to form a fluid. For each pint of solution, gradually add whilst fluid. For each pint of solution, gradually add Whilst stirring $\frac{1}{4}$ oz. of gum, $1 \frac{1}{8}$ oz. of gum mastic previously
diseolved in 4 oz. of rectified spirit. Keep in stopper bottles, and warm when required for use.
Remaving Dents from Brass Mnsical Instruments. -There are many methods of removing the bruises from brass instruments, the position of the bruise determining the method to be employed. In some cases, to avoid taking the instrument to pieces, the top of a piece of stout brass wire is soldered to the indented spot, and the brass is then pulled up. This is, however, only the bracticable in the case of slight dents. Where ths dent is in the smaller tubings or too far round the main bow to be accessible from the bell, the instrument must be taken to pisces at the joints and the bruises removed by means of a series of steel balls of graduated sizes, which are screwed on a curved and tapered steel arm fixed in a vice. The ball should fit the oore of the tube to be trued. This is then thrust over the arm, tube to be trued. This is then thrust over the arm, and ths bruise pressed up from the inside by the steel tube, a burnisher can be employed to remove them. The burnisher has the curve of its face equal to the curvature of the tube. The burnisher is merely placed ln the tube and worked to and fro over the dent until it is smoothed out.

Repairing Lead Gutters.-When stopping a crack in a lead gutter, the crack should be opsned, the woodwork beneath dished, the edges of the lead dressed into the diehing, and then shaved to present a bright surface for soldering. Next drive in a few tinned copper nails to prevent the lead rising and showing through the solder; a littls tallow should be rubbed on. Plumbers' solder should then be melted, poured on, and kept in a semi-molten condition by a plumbers' iron red hot After the solder has well tinned to the lead it should be wiped flush with the lead at the sides.
Making Soluble Oll.-Soluble oil as used in finishing cotton goods may be made by mixing 2 parts by weigbt of castor oil with 1 part of strong sulphuric acid. The pau in which the mixing is done should bs placed in a tank of water and kept cool by allowing the water to flow through the tank. Allow the mixture to stand for about a day, then add brine (salt solution); wash by stirring thoroughly, pour off the oil, and wash two or three times with brine. Now add ammonia or a solution of washing soda in small portions at a time until a portion of the oil taken out and mixed with water readily emulsifles. with it.
Polishing Izory.-Ivory may be polished by hard, medium, and soft revolving brushes with wet whiting and water, finishing with a soft polishing bob charged with dry whiting or with putty powder. To polish ivory by hand, maks a pad of thick flannel or blanketing aud rub with whiting and water ; finish with a new pad and dry whiting or putty powder. When finished, stand In the sun to bleach, if desired.
Cleaning Windows.-Windows that are dut and smoked through being near a brickeroft are cleaned in the following manner. Slake oz of qucklime in sufficient water to make a vaste, and add 11 b . of washing soda dissolved in 1 qt . of water: mix thoroughly, and wash the windows with this. Follow with clean water, and dry with a clean cloth. A little whiting, made to a paste with water, rubbed on, allowed to dry, and then rubbed off with a clean cloth, will also be of service.

How to Burnish Photographs.-A cheap burnisher to putaglaser surface on photographs consists of a steel bar and a ribbed roller rotated by a handle; the lubricator is made by dissolving about 20 gr . of Castile soap in 6 oz . of methylated spirit. The soap may be used dry, but gives then rather more trouble. Even with a lubricator there is greatliability of scratching. When marks ars detected the roller must be removed, and the bar, when cool, rubbed from end to end with tine emery-paper on a strip of wood. To use the burnisher, the bar is heated, by gas preferably to spir'it, till a spot of water touched on the side hisses faintly. For gelatine prints the bar must be much cooler. See that the bar and roller are parallel and at sufficient distance apart by passing through a useless print. When the card passes through just easily, without strain, insert one end of the photograph and immediately wind it through without hesitation. The slightest stop will make a dented line, which is difficult to remove. The bandle must be started from such a position that it may be taken round with one continual sweep. As the picture passes, the ends are lifted alightly
to impart the least possible curl backwards. A better effect is obtained if the picture is passed through from side to sids rather than end to end. The film of the photograph goes against the steel roller. The photo graph should not bs bone dry, but, if too damp, it may blister. A certain amount of polish may be obtained by rubbing with encaustic paste, or even with white curd soap, and polishing with an old silk handkerchief. Gelatine prints are polished by drying in contact with glass, but this does not permit of their being worked up.
Writing on Opal Glass.-Asphaltum in an eqral weight of methylated spirit is useful for writiug on opal glass, as it will not peel. Break the asphaltum small, put it in the spirit, and set it near a fireplace for two or thres hours. It may be thinued by adding spirit. Apply two coats thin, rather than one thick. sealing wax treated the same way in spirit of wine, and applied hot, is good for polished grounds.
Qnickenlng Combustion of Charcoal.-A method of impregnating charcoal so as to make it light up very quickly is to make a stroug solution of nitie in boiling water; dip the charcoal in this, and then dry. If the treated charcoal burvs too quickly, which will probably be the case, it should be mixed with some of the untreated stuff.
Renovating a Celestial Globs.-A celestial globe, the varnish of which has become chipped, is renovated as follows. Cleanse by gently rubbing with soft flannel and white curd soap, and wipe perfectly dr. chamois or window leather. Wipe over any scratched portionswith the least possible raw linseed oil; then, if necessary, touch up defective portions with white hard spirit varnish or transparent paper varnish. Using a camel-hair brush, apply rather thinly to avoid the appearance of overlapping.
Setting Jewel Hole in Geneva Watch.-Below is a description of the method of cutting a, new setting for a jewel hole in a Geneva watch. The watch plate is cemented with shellac to a brass face-plate about $\frac{1}{2}$ in. or $\frac{8}{4}$ in. in diameter, run in the lathe. A spirit lamp held underueath the face-plate softens the shellac, and a sharp-pointed watch peg is then steadied upon the hand-rest and the point inserted lightly in the pivot hole as the lathe runs slowly. This centres the plate, and as the shellac bardexs the plate remains true. The cutters are generally made from the tang ends of old flat files; these can be laid flat upon the T-rest, and with the aid of an eye-glass the setting is turned out to receive the jewel, the hole being opened and a slight ledge being left for the jewel to rest upon. A circular groove is then turned round the setting, to leave an extremely thin wall of brass standing up all round the edge of the jewel. The jewel is then placed in, and the thin brass edge buruished over it by a round. pointed burnisher slightly oiled. The plate is then melted off the chuck and the shellac dissolved hy boiling in methylated spirit in a metal spoon over the flame of a spirit lamp.
Hints on Working the Howe Sewing Machine.The following hints are on the working of a Hows sewing machine. First, get the machine to run backwards, or from you, quite easily; if at all stiff use paraffin oil. Thread the shuttle, first through the holes in the bottom, or under side, then under the spring in the front, or pointed end, and lastly out through the bole in the top side. The tension screw in the front is left-handed-that is, turns opposite to the direction in which an ordinary screw turus. The needle is set with the short groove to wards the shuttle, and with the eys level with the needle plate, when the mark or scratch on the bar is just flush with the top of the faceplate or part containing the needle bar and foot bar, etc. If there is difficulty in obtaining needles, use a Singer arm machine needle, cloth point if for cloth work, leather point if for leather. The top cotton threads once or twice round the tension wheel, then under the small thread guide, just behind the needle bar, then in the slot in the top of the needle bar, down through the eyelet in front of spring, throngh the spring, back through the wire eyelet again, and through the needle, thweading towards the wheel end. The stitch is altered at the screw in front of the arm, and the top tension is tightened or loosened by altering the brass thumbnut in front of the tension wheel.

Renovating Brass and Copper Articles.-It is supposed that an article composed of lacquered brass and copper requires to be cleaned burnisbed, and relacquered. First remove the lacquer by brushing with an ordinary scrubbing-brush and strong boiling soda water. Then wash off with hot water, and polish with flour emery powder, crocus, and oil. Finish with dry crocus or very fine whiting. A calico dolly may bs fixed to a lathe and the polishing done more easily. To lacquer, the articles must be heated equally.

Flatting Colours.-To make up flatting for calico to stand two or three coats, dry dead, and roll without cracking, take, say, 5 lb . white lead, 1 gill raw linseed oil $\frac{1}{2}$ gill gold size, ${ }_{9}^{\frac{1}{2}} \mathrm{lb}$. patent driers, and as much turpentiue as will thin for working purposes. Should the firet coat dry with any shine on it, use less oil: a very little of a pigment will give any tint required. Two coats at least will be necessary. For the same in distemper use whiting and jelly size; first soak the whiting in water, then pour off all superfinous water, pouring in the hot size atterwards. To each pound of size add a pint of water; a little dry colonr mixed with water to a thin paste may be added to give the tint required. Two coats must be applied.
Pasteboard Tube Umbrella Stand.-The illustra. tions show an umhrella stand made from three pasteboard tuhes. They have wood blocks fitted into the bottom, and can be screwed to the base, which is ot lin. hoard. If a moulding could be worked round the trefoil wooden base, the appearance would be improved. A hole should be drilled in the wood hottom of each tube and a small pipe inserted to carry off the water from the wet umbrellas (as shown in Fíg. 2). Three flattened wood balls should he screwed to the under side of the base to lift it from the floor, and to admit a tin pan underneath to catch the water. Fig. 1 shows the stand complete, with the brass ornamental

Fic. 1
Pasteboard Tube Umbrella Stand.
rim round the centre; this may be fixed with rosettes having pins hent over when passed through the brass rims and the tubes. Fig. 3 shows patterns for the brass rims, the lower one having semi-balls hammered up at intervals. It would he advisable to fix a plate of thin zinc, say $\frac{1}{2} \mathrm{in}$. wide, round the top inside edge of each tuhe to prevent the wet umbrellas saturating the upper portion of the tubes. For colouring, use a light ground, say grey, fawn, or light green, with a dark ring: at the top and bottom; these colours may be applied in enamel paint.

Ferrotype Photography.-The ferrotype plate is a sheet of iron covered with an insoluble black varnish and coated flrst with a bromo-iodised collodion. Pour a pool in the centre, flow round the edges, and ponr oft at the hottom right-hand corner. When the film has set, which is shown by its dulness, it is laid face np on a dipper-two pieces of glass cemented together-and lowered into the silver bath consisting of silver nitrate 33 gr ., distilled water 1 oz , and 1 drop of a 10 per cent. solution of nitric acid and distilled water. After one minute's immersion it is withdrawn, and, if wetted evenly, requires only two minutes longer. Drain and wipe the back with blotting paper, and place in the dark slide. SIides for the wet process have wires on which the plates rest, und a gutter at the bottom for dripping Exposure is as usual, hnt wet plates are considerably less sensitive than diy plates. Great care must he exercised to keep the fllms free from dust. For development the plate is held in the hand and flooded with sulphate of iron 5 gr., acetic acid 5 c.c., alcohol 5 c.c., water 80 c.c. Fix in cyanide of potassium $2 \mathrm{gr} .$, water $30 \mathrm{c.c}$.

To intensify or brighten, reduce the deposit on the shadow portions, and allow the dari plate to show through more. Drops of 10 per cent. solution of iodine added to the fixing bath have the deaired effect. Ferrotype cameras are fitted with a number of lenses and divisions in the camera. A repeating back that is, a frame with a hole over which the slide passes so as to expose a portion of the plate at a time-may be 'ised with a spring catch in the top slide rail to register positions.

Making Bevelled Stock Hoops.-Below are given instructions on obtaining the correct bevel for making 3 in. stock hoops for heavy wheels. Fig. 1 is a side view of a stock hoop, 3 in, wide, 1 ft in diameter at the back, and 10 in. diameter at the front. First set out the half elevation, as shown at the top part of Fig. 2; then, using G as centre, with a radins of half the diameter of the back of the hoop, strike the line AE. From the same centre, with a radius of half the diameter of the front of the hoop, strike the inner line $a e$, thus obtaining a quarter plan of the part cone formed by the hoop. Divide the quarter circle as shown at B $b, C c, D d$, E E also connect A and b by a crose line; this line measured across, and marked on the horizontal line from G to F, and connected to the vertical line at the top centre of

Making Bevelled Stock Hoops.
the elevation, will give the diagonal line to be used in making the pattern (Fig. 3). To make this. draw a vertical line a a (Fig. B) equal in length to the line A H vertical line A a (Fig. 3) equal in length to the line A ${ }^{\text {in }}$ in Fig. 2. With the line F J (Fig. 2) is radius, and A (Fig. 3) as centre, describe arcs at $b b$ (Fig. 3). With a cut the ares at $b b$ which are on the bottom of the pattern. Then from b b, with the length of $A a$ (Fig. 3) as radius. describe arcs at B B. Take the length A B (Fig, 2) as radius, with A (Fig. 3) as centre, cut the arcs drawu at B B, which will be points on the top of the pattern; repeat this each side of the centre until several points are found, when the points can be connected by a true sweep. Fig. 3 is the shape to which the hooping must be made beiore it is turned round; of course, allowance must be made for bending and welding up. When making hoops as above described, an iron mandril (as Fig. 4), known also as a sugar-loat casting, is of great assistince.

Double Image from Field Glabser.-A pair of field glasses when looked through will sometimes show a double ohject. This double image is due to the directions of the two optic axes not being in correct relation. This prevents the rass from the image converging npon the fover of both eyehalls simultaneously, two different pictures being presented, one to each eye. The remedy is to alter the direction of the optic axis of one of the telescopes forming the field glass. Probably the joining bars are bent, and so obviousily they should be straightened.

Cementing Leather to Iron.-To cement leather to iron, first paint the latter with lead colour, such as white-lead and lampblack. Soak glue in cold water until it is soft, then dissolve it in vinegar at a gentle hent, add one-third of its bulk of white turpentine, mix thoroughly, and apply hot to the painted iron. Apply the leather quickly, and press tightiy in place.
Making Liquid Glue,-For strong liquid glues, (1) heat together on a water bath for six hours clear gelatine, 100 parts; best Scotch glme, 100 parts; alcohol, 25 parts; alum, 2 parts ; and 200 parts of 20 per cent acetic acid. (2) Boil together for several hours 25 parts glue, 65 parts water, and 4 parts nitric acid. (3) Dissolve 6 parts of glue or gelatine in 4 parts of saccharated solution of lime; neutralise the lime with a third part of oxalic acid, and add carbolic acid as a preservative.
Burning Lead Seams with Eydrogen Gas.-Flat seams that are to be burnt can be either butted or lapped. In the former casc a strip of clean-shaved lead is fed into the seam, and in the latter case the edge of the face lead is melted down into the under lap. For upright seams the lead is lapped; the face of the undercloak, and the back, edge, and front of the overcloak being cleanly shaved No flux is necessary, as, with what may be termed clean gas, free from smoke, the lead does not tarnish A very fine flam jet is necessary, and the seam is burned from the bottom upwards by biting off a small bead of the front lead and burning it back to the undercloak. Immediately fusion has taken place the flam is quickly taken away, and then another bead is floated down to the last one; and so on until the top of the seam is reached. Overhead work is done in a somewhat similar manner, except that a very small bead is bitten off the suriace of the undercloak and floated down and fused to the face lead. Upright work is more difficult to do than flat burning, but overhead work can only be done by men who have had considerable practice.

Particulars of Hydro-extractor. - A hydro-extractor, such as is used in drying or oxidising oils on tow, consists of a circular cage or frame made of per fowned zinc, copper gauze, etc., fixed on a vertical belt driven spindle. The cage revolves at high speed and passes a current of air through the tow upon which the oil is to be oxidised. The cage is surrounded by a cover to prevent liquid being thrown out.

Making Bronze Powders.-As substitutes for thin films of the genuine metal, paints resembling gold, silver, bronze, etc., have long been widely employed. These paints are formed by mixing what is known as metallic bronze with a suitable medinm which may be one out of, say, twenty liquids. A few of these are gum water, copal varnish, white spirit varnish, a mixture of turpentine and French polish, and a solution of collodion cotton in amyl acetate diluted with petroleum ether. Most metallic bronze powders are alloys of various metals reduced by pulverising mechanically or by precipitation by chemical agency. To make a very good gold powder, finely grind gold leaf with honey and stir with water to dissolve the latter, Change the water several times, then filter and dry. Another way to treat pure gold or gold leaf to obtain gold bronze powder is to dissolve it in nitro-muriatic acid, and precipitate it by in troducing copper or sulphate of iron. In the former case the precipitate must be digested in distilled vinegar, and washed repeatedly with water. Then it should be dried. Other metals may be treated in a similar way, the desired colour being obtained by the use of basic chromate of lead, oxide of uranium, antimoniate of lead, borate of copper, oxide of iron, vermilion, or even red ochre. Mix tures of copper, tin, zinc, and iron in various proportions produce grades of yellow, orange, purple, green, and grey. Pale gold powder is a mixture of $13 \frac{1}{2}$ copper and $2 \frac{3}{2}$ of zinc. Red toues are produced by adding more copper. Dutch leaf has 20 to 30 per cent. of zine and from 70 to 75 per ceut. of ;opper, aud is sometimes ground with real gold to produce bronze powder. French leaf has more zinc, is harder, and is a purer yellow. Florence leaf has still more zinc. White leaf is principally tin. 'the fragments from the manufacture of these metals are pounded, then brushed through sieves, ground in gum water ou marble slabs for six hours, sorted, and dried. The following is a cheap gold bronze. Grind and make into a paste with oil, verdigris 8 oz., tutti powdel (hower of zinc) 4 oz., borax and nitre 2 oz . each, corrosive sublimnte 2 dr. This is fired and, when cold, rolled iuto leaves, being afterwards ground to powder. To make a copper bronze, plunge a plate of iron into a hot solution of sulphate of copper; the fine scales of copper thrown down are repeatedly washed with water, and mixed with six times their weight of bone dust. A powder having the colour of bronze, which is especially suitable for plaster, etc., can be made as
follows. A mixture of 4 parts (by measure) of sulphate of copper solution and 1 part of sulphate of iron solution is added to a strained solution of soda-soap
in linseed oil. The netallic soap, which is precipitated is washed with cold water, strained, aud dried to powder. This is applied in a medium made by boiling litharge with linseed oil and adding white wax. A very simple way of making gold bronze is to sprinkle powdered tin into very dilute sulphate of copper. This will throw down some fluely divided gold coloured bronze. To make a red bronze, add pulverised red ochre or a solution containing chloride of antimony and sulphate of copper- 12 to 20 parts of copper and 1 of tin Another red bronze is made thus: Heat sulphate of copper 100 parts, with carbonate of soda 60 parts, uutil it becomes a mass; when cold, powder, add copper filings 15 pœrts and again well mix. Maintain at a white heat for twenty minutes, and when cold reduce to an impalpable powder, wash, and dry. For mosaie gold pow. der, melt equal par'ts of snlphur and white oxide of tin in a crucible over a clear fire. Constautly stir with a rod of glass (not iron) till a yellow flaky powder appears. Another way of making this powder is to use equal parts of sulphur, tin, quicksilver, and sal-ammoniac. Melt the tin in a cruclble, and add the quicksilver, and maintain the heat until the mixture is of a gold colour and till no fumes of quicksilver arise. When cold, grind the combination with sulphur and sal-ammoniac. A method of making silver bronze is to melt together 1 oz. each of bismuth and tin. When tin is heated above melting point in contact with the air it becomes a yellowish-white powder, and volatilises at a white heat. Add from 1 oz. to 1 音oz. of quicksilver, and when cold pulverise the alloy. To make a dark olive-green bronze add muriatic acid and arsenic to a mixture of orange bronze. To give some idea as to the range of colours in which it is possible to produce bronze powders, it may be mentioned that the Japanese make dark brown powder approaching black by oxidised iron; deep warm hrown by different proportions of the same material: light brown by bronze; deep red by copper. 'they mix iron gold, and silver, and get a blue by means of steel Another colour is produced by equal parts of gold dust, vermilion, and charcoal. Plumbago is used to produce a black powder. The colour of the powders is affected by acids. Freshly bronzed articles are given an antique appearance by rubbing them with a soft rag or brush dipped in a mixture of 4 oz . of sal-ammonias and liz dr. of salts of sorrel dissolved in 1 qt . of vinegar.

Recipes for Varions Cements.-The following are reliable recipes for miscellaneous cements. A cement for repairing an amber mouthpiece, broken in two, may be made by dissolving sufficient gum copal in ether to form a syrupy fluid. The broken portions should be slightly warmed, the cement quickly applied, and the two pieces brought closely together and bound by wire The cement sets quickly, and the excess may be pared off with a sharp knife. Another: Heat the surfaces to be joined and apply boiled linseed oil. Clamp firmly until united. Instead of the boiled oil, a solution of potash or a solution of mastic in linseed oil, may be employed A cement for fixing the tangs of knife-blades into the handles is made by mixing 4 parts of resin, 1 part of beeswax, and 1 part or plaster-of-Paris, or by mixing resin with a little white sand. Put the cemeut powder into the hole, heat the tang, and press home. The following is a cement tor mending cracked or broken glass lamps to hold paraffin oil. Mix plaster-of-Paris with white of egg and a little vinegar. Allow this twenty-four hours after applying in which to become hard. Auother : Mix 3 parts of resin, 1 of caustic soda and 5 of water with half their entire weight of plaster of-Paris. Use at once, and allow forty-flye minutes in which to set. For attaching the brass rim either of a glass or an earthenware lamp, powdered alum forms a simple but thoroughly reliable cement. Clean the rim and neek from grease, invert the rim, and fill its cavity with powdered alum, and place on the top of a hot range ol' stove. Whel the alum begins to get pasty, press the neck of the lamp firmly into place, remove from the stove, aud set aside to cool. In about five minutes the lamp will be ready for use. Another: 1 part of plaster-of-Paris well mixed with 2 parts of resin soap. Zinc white or slaked lime can be substituted for the plaster of-Paris. Another: Plaster-of-Paris worked up with a saturated solution of alum in water.

Cements for Machine Belt Joints.-The following are cements for machine belt joints. (1) Stil $\frac{1}{2} p t$. of good hot glue with a tablespoonful of glycerine and half a teaspoonful of turpentine. (2) Melt to gether in an old iron sancepan $\frac{1}{2} \mathrm{lb}$. of guttapercha 1 oz. of pitch, 1 oz . of shellac, and 1 oz . of sweet oil. Use hot. (3) Dissolve gelatine in acetic acid. (4) Add as much tauuin to glue as will make it ropy. (5) Melt together guttapercba, 20 ; pitch, 2; shellac, 1 ; and linseed oil, 2 parts. (6) Digest guttapercha, 3 , and caoutchouc 1, in 4 of bisulphide of carbon. Belt joints should not depeud entirely on the cement, but should be stitched as well.

Determining Thioknese of Copper Tubing.-To deter nine the thickness in inches of copper tubing to sta id a given pressure, multiply tho diameter of the pipe i:i inches hy the working pressura in pounds per square iuch, aud divide by 5,600 . This assumes that the copper has an ultimate tensile strength of 15 tons, and that the factor of safety is 12 .
Projection of Curved Wing Wall-The accompanying illustration shows the method of finding the elevation of a curved wing wall lor a bridge. It is a helical or screw surface. Draw the plan, and divide the wing wall copiug into any number of equal angles by radial lines from the ceatre of the curve. Where these lines cut the inner and onter edge of coping project vertical lines to the elevation. Then in the elevation set off the height a b, which the coping will occupy, and by means of the ordinary device of practical geometry shown ou the left divide it into the same nomber of equal pirts as the copiug was divided in plan. Now draw
most dangerous gas found in coal mines, because its detection is often too late to enable its baneful effects to be avolded. Carbonic acid gas, blackdamp (CO_{2}), is heavier than air, having a specific gravity of 1,520 . It is a colourless and odourless gas, but has a distinctly sweet taste. It is incombustible, and will not support combustion. Lamps burn dimly in alr containing a small percentage of the gas, but are extingnished if the percentage increases sufficiently. Its effect upan the system is to produce headache and nausea, and finally unconsciousness, causing death by suffocation.

Device for Supporting Large Eggs,-A device for supporting a large egg can be made as follows. Take six fine silk cords and knot them together in the ceutre; then form a few large meshes by knotting the cords together two and two at equal distances from the flrst-say $1 \frac{1}{} \mathrm{in}$. to 2 in ., according to the size of the object. Having formed a sufficiently large bag, knot the cords together again about loin, above the object

Large Egg Supported in Net.
Projection of Curved Wing Will.
horizontal lines to intersect with the verticals from the p an, and draw the required curve through the intersections. The visible edge oi the underside of the coping is obtained by setting off the thickness vertically at each point below the curve of the upper edge.

Particulars of Cual-mine Gases.-There are three mechanical mixtures of gases fonnd in mines, and these are (a) air, a mixture of oxygen and nitrogen gases; (b) firedamp, a variable mixture of marsh gas and air i and (c) afterdamp, a variable mixture of uitrogen, carbonlc acid, and carbonic oxide. I'be compound gases usually found in coal mines are four in number, and these are (α) light carburetted hydrogen or marsh gas $\left(\mathrm{CH}_{4}\right)$; (b) sulphuretted hydrogen ($\mathrm{H}_{\sim} \mathrm{S}$), sometimes called stinkdamp; (c) carbonic oxide (OO) or whitedamp; and (d) carlbonic acid $\left(\mathrm{CO}_{2}\right)$ or blackdamp. Marsh gas $\left(\mathrm{CH}_{4}\right)$, the lightest of the hydrocarhons, having a gpectric gravity of only if59, is a colourless, odourless, aud tasteless gas. It burns with a blue flame, but will not support combustion. It diffuses rapidly in the air aud forms firedamp. It does not poison the system, alld may he breathed with impunity for a long time. Curbunic oxide gas, whitedamp (CO), has a specific gravity of '967, and is a colourless, odourless, and tasteless gas hurning with a pale blne flame. It is very poisonous to the system, actiug as a narcotic, producing stupor and pains in the hack and limbs, followed by delinium. Lamps burn hrightly in this gas. It is the
and plait or twist them together, carrying them up to a picture hook or ring so that they will hang about $5 \mathrm{ft}_{\mathrm{t}} 6$ in from the floor ; they may then be freely handled.

Making Plasterers' Gauged Stuff.-The fine whits wall plaster known as plasterers' "gauged stuf" is made as follows. A pure, fat lims is slaked with water and afterwards thinned down to the consistency of cream. It is then left to settle, and the water is allewed to evaporate until the mixture is thick enough to work with a trowel. When wanted for use, add abcut a quarter of its bulk of plaster-of-Paris, and use raı Idly, quarter of its bulk of plaster-o

Electro-coppsring a Plaster Statue.-In depesiting a copper coating on a plaster statue by the electrotyps process, coat the statue several times with liusegd oil or saturate with malted stearin to render the plaster non-absorbent to the copper salts; these would destroy the statue. When the surface is dry and firm, destioy the statue. When the suriace is dery mixsd with apply a coat of paint made of bronze powder mixsc wice methylated epirit only. Work this into every orevice with a soft brush, aud when it is dry well brush ever part with blacklead to get a smooth surface. Brush with an alcoholio solution of phosphorus, and then with an ammoniats solution of silver, prepared by dissolving silver nitrate to saturation in stiong ammonia. To ensure conduction to all parts of the statue, several fine wires should be led to the deeper crevices. A battery of Daniell cells should be used, and depositien should proceed slowly to obtain a smooth coat of copper.

Making White Soft Soap.- A white soft soap could be made from cocoanut oil and lard, but it would be very expensive. The palest soft soaps are made from reflned cottonseed and linseed oils. The pan for making the soap should be provided with open and clobed steam coila for heating. Suppose that 100 lb . of oil be taken as a standard; this will require 22 lb . of caustic potash (82 per cent.) for saponification. This should be dissolved in water to form two lyes, one of *pecific gravity 1.08 (16° Tw.), the other of specific gravity $\mathbf{1}^{\circ} 15$ (30 TW.). Commence with half the oil, heat up with open coil, add the weak lye, stir continually till saponifed, then add the remainder of the oil and the stronger lye and continne boiling till a portion taken out is quite clear. Then turn off the open steam, and concentrate by closed steam till it sets to a jelly when placed on glass. The pun should be twice the size of the charge to prevent frothing over.

Bullding a Dog Kennel.-A dog kennel is illustrated by Fig. 1. The entrance hole should be about 13 in. wide by 17 in . high, the other leading dimensions being chown. Appropriate material will be s-in. matchboarda for the aides and top, and l-in. grooved and tongued floorboards for the bottom. The boarding of the sides and ends and the flooring should be nailed to fillets a (Fig. 3),
of soda separates in the solid form; it is raked out towards the fire, becoming hotter and hotter until finally it is drawn out at the furnace door, thoroughly calcined. This is soda ash, which is dissolved in a very small quantity of water and the clear liquid run into large hemispherical iron pans, where it crystallises in a eolid mass like ice; this is washing soda. As will be seen, a larye and expensive plant is required.
Re-dyeing Black Canvas Shoes.-In re-dyeing black canvas shoes that have worn white, well wash them, allow to dry, and then apply one or two coats of a solution made as follows. Put a quarter of a pint of methylated spirit into a bottle, then add loz. of extract of logwood (2d.) and twopennyworth of tincture of ateel. When dissolved, fill the bottle up with water; shake well before using.
Photographing Pencil Drawings, - Slow plates giving extreme contrasts such as are used for photomechanical work are the only onea suitable for use in photo-copying pencil drawings. Many workers prefer to use the wet collodion process for auch work, as this, With intensification, gives extreme denaity and contrast. When the drawings are faintly done upon a blue tinted paper, it is practically impoasible to obtain sufficient

I in. aquare, all round underneath the bottom. The most guitable way of connecting the gidea, ends, and top is by fixing fillets as illustrated at B (Fig. 2). The top may be formed of matchboarding or plain boarda, and to make it more weather-tight should be covered with felt, tarred and sanded.
Removing Mildew Stains from Leather.-To remove mildew stains from leather, well rub the leather all over with spirit of ammonia; this no doubt will lemove the stain and revive the colour. To atiffeu the leather, apply on the grain side plenty of spirit of ammonia, and then well rub with a coft dry cloth, and leave to dry under pressure.
The Manufacture of Washing Soda.-In the manufacture of washing soda, sulphate of soda, prepared as described in the fifth paragraph of p. 260 , is mixed with coal slack and limeatone and fed into a reverberatory furnace with a revolving bed. The mass fuses, and the principal products are carbonate of soda, sulphide of lime, and carbonic oxide. The fused mass is run into iron waggons and, after cooling, the blocks are broken up, treated with water in large tanka, which are run in series, the water passing from one to the other so that the mole concentrated liquor passes over new material. The concentrated - ovelution of carbonate of coda is run into a pan placed over a reverberatory furnace, the heat from which serves further to concentrate the colntion; from this tank it is gradually run on to the hearth of the furnace, where it forms a pool bounded by colid material. The flame of the furnace passes directly over the surface of the liquid and, as evaporation proceeds, the carbonate
contrast, and the only plan ia to make a tracing in a good black ink or ehony stain. This may then be easily photographed or copied the same size by exposing beneath it a sheet of ferro-prussiate paper:
Holding Stick Mounts while Engraving. - Engravers of stick mounts use a short length of wood, turned taper, on which the mounts are pushed tightly. Stick knobs are mounted on cement sticks about 4 in. long. When the gold or ailver is very thin, the piece is made solid with cement. The article is warmed in the gas and taken off when engraved, and another substituted. Cleaning is done by throwing the mount into a bath of paraffin, where it remains till the cement is soft, when the mount is finished in successive sheet-iron boxes of boxwood sawdust, warmed, and dried by a gas jet underneath.
Dyeing Ostrich Feathers Black.-The following are instructions on dyeing ostrich feathers black. F'irst coften the feathers by roaking them in a warm bath consisting of 1 lb . of carbonate of soda in 10 gal . of water, then rinse in clean water; they are then dyed by soaking them in a bath containing 1 lh . of ferric chloride or nitrate in 1 gal. of water. After again washing, boil them till black in a bath previously made by boiling 21 h . of logwood and 2 lb . of quercitron hark with 1 gal. of water and straining. If a blue black is required, nse 2 oz . of sulphate of copper with the ferric salt. After again dyeing, wash the feathera in clean water, dip in an omulsion made by shaking a solution of carbonate of potash with olive oil, and shake them in the air of a warm room till dried. It will be advisable first to expe:iment on worthless samples of feathers.

Testing Water for Impurities,-Ths following are simple tests d'ol impurities in water. Add Nessler's reagent; if ammonia is present, the water will in a few moment's becoms distinctly yellow. Add to another portion dilute sulphuric acid, and warin; whils hot, add drop loy drop a very dilnte solution of permanganate of potish (strength 4 parts in 10,000); should the pink colour disappear even after several drops have been added, there is probably much organic matter present; if the colour of one or two drops is not discharged, the water is pretty free from this pollution. Nitrites are tested for by a few drops of sulphuric acid and a solutiou of metaphenylene diamine, which will yield a bright yellow colour. Nitrites usually show pollution when present, but often they are not present in bad waters; they are not important unless present in very large quantitiee.

Principles of Air-gun Construction.-These are some hints on the mechanism and principles of construction of an air-gun. Figs. I and 2 explain the mechanism of two kinds of air-guns. In Fig. 1, A is wrought-iron tube closed at one end, andacting as areservoir for compressed air ; B is the butt end of the front part of the barrel, screwing into A; C is a thick metal plate with a central hole forming the seat of the valve D; C is ecrewed or

The two gections into which the barrel is divided fit together accurately at D. The section B is fixed to the stock, whilst portion C turns on a pivot at \mathbf{E} into the position shown by F. At G there is an ear to which the link II J is pivoted, and at the end J a plug or piston K is pivoted. Thls latter slides easily in LM, the air chamber. In 0 is fitted an air piston as indicated, kept in position by a piston-rod passing through a gnide. Between the piston and guide is a strong steel spirai spring, which presses the piston towards the end L of the ail chamber. In loading the gun the fore-part of the barrel is bent down into the position T, thus exposing the breech, and a dart can then be inserted. G comes to the position G_{1}, and the rod HJ is forced into the position N O. This forces K back to K_{1}, and the piston back with it. The catch, pressed up by a spring, holds the piston in that position till the trigger is pulled. This draws down the catch and releases the piston, which is instantly forced back by the spiral spring. The rapid passage of the piston through the air chamber forces a blast through the air passage, and this blows out the dart. . A spring bolt locks the barrel when the two parts are in line, but yields to the application of force wheu bending the barrel to load, The arrows in Fig. 2 show the direction in which the several parts move. The illustrations

Principles of Air-gun Construction.
otherwise fixed in the bore of A, and closes it except for the valve seating; D is a cup-shaped valve, sometimes made of horn, fitting accurately in its seatin C. The fit is finally got by heating the plate C, etc., and allowing D to remain forced into its place by the air in a till all is cold. E is a spindle passing through the middle of D, of Which it forms part, and sliding loosely through holes in F and G, which are two vertical metal rods, sttached by euch end to A and B respectively. A opiral spring keeps D pressed lightly against the seating in C. II and J are two plugs screwed into B from ontside. J is bored right through, and II partly 60 , to receive K, which slides through J and into H. K is a round steel rod having two eollars, L and M. L takes the pressure of a spring N, which forces K downwards, M preventing the latter from being forced out too fas. PR is a lever pivoted to K by a pin at P, working in a slot and turning on Q, another pin attached by either end to B. At R there is friction contact with one end of E. S is a conical valve in B, kept in its seat by T, a spring pressing it upwards. The barrel to the left of B is bored smooth, and a well-fitting plunger or piston at the end of a rod is pushed in at the muzzle. The air in the barrel is forced by the pinnger against D, and enters A by passing hetween C and D. When the piston is drawn out again, the vaive s opens inwards, and lets air in to fill the vacuum. The bullet is then rammed into B. On pushing in K, the lever $\mathcal{P} R$ is turned on Q, and K presses on E, thus forcing 1 back and allowing the air to escape from A and blow the bullet out. Fig. 2 shows another conimon form of air-gun, A being the stock of the gun, B the butt-end section of the barrel, and C the muzzle end.
can be regarded only as mere diagrams; they are not drawn proportionately, and only such parts as ar's necessary to make the description clear ars shown.

Particulars of Basalt.-Basalt is a volcanic rock probably formed by the fiuid mayma escaping through prome line of fracture in the earth's crust, overflowing at the surface, and then cooling slowly. Being 8 volcanic rock, it shows a porphyritic structure-that is, crystals are embedded in a fine-grained ground mass. This is owing to the molten magma solidifying slowiy near the surface and giving time for some of the minerals to crystallise out. Basalt is essentially a plagioclase feldspar rock with augite or tially a plagioclase feldspar rock with augite or hypersthene, and may or may not contain older bacalts giving basaits and olvine basaits. In the olivine is often decomposed into serpentine, and gives an amygdaloidal structure to the rock. The minerals found in basalt are plagioclass feldspar, augite, hornblende, and cometimes small crystals of quartz and olivine. Under the microscope are seen many lathshaped crystals of plagioclase. feldspar, being easily detected with crossed Nichol prisms by its polysynthetic twining, which results in the development of a series of paralisa bands of colour crossing the grein. Angite is pals brown in colour, and wheu revolved on the stage of the microscope, using only ths lower Nichol prism, the colour does not change. Oliving is vely pale green in colour, and generally traversed by cracks which are more or less decomposed into serpentine. Having s higher index of refraction than the augite, the olivine appears more prominently.

Constructing a Small Saw Mill-Instructions on building a shed to be used as a small saw mill are here given. The shed may be constructed of old railway timbers and sheet iron. The dimensions are 55 ft . long by 30 ft . wide, with a small shed 16 ft . hy 10 ft , at one end for the engine. The holes to receive the posts (P , Fig. 1) the engine. The holes be about 2 ft . 6 in. deep. To these posts the should be about 2 ft . 6 in . deep. to these posts the iron that forms the sides of the mill, etc., is seoured. The tops of the posts should be perfectly level, as the

Fia, 1
wall-plates must rest on them. Tha roof principals are secured to the wall-plates, and the rafters are nailed to the principals, the sheet iron that forms the roof being nailed or screwed to the rafters. The angine is fixed at E , and should be of from 10 - to 12 horsepower. It will be able to drive a rack saw bench in front of it, and another on the other side of the shed, and may ke used at other times for running a chaffcutter, glindstone, and saw sharpener. When the engine has been fixed, the shaft, pulley, and belt ways must be dug of suitable depth, etc., and these openings
in the ground should be covered in with timber, a trap-door being placed over each bearing so that free access may be had to the bearings and pulleys. The position of each machine is shown in Fig. l. From the engine wheel the main belt M leads to a pulley I on the main shatt MS. Belts B lead from the driving pulleys E^{1} to the driven pulleys on the rack-bench R and the hand-bench H. The positions of the sharpening machine and of the grindstone are indicated at s and G. The dotted line outside the building 0 indicates the position of a shed in which the chaff-cutter may be fixed. The sharpening machine, grindstone, and chaff cutter may be driven from a small overhead shaft, the end of which passes through the side of the mill into the chaff-house. A pulley is keyed on the end of this the chaft-house. A pulley is which a bolt leads to the chaff-cutter. Two other pulleys are keyed on this shaft, from which belts lead to the pulleys on tha sharpening machine and grindstone. A belt leading from the small pulley F near the end of the main shaft to a pulley on the overhead shaft drives it. A dotted line at the corner shows the position of the grindstone and the sharpening machine. Small posts may be fixed in the ground here and covered with boards or sheet-iron, so as to form a sharpening house, which should be provided with plenty of light On each side of the mill there should be at least three good-sized windows. Doorways D for each house are

Constructing a Small Saw Mill.

shown. There is a door at each end of the mill, and in line with the rack-bench, so that a rough log brought in at one door passes out at the other door cut and ready for delivery. This is a great saving of time and labour. The bearings marked A on the main shaft may be secured to blocks of wood or, better still, masonry, firmly fixed in the shaft-way. By laying out the machines in the manner indicated, there will be plenty of room for the timber that is to be sawn, and for the timber already sawn, and the stuff can be easily passed from the rackbench to the hand-bench when it is to be sawn into small scantling. Very long timber cannot be conveniently sawn, as the length of the rack is short in such a small mill.
Making Snow-shoes. - Snow-shoes, in Northern Europe, are made of birch bark, bound to a tough rim 6 ft . long and 6 in . wide, the fiont being pointed and turned up. There are straps in the middle to bind the shoe to the foot. The under side is covered with reindeer skin, the hair being laid backward to prevent backsliding. Canadian shoes are shorter and wider; the sides are of tough wood, stretched apart by cross-pieces, the frame being covered with a network of gut, like a tennis racket.
Bleaching Ostrich Feathers.-Ostrich feathers may be bleached either by exposure to the vapour of sul phurous acid, or by immersion in a solution of hydrogen peroxide; the latter method is the better one, but more expensive; the sulphurous acid may weaken the feathers. The feathers should first be immersed for several hours in a solution of carbonate of ammonia (about 3 oz. to 1 gallon of water), then washed in a warm bath made from white curd or Castile soap passed through cleau soft water, and then put in the hydrogen peroxide bath (1 part to 10 parts of water) removed, washed again in water, dried slowly, and curled. Instead of the hydrogen peroxide, a bath containing barium peroxide in solution and dilute sulphuric acid may be employed, but in this case the last washing must be thorough, or the feathers will be very tender. A pure white may be obtained by after wards passing the feather through a warm soap bath with a little blue powder stirred in. Feathers may be dyed immediately after bleaching, or, for dark colours, without bleaching, treating them irst with carbonate of ammonia to solten them.

Removing Fur from Kettle,-The only mathod of removing the fur from the lnside of a kettle is to chip it out with a chisel or other sharp-ended tool. An efficient method of preventing the deposition of the fur has yet to be discovered. An old-fashioned remedy is to have a marble rolling about in ths kettls; when this has increased in size by the deposit it may be removed and the chalky matter chipped from it before replacing.
Particulars of Olein Oll.-Olein oil is a product of the decomposition of fats by steam or by lime, heing separated from ths harder product, stearin, by pressure. It consists almost entirely of fatty acids, principally oleic acid; the stearin consists of stearic and palmitic acide, and is used in candle making.

Repairing Watch Balance-staff,-A new pivot ean 6ometimes be put in a watch balance-staff by drilling a hole in the end perfectiy central and straight, and inserting a piece of tempered steel, upon which a new pivot is afterwards turned. This operation requires either a watch lathe or a pair of "turns," and does not make a really satisfactory job. It is desirable to have a new balance-staff.
Cylinder System with Secondary Circulation.-A hot-water apparatus on the cylinder system, with secondary flow and return, to supply bath, lavatory, and two sinks, is shown by the accompanying figure. It will be noticed that the secondary return enters the cylinder about 4 in . to 5 in . from the top. The boiler should be boot-shaped in a $10-\mathrm{in}$. or 11 in . fire;

Cylinder System with Secondary Circulation.
35-gal. cylinder; l-in. branch to bath, s-in. to sinks, inin. to lavatory. Primary flow and return, lifin.; secondary circulation, 1 in.; cold supply, lin.; expan-sion-pipe, 1 in . The emptying tap beneath the cylinder can be $\frac{1}{2}$ in. or $\frac{3}{4}$ in. The stopcock in cold supply muet have a full straight-way; this pipe must be a clear 1 in. everywhere. The size of the cold cistern depends on whether the water supply is constant or intermittent. In the latter case it will depend on the establishment, but 200 gal . to 300 gal . will be a likely size.

Gold Lacquer for Brass and Tin.-A bright (cold) gold lacquer for brass and tin that will cover solder marks may be made by diesolving 1 lb . of ground turmeric, $1 \frac{1}{2} \mathrm{oz}$. of gamboge, $3 \frac{1}{2} \mathrm{lb}$. of powdered gum tandarach, and $\pi^{4} \mathrm{lb}$. of shellac in 2 gal. of spirit of wine. When shaken, dissolved, and strained, add 1 pt . of turpentine varnish.

Tonnage of Vessels,-Under deck tonnage is the cubic contents of the vessel below the tonnage deck divided by 100. The tonnage deck is taken to the upper deck in ships that have less than three decks, and to the second deck from below in all other ships. Length is mearured from the inside of the stem to the stern timber; and for each of the following classes of veasels is divided into different numbers of parts as follows. $1 \mathrm{st}, 50 \mathrm{ft}$ long and under, 4 parts ; 2nd, above 50 ft . and under $120 \mathrm{ft} ., 6$ parts ; Srd, above 120 ft . and under $180 \mathrm{ft} ., 8$ parts; 4th, above 180 ft . and under 225 ft ., $180 \mathrm{ft}_{\mathrm{t}} 88$ parts, 4 th, above 180 ft , and under 225 ft, is taken from of round of beam to the top of the ceiling on ordinary Hoors, and in others to the top of the ballast tanks, in which case the thickness of the ceiling is deducted. If the depth at the midship sectional division does not exceed 16 ft ., divide it into four parts, and if it exceeds that length, divids It (\&nd also the others) into six equal parts. The distances are then measured to the inside sparling; no measurements are
taken to dunnage sparring. In oll vessels they are taken to the inside of the frames; and if a vessel is insulated for coollng purposes, to the sparring. These measursmontsare then put through Simpson's Rulo to ascertain the cubic contents, and the result is divided by 100 which is the Board of Trade cubic equivalent for a ton and then multiplied by 2 to complete the calculation for both sides of the ship, as one side only is measured Gross tonnage is the addition of the under deck tonnape to that of the poop, or break, bridge-deck forecastle charthouse, deck houses, and hatches, if under $\frac{2}{2}$ percent of gross tonnage. In these the tonnage is found by dividing the cubic contents by 100. Galleys and engins houses are not added. Net register tonuage is the gross tonnage after certain deductions have been made These are crew space, officers' rooms, and machinery space, which includes boiler room, engine room and tunnel. an engine in the machinery space. If the machinery space is above 13 per cent. and under 20 per cent. of the grose tonnage, deduct the tonnage of the machinery space plus 32 per cent. of it. If over 20 per cent., deduct $1 \frac{s}{4}$ times the space measured. The deduction is to consist of the spacs actually occupied by or required for the proper working of the boilers and machinery. Engine and boiler spacss are measured to tonnage deck without light and air space. When the 32 per cent. cannot otherwise be got, the light and air space is measured and added to the gross tonnage and to the machinery space. Light and air space is engins and boiler casings and engine skylight measured abovs the tonnage deck. The following examples will show how this works out.
Tonnage for three-decked ship with laid decks:-

Under deck		1,928 ${ }^{\text {81 }}$
Poop ...	-	-.	...		132.04
Forecastle,.		$5 \overline{3} \cdot 63$
Houses \ldots....-	...		8787
Excess of hatches	...	-	$2 \% 4$
Gross Tonnage ...	\cdots	...	-*	...	2,206.64
Deductions:					
Propelling space	\cdots	$706 \cdot 12$
Crew space	$77 \cdot 11$
Total deductions	$783 \cdot 23$
Grose tonnage	\cdots	...	2,206.64
Deductions	$783 \cdot 23$
Net Register Tonnage	'	...	1,423•11

The tonnage co-efficient is the tonnage divided by length multiplied by breadth by depth, divided by 100. Example:-
The tonnage is 2,310:-

$$
\begin{aligned}
& \mathrm{L} \times \mathrm{B} \times \mathrm{D} \div 100=2,951 \\
& 2,951)_{2,310}
\end{aligned}
$$

0.78 co-efficient

Polishing Shells,-Generally, shells to be preserved and polished may bs divided into (a) those having a natural polish and requiring very little preparation; (b) those which have no natural polish, but which may be polished without moch trouble ; and (c) rough shells which require to be smoothed by mechanical means hefore polishing. Some of thoss in the first means herore polishing. foume with a glossy surface, look'well if merely cleaned; with others ths colours and polish will not bs so bright when dry as in a wet state, so they are coated with gum water, white of egg, or colourless transparent varnish. The polish and colour of some shells is obscured iby a dall epidermis or outer skin, to remove which, soak in warm water and rub off with a brush or a rag dipped in hydrochloric acid; after wards, well wash the shells in water and proceed as hefore. 1f, after removing the skin, the shells bave no natural polish, they constitute the second class. Next wash them well in warm water and dry in hot sawdust; some may be polished by simply rubbing with chamois leather, with or without a little olive oil. Others ars smoothed with emery-paper, rubbed with washleather dipped in turpentine and dressed with tripoli powder, then with fine tripoli alone, and finally with olive oil and chamois leather. All rough shells should first be boiled in a strong eolution of potash. Ordinary files, followed by emery-cloth, will remove the roughness of some shells, which can then be polished in ths way mentioned for the second class. Others must be ground with emery-wheels of different degrees of fineness, or wooden and other discs dressed with washed emery, rottenstons, and water ; or the dise may be covered with leather dressed with putty powder or tripoli. Somstimes, in grinding shells, the outer stratum or strata is ground through to show the underlying ones

Recipes for Universal Cements.-Under the name of universal cements are known many useful preparations that strongly adhere to almost any substancewood, metal, leather. glass, etc. This is a recips for such a cement, and it is especially useful for repairing specimens of minerals, rocks, etc. Reduce 2 oz. of clear gum arabic to powder, and dissolve it in a little
 the gum solution, and heat the mixture over a waterbath until the starch becomes clear. The cement should then he as thick as tar, and should remain so. It can bs kept from spoiling by dropping in it a lump of camphor, or a little oil of cloves or sassafras. There are phor, universal cements that apvear in the form of brown sticks: (a) shellac; and (b) a mixturs of 2 parts brown sticks: (a) shellac; and (b) a mixturs of 2 parts
of shellac and 1 part of Venice turpentine. These materials are melted and then cast into sticks. Another universal cement is made thus:-Dissolve $80 z$, of sugar in 24 oz . of water in a glass flask on a water-bath, and to the thin syrup add 2 oz . of slaked lime. Keep the mixturs at a temperatule of about $70-75^{\circ} \mathrm{O}$. for three days, shaking frequently; then cool, and decant the clear liquor. Mix 6toz. of this liquor with the same quantity of water, and in the mixture steep 16 oz . of fine gelatine for three hours al'ter heating, to effect solution. H'inally, add to the mixture l_{1}^{1} oz. of glacial acetic acid and 15 gr. of pure carbolic acid. The latter serves as a preservative. Another : dissolve 2 oz . of isinglass or fish glue in proof spirit, and add loz. of pulverised gum ammoniac. Mix with a saturated solution of 2 oz . of mastic in alcohol, heat over a slow fre, and afterwarda mastic in alcohol, heat over aslow fre, and anterwards place in well-stoppered bottles. For use, the material should be
and glass.

Cleaning Gravestones. - The method of cleaning gravestones by scraping and rubhing with sand and water is one of the most thorongh that can be adopted. Chloride of lime may often be used with advantage alpaste made of American potash and whiting is also useful for the purpose.

Testing Drying Quality of Paint. - To test the drying qualities of paint make some streaks of paint on glass slips and keep them at, say, $212^{\circ} \mathrm{F}$. for about half an hour: the quickest dryiug will be the most tacky to the touch. In ordinary circumstances, the amount of white lead required for 1 lb . of driers varies from 10 lh . to ll lb .; more will be necessary in summer than in winter. Too much driers will cause the surface of the paint to dry too rapidly, the result being the formation of a hard surface film and a tacky basis. For lead colour it would he advantageous to use more driers, as the black retards the drying considerably.

Varnish for Kitchen Chairs.-Before re-varnishing, the chairs should be washed with soda water-a teacupful of soda dissolved in 1 gal. of warm water. Use a good quality spirit varnish. The more shellac the harder the varnish; soft gums, as elemi, thus, or Venice turpentine, should bs discarded. For mahogany or stained chairs uss garnet or button lac in preference to shellac; for light or birch chairs, use lemon shellac. A good useful varnish consists of button lac 40 ., resin 2 oz . benzoin 2 oz., and methylated spirit 1 pt. Carefully strain before use; keep corked when stored away; apply with a camel-hair brush. Ope peunyworth of Bismarck brown to 1 pt . of varnish will impart a rich red tone, though the better plan would be to colour all light places with equal parts of varnish and spirit strongly tinged with red, then finish with clear varnish.

Notes on Damp-proof Courses.-Damp-courses, or damp-proof courses, as they are correctly termed, entering the upper portion of the walls. The wet can get into walls in three ways, namely, (1) from the top, this being avoided by building a coping of hard brlcks set in cement, and a course of tile creasing. (2) From the front, this being prevented by rendering with cement, hanging with tiles, and by other methods. (3) By capillary attraction from the foundations, when these are laid in wet or damp soil, or when the top soil becomes soaked by rain. It is to the last-menfioned conditions that damp-proof courses are applicable. Water is prevented from geting, hy means of capillary attraction, into the upper portion of buildings, by inserting al layer of some impervious material about 3 in . above the ground level. Asphalt is the hest material that can be employed, as if any slight settlement should occur asphalteasily conforms to it without cracking; it should be used in two layers, making altogether about sin, in thickness, so that any joing or faults in one layer may be covered over by the next. Sheet-lead makes a very good damp-proof course, as it entirely prevents any moisture from getting higher up the bullding: besides, it is pliable, and does not crack if any part of the wall should settle slightly more than another part. It is, however, too
expensive for general use, and must be laid in cement, as ordinary line mortar corrodes it very quickly. A stoneware damp-course of about 3 in . thick can be obtained with holes perforated through it so that it can also be used for ventilation purposes. It costs more than asphalt, but it has the advantage of raising the building 3 in., thus saving one course of loricks; this may be deducted from the cost. Slates laid in cement are often employed as a damp-proof course; this, if the slates are laid in double courses so that each joint is covered by a slate, forms a very good damp-preventer, and is very cheap. It has the disadvantage, however, of being easily cracked, and this lessens its efficiency. A course of Staffordshire blue bricks can be bullt in the wall as the work proceeds, and these, if laid in Portland cement, maks a very durable, permanent, and cheap damp-proof course.

Machine for Grooving Sashes. - Below are instructions on making a small machine for grooving, rebating, and moulding sashes and similar woodwork. Fix together a strong frame all for a small hand cir-cular-saw bench. Two bearinge secured to the frame may carry a spindle with a groo fed cutter-head D (Fig.1). On the frame is secured a portable table, hinged at one end so that the other end may be raised; or it can be raised both ends to vary the depth of cut; or it may be screwed to the frame, and the cutters adjusted by easing the studs that secure them to the cutter-head, the studs being screwed into tapped holes in the head. A (Fig. 1) is the spindle, and at B are tight and loose pulleys, and at 0 the parts that run in the bearings. These should fit nicely and run freely. Fig. 2 is an enlarged end view of the cutter-head, showing the cutters E secured to the head.

Machine for Grooving Sashes.

At F are the studs that secure the cutters to the head. There should be a suitable opening in the table for the cutters to pass through, and two small pressure rolls immediately before and behind the cutters to bear on the stuff to be worked. These cutters should be driven at a high speed. The higher the speed, without vibration, the better the work done. In the same bearings a saw spindle carrying a small circular saw may run. The table and spindle referred to above should be removed, and another table with a saw-gate in it for the passage of the saw should be screwed on the frame. Suitable saws may he used for tongueing and grooving, or cutters, as Figs. 3 and 4, may be secured to the cutter-head. as Figs. 3 and 4, may be secured to the cutter-head. rollers should be secured. Suitable cutters for moulding, grooving, etc., may be obtained from makers of wood: working machinery. The work in such a small machius may he fed by hand.

Manufacture of Acetate of Cellulose.-Acetate of cellulose is made by a process patented by Cross \& cevan and described iu patent No. 9676 , 1894 . The method is as follows. Dehydrated cellulose is mixed with a concentrated solution of zinc acetate in equal proportions; the mixture is then dried at $110^{\circ} \mathbf{C}$. and finely powdered. The powder is mixed in small quantities at a time with acetyl chloride, the proportion being 2 parts of acetyl chloride for each part of zinc acetate used at the first. The mixture is well stirred and cooled, so that the temperature never rises above $30^{\circ} C$. cooled, so that the temperature never rises above 30°. water to remove the zinc salts and dried. To free it from unaltered cellulose, the product is treated with chloroform, which dissolves the cellulose acetate, and, after filtering, the solution is heated; the chloroform then distils over and is collected, and the cellulose acstate is left as a transparent film or sheet.

Dulling Varnished Surfaces.-To dull a varnished surface proceed as follows. With a sash tool apply raw linseed oil over all the varnished surfaoe. Then take up a quanbity of medium grade pumlee powder on a fairly stitf bristle shoe-brush of good quality, and apply liberally and with plenty of friction, more oil being added if necessary. Should it be found that the varnish is too hard for the pumice to cut, a small quantity of emery powder may be added. As the eurface becomes dulled, cease to use the oil, and use the pumice drier. Finally, finish off with a drier brush and plenty of clean rag, in order to leave the eurface free from grease. Excess of oll, or a greasy appearance, may, he killed by wipingover with benzoling. Best "antique", goode are often dulled with pumice or emery an advised above, and afterwards finished by a sharp rub of beeswax and turpentine, which imparts a pleasing gloss inetead of a shine.

Riffe and Belt Racks for Tent Pole,-Figs, 1 and 2 show an elevation and plan of a rifie rack for a tent pole. The rack is made of birch or beech wood lin. thick by $2 t \mathrm{in}$. wide, jointed in the centra by a hinge A on the front edge. A semicircular groove is cut on the back edge, a hoop-iron plate B (Fig.2) being fixed on each side, sothat the projecting ears C are $\frac{1}{2} i n$, apart, A $\frac{1}{2}$-in. bolt, having a small wing nut fitted on the end, passes through both

Rifle and Belt Racks for Tent Pole.
ears ; this nut, on being screwed up tight, fixes the rack in any position on the pole without damaging it. For suspending belts from a tent pole, an iron clamp made to Fig. 3 to encircle the pole is required; it is jointed in the front to allow of it expanding so that it will take off and on, and is fixed at the back by a bolt in a similar manner to the rack (Figs. 1 and 2). To taks the bolt, it will be necessary to turn down the ears as shown in Fig. 4, otherwise the bolt will be in the way of the pegs D (Fig. 3). These pege are about 6 in. long by $t_{10}^{5}-\mathrm{in}$. round iron, and are riveted into the clamp.

Roofing with Felt.-A small building may be roofed with felt alone in the following manner, The felt is placed upon horizontal battens which are aawn from the round trees, the edges being laft rough, and the battens being placed with from 3 in. to 4 in. between them. The felt is put on from ridge to eave, passing over the ridge to the middle of the nearest batten. The felt is hooked or lapped to give four thicknesses, through which the nails can go. This roof will stand the test of many years, not a drop of water coming through, and is light, cheap, and atrong.

Flxing Topmast of Flagstaff.-In fixing the topmast of a flagstaff to a mainmastit must be remembered that the masthead, that is, the portion between the two caps, or brackets, is square and slightly tapered, and the caps fit tightiy on 1t, one at the top and the other on the cheeks below. In small fiagstafie, where housing the topmast is unneceseary, the other holee are usually round, the heel of the topmast being round also. After the topmast is hoisted, it is wedged in position, and a fid bolt put through the heel resting on the lower cap; these light poles are not provided with stays. Larger staffis have a sheave-hole in the heel as well as a fid-hole,
and the upper cap is fitted with iron bolte, to one of whlch the end of the mast rope is bltched. The haullng part is paesed through the sheave-hole, and throughi a part block hooked on to the other cap bolt. A slack lashing is put round the topmast and hauling part of the mast rope about one-third down, a sailor goes aloft and points the mast, and when the topmast head is well through the upper cap he puts on a grommet (\&o prevent chagh and then the stays; he then fixes the truck, and reefs the signal halyards. When the mast is hoistsd, he puts the fid in; the mast rope is then slackened, and stays are set up, etc. Lowering, or housing, is performed in the reverse order.

Making Glauber's Salt.-The Leblanc method of making Glauber's asilt (sulphate of soda) is as follows, Common salt in fine crystale is fed into a large iron still connected with several tall towers made from drain pipes, down the interior of which water is allowed to run from the tank. Ths requisite quantity of oil of vitriol is then run into the pan and, after the first revitriol is then lun into the pan and, after the firstrschloric acid has been evolved and the residue is a neutral sulphate of soda. The hydrochloric acid is condensed by the water in the pipes and recovered. The sulphate of soda is dug out of the pan. When this is dissolved in water and crystallised out, it is known as Glauber's salt.

Underpinning a Chimney Breast.-In removing a chimney breast (on ground fioor) and in fixing cantilever brackets to support three floor breasts above, a steel joist, l in. in depth for each foot of span, should ke fixed

parallel to the wall, as shown by Fig. 1, with a strong parallel to the wall, as shown by Fig. 1, with a strong joists should be fixed at right angles to the wall and carried across the room as shown by Fig. 2, with a similal fiag carrying the breast. The latter method would be the safer, but it necessitates two beams instead of one.

Mending a Watch Fusee Chain,-Here are instructions on mending the fusee chain of a lever watch. Lay the chain on a piecs of wood. Place the nail of the first finger of the left hand on the last link, and insert the edge of the amall blade of a pocket knife and insert the edge of the small blade of a pocket knife and where it is. Then place the chain over a steel stake with graduated holes, and push out the rivet with a flat-ended needle held in the pin-vice. Treat both ends of ths chain in this manner, making them match each other. Now file up a amooth eteel pin to form a new rivet, and tap it in gently. Cut it off as close as possible to size, lay it on the wood, and file the rivet fiush on both sldes. Now lay ths chain on a flat steel stake and gently tap the rivet on both sides with a light watch hammer. When finished, the join should not be perceptible.
Concrete Construction under Water. - To form concrets walls under tide level, the most practical way will probably be to work inside a timber cofferdam, if the depth is not too great. The wall would be dealt with in short lengths. If it is wiehed to dispence with a cofferdam, the concrete can be deposited by meone of cranss and special skips; which have doore at the bottom arranged to open when the bottom of the sea is reached. The concrete is thus deposited quietly in position, and if the curreuts are not strong, the cement is not washed out hefore it has time to set. Another way, used in the construction of piers of breakwatere, is to sew the freshly made concrete up in long bage, like sausages, and then drop them into position. The bags protect the cement from being washed away. This protect the cement irom being washed away. thick, method could only be used if ths wal were very that wall.

French Polishing Turned Teak.-Teak-wood blocks, turned at high speed in a lathe, are generally left with a smooth flaish; they are oiled and polishod whilst revolving. If the blocks are rough or coarse grained, a filling of tinted plaster-of-Paris is ofttimes used previous to oiling. A sultable polish consists of methylated spirit t pt., gum sandirach loz., seed lac loz., gum benzoln toz., and English heeswax 1 oz . shaved thin and diszolv toz., and Enghish heeswax 1 oz. shaved thin and disgums are dissolved, add the beeswax and carefully strain. Apply with a flannel or pads of soft wadding.

Thinning Stockholm Tar.-Stockholm tar that has besn kept for a long time and has thickened may be melted down by a gentle heat, and thinned either with creosote oil or with coal-tar naphtha; this will require very great care, especially if the latter be used, the materials being very inflammable. The tar may bs applied cold if sufficiently fluid; but for treating wood it is better to apply the tar hot, because then it penetrates much better.
How to Maket Leather Purses.-To make the purse illustrated by Fig. 1, first cut a cardboard patteru, and mark and cut out the leather for tha back piece a (Fig. 2), Which is on a smaller scale to Fig. 1 . B (Fig. 2) is the front piece. A slit or small hols H (Fig. 1) is nade in the front piece, and a collar-stud is inserted, or a button may be sewn to the leather. The back and

Next fill in the design with gesso in higher religf, and let the whole set. The gesso composition will take the colour more easily if it is sized, but this is not always necessary. Silver the backpround, gild the set pattorn, and tint the design, which is in high relief, with emerald or serge blus, relieving it with copper gold in parts. If it is desired to get a bright effect, size and varnish the panel; if not, the gold alone can he eized; this renders it more permanent. As nothing more is required in the way of flnishing, it will be understood how easily and quickly gesso work can be gxecuted. Prepared metallic colours of a number of beautiful shades are sold in tins. In using them, pour off some of the liquid, turn out the requisite amount of colour on to the palette, and put the rest of the liquid back into the tin; this keeps the colour in good condition. The white powder and the composition must be well mixed; if too much of the latter is added to the powder a high relief cannot be secured. Ths brushes and paletts ars cleaned with turpentine. Excellent effects may be obtained by shading a background from silver to blue, or hy graduating the tints from light blue to dark blue, or from salmon to bronze. A back. ground, again, may be entirely gilded, or silvered, or coloured to any desired shade. It is unnecessary to gesso the panel for gilding or silvering unless a decorated background is wanted; in the latter case the decoration is first moulded, or incised, on the gesso ground and the whole is then coated with gold or silver.

front pieces are then sewn together round the edges, the flesh sidas being innermost. The dotted lines D (F'ig. 1) represent the stitches. The edges of the purse should bs rubbed smooth, and a slit S (Fig. 1) made in the flap to fasten on the stud or button. Instead of a stud or button to faston the flap of the purse, a piece of leather L (Fig. 3) can be sawn on, under which the flap F (Fig. 3) is pushed. Leather divisions can be added to these purses if desired.. Fig. 4 shows a different shaps of purse. To make a purse that opens wide, a piece of purse. To make a purse that opens wide, a piec
Executing Designs in Gesso.-Those attempting gesso work for the first timg-should, to get familiar with the work, colour a panel of wood green with metallic colours. Brush the gesso upon the green ground and model the design ; let it dry, then silver it, adding touches of gold to bring out the pattern. Or the design may first be sketched on the panel, the gesso laid and modelled, then the background laid in, and, lastly, the gesso silvered and gilded. This is one of the simplest ctyles of panel that can bs executed. Good ideas for designs may be obtained from some of the best Japanese papers. Large scrolls, arranged on decorated backgronnds, look well. Let the treatment of the subject bs bold, and free, and strong. Gesso is not fitted to the carrying out of minute details. When a little experience has been gainsd, a slightly more advanced exercise can be attempted. Cover a panel of wood with gesso, and rapidly sketch the design. Now model on the background a set pattern in low relief, aifter the atyle of old illuminations or figure pictures.

The design may be silvered, copper gilded, or gilded. The indentations may be accentuated with colour. Again, the design may be tinted with one or more colours relieved or not according to fancy, with gold, silver, or copper gold. It will bs seen that greatly varisd offects can be produced in gesso decoration. To make a profit on picture frames execnted in gesso work, great facility in rapidly producing decorations must bs attained. Amateurs are more given to perfecting details than to attonding to the general effect, which, after all, is the main point in decorative arts. The outlines should be kept true and sharp, but the modelling of the foliage will not need the amount of cars and labour bestowed on it as would be wanted on a flgure or a panel. The work can be quickly done either with or without the aid of cotton-wool. Workers of little experience often suppose that high relief is effective. To a certain extent it is, but the purpose of decoration must be horne in mind. There is no true art in subordinating tho picture or photo, which should bs the centre of interest, to the ornamentation of the frame; therefore the design should be kept in rather low relief, and the colouring should be quiet in tons. The latter is more important if the photo is coloured; for etchings, too, the colouring of the frame should be subdued, but for plain photos a bright frame is often desirable.
Red Facing Brioks,-Red facing bricks should be made from a clay or marl containing sufficient iron to give the colour on burning. To make a red brick from blue clay, mix with it very carefully 5 to 15 per csnt. of ochre or red oxide of iron (red hematite) finely powdercd.

Slopes, Batters, and Gradients.-In epeaking of the slope of a bank, the expression 1 in $1 \frac{1}{2}$ means that the slope is in the proportion of a rise of 1 vertical for a distance of 14 horl\%ontal ; thus, if the hauk is 10 ft . high with a slope of 1 f to 1 , or 1 in 14 , the width at buse will be 15 ft . For aloping walls the slope is called a batter: thus the steepest bauk being, say, to $1, a$ wall at the thats the steapest baxk bcing, say, ${ }^{\frac{1}{t} \text { to } 1 \text {, a wall at the }}$ amme angle would be said to bitter bin. ler foot, meaning
that the top is get back 6 in. for every lit. in height. A gradient is a very flat slope such as the lougitudinal surface section of a road or railway, where the gradient may be from 1 in 30 in the former care, to 1 in 2,000 in the latter, meaning 1 vertical to 30 or 2,000 horizontal.

Damp-proofing Walls.-Various methods have been recommended at differeut times for preventing damp showing on the inside of a defective wall, one of the most effective being covering the wall with lead foil before papering. At best, this is only a temporary expedient, the plaster in time disintegrating, and having to be renewed every two or three years. The best method is to deal with it from the outside. A few coats of wash made as thick as cream with neat Portland cement and applied on the outside will do much to lkeep out and applied damp.

Hints on Retouching Negatives.-Shadowe may be deepened in a photographic negative, and opaque (or light) llnes removed by seraping with a sharp knife ae shown in the accompanying sketch. Its edge is turned over slightly so as to ecrape away a thin layer uf film. The negative must be thoroughly dry and should be warmed slightly, or the film may tear. A should better light is necessary for the use of the knife than for pencil work. Scrape only the least possible amount at each stroke, producing a slight grating 60 und; the effect should not be visible till after a few strokes. For this work remove the ground glase from the desk. Decided white lines are due to working too heavily or naing too soft a lead. Avoid touching the eyes-that le, the iris and pupil. View the effect of the work from all angles by turning the negative round. For

Tool for Retouching Negatives.

thin lines the point may be used, but for broader spaces use the side of the blade. The easiest plan is to stipple in the part with water colour. Mix crimson lake, ultramarine, and black to match the photograph. Soak some lumps of gum arabic In water and melt by warmlng. Mix well a few drops with the paint; the surface should then have on drying the same appearance as the surrounding parts. It is well to have a cup of thin gum water at hand to dip the brush in occasionally. Keep the touches as even and close together as possible. Another good plan for deepening the shadows is to rub them down with a leather stump dipped in alcohol. For large patohes resort to chemical reduction (hypo and ferricyanide of potash).

Particulars of Ivory.-Ivory differs from bone in it finer structure and greater elasticity, and in the absence of those larger canals which cary bloodressels through the substance of bons and appear upon it as specks or streaks according as the bone is cut lengthways to or across the grain. On examining the cross section of a tusk cut at a distance from the growing pulp, its middle is seen to be occupied hy a darkish spot of different structure this is the last remains of the pulp roughly calcified. The outer border of the tuske consists of a thick layer of cementum (commonly called "bark"), with which the whole tusk is coated, and the rest is ivory. The different ivories are the mammoth, found in Siberia; African, Indian, Oeylon, and Desert, found in the sands. The best ivory is African. The largest quantity comes from Africa; less than one-fourth comes from India. African ivory is closer in the grain, and has less tendency to become fellow by exposure than Indian ivory. When first cut it is semi-transparent and of a warm colour, and as it dries it becomes minch llghter and more opaque. Ivor'y also shrinks coneiderably during the drying process, вo that it is necessary to seasou it like wood when such thinge as box lids are to be made from it. In buying ivory, it is not always posslble to judge ite quality before the tusk is cut up. The tuek should be smooth and polished and of a deep copper colour, and ehould not show any large cracks. As about one-half the length of a tusk is hollow, when cutting one up gieat care must be taken to cut it up to the beet advantage. With ege ivory turns yellow, and various recipee have been given for restoring tis whiteness, but they malnly depend on the removal of the outer surface, and no more satisfactory method is known than exposing it to the light. iqory may be made flexible by submitting it to the action
of phosphoric acid; when washed and dried it becomes hard, and when molstened agiain resumes its flexibilitybut at the sacrifice of many of ite properties. Ivory takee dyes well without interlering with the subsecuent polieh of its surface. Of other ivories, the canine teeth of the hlppopotamus furnish an ivory harder and whiter than that of the elephaut and less prone to turn yellow. The tusks of the walrus furnish ivory of a dense and rather imperfect oonsiatence. The spirally twisted tusk of the narwhal, the teeth of the sperm whale, the ear. bones of whales, and the molar teeth of the elephant are also made use of as sources of irory, whose quality, of course, varies greatly.

Particulars of Ammonium Tartrate and Potaseium Phosphate.-Ammonium tartrate is made by neutralis ing a solution of tartaric acid with ammouia and then evaporating to drynoss. Potassium phosphate may be obtained by adding carbonate of potash to a solution of acid phosphate of lime (superphoephate) until it ceases to effervesce. The precipitate is filtered off and the liquid evaperated until the salt crystallises out. The apparatus required would be wooden tubs or vate, a large wooden frame with cotton stretched over for filtoring, a large shallow pan, and a boiler or fire for evaporating the solution.

Use of WatchmaLsers: Turns.-In usiog a pair of watchmakers' turne when putting a new cylinder in a watch, the cylinder must have a brass ferrule affixed to it by shellac. It is rotated by means of a light whalebone bow about 9 in . long, strung with a horsehair. The motion given by a bow is backward and forward, therefore cutting is only done on the forward or down stroke, the graver being held slightly away from contact with the work during the up stroke-that is, the backward motion of the bow.
Affixing Leather to Band-saw Wheel. - The leather should be etretched previous to being secured

Aftixing Leather to Band-baw Wheel.
to the wheel. Leather bands are not made endless and spring on, as are rubber bands. The ende of and lopinng on, as are rubber bands. The ende of small holes made in the rim of the wheel to receive wooden pins. Warm the rim of the wheel, and give it coat of good glue. Place one end of the leather on the wheel, and drive a pin in the hole P; pull the leather tight, and press it firmly on the rim of the wheel as it is passed round. Butt the ende, as at A, and drive the wooden pins, previously dipped in glue, into the holes D. Allow the glue to set hard; then remove all surplus glue, and cut off the pins close to the leather. Now place the wheels on the machine, and eet them running. Whilst they are in motion, press on the bands for a minute or two a piece of coarse glasspaper. The wheels will now be ready for work. Well glue the ends of the band where it buttg.

Substitutes for Ivory.-Substitutes for ivory are bone, xylonite, and a French celluloid. The two latter productions may be obtained in eheete from in. to 2 in. in duickness, and in blocks to order. They are subject to thickness, and in blocks to order. They are subject to moulded, and polished, and are highly infiammable. Information on working celluloid is given on p. 98. When bone is intended to take the place of ivery, only the best cuts are used, and a higher finish is given to the manufactured article.

Packing for Plunger of Fump Piston.-A simple and good packing for a piston can be obtained by using three leathers. One, at the centre, is a simple disc, and on each side of it is a oup leather that fits the bore of the pump barrel. One of the cup leathers is placed against the end of the plunger, and the other is kept in place by a thick washer, a set-screw passing through the centre of the leatherg and threading into the plunger. The whole is pulled up tight by meand of a nut beariug on the face of the washer.

Fixing Water-colours.-To prepare water-colonreso that they will not run when washed over a second time, rub the colours up in a solution of gum dammar in alcohol, instead of in water; they should not then run when used for linee. For ordinary waskes, there ought to be no difficulty when they are rubbed up in water if the colour is allowed time to soak into the grain of the paper.

Filling in Joints in Bamboo Work,-Badly made joints in bamboo work can be filled in with a mixture of sawdust and hot glue made to the consistency of thin paste, all surplus filling being cleaned off before it dies. Oracks in bamhoo can also be filled with shoemakers' heellill. A lighted taper is ap lied to the heelball, and sufficient allowed to drop into the fiaw. After it has set, rub with a clean cloth until the surface is perfectly level.

Making Cyanide of Gold for Electro-plating.-To anke cyanide of gold for electro-plating, dissolvel oz. of oure gold in aqua regia (a mixture of hydrochloric and aitric acids), evaporate to dryness, dissolve the residue in 15 pt . of water, and add 5 az of cyanide of potash. Chloride of gold may be used, but about $1 \frac{1}{3} \mathrm{oz}$. would he required. The amount of cyanide of potash may be varied.

Mixing Pyro Developer.-In mixing up pyro solution, some prefer to dissolve the pyro immediately before use, as, owing to its affinity for oxygen, it rapidly decomposes in water This is, however, a somewhat tedious method of working, and often very inaccurate. As the pyro is extremely soluble, a small quantity of water only need be used, which, if previously rendered acid, allows of considerable storage. If a solution of pyrogallic acid and water be allowed to stand in a measure exposed to the air it will be noticed that, although the top of the solution actually coming in contact with the air rapidly oxidises and turns brown, the remainder is unaltered, proving that if the solution can be kept from the air it will keep considerably longer. An authority has suggested that the pyro bottle be fitted with an oxygen trap in the manner shown in the accompanying sketch. The
sulphide), and 30 parts of luminous calcium sulphide. Violet: 42 parts of varnish, 102 parts of barium sulphate, 28 parts of ultramarine violet, 9 parts of cobaltous arsenate, and 36 parts of luminous calcinm sulphide Yellow: 48 parts of varnish, 10 parts of harium sulphate, 8 parts of barium chromate, and 34 parts of luminous calcium sulphide. Yellowish brown: 48 parts of varnish 10 parts of harium sulphate, 8 parts of auri pigment, and 34 parts of luminous calcium sulphide. White: 40 parts of varnish, 6 parts of barium sulphate, 6 parts of calcium carbonate, 12 parts of white zine sulphide, and 36 parts of luminous calcium sulphide.
Fydraulic Gradient and Sewage Irrigation.-The hydraulic mean gradient of a sewer or water pipe is the line which would be assumed by the surface of an open stream when the discharge at the bottom was equal to that of the sewer or pipe, the cross section of the stream being assumed to be equal to the section of the pipe outlet. In the example shown in the figure, when the outlot at B is discharging at its fullest capacity, and there isan ample supply of sewage coming in at the other end of the sewer to maintain this discharge, the hydraulic mean gradient will be in the position shown hy the dotted line BC. The vertical height between A and C is the head of water required to drive the sewage through the pipe at this particular rate, and measuring down from the bydranlic meau gradient to the pipe in any portion of its length, the vertical heights give the pressure tending to burst the pipe at that point. So long as this full discharge is maintained, the liquid will rise in the manholes to the height of the hydraulic mean gradient, and will consequently overfiow at the weirs fixed at that height. Supposing now that the supply of sewage were to diminish, and only a trickle come down the sewer, it is obvious

Hydranlic Gradient and Sewage Irrigation.

Mixing Pyro Developer.

pyro is kept in A and drawn off from the bottom as shown. The jar B contains a strong solution of pyro and sodium sulphite, both of which readily absorb oxygen. The air that enters the jar B has to pass first through the solution, and a large proportion of oxygen is taken up. Both sulphite of soda and meta-bisulphite of potash are used as preservatives for pyro on account of their affinity for oxygen. The latter is four times as strong as the former, but is more expensive and liable to make the pyro too acid. Another plan is to fill a number of small bottles with a 10 per cent. solution of pyro and seal the tops with paraffin wax.
Recipes for Luminous Paints.-In the manufacture of luminous paints commercial varnish contaiuing lead or manganese must not be used, as it would destroy the luminosity of the paint. A suitable varnish is made by a process patented by Schatte, of Dresden. Three parts of molten Zanzihar or Kauri copal are dissolved in 12 parts of oil of turpentine; the solution is filtered and then mixed with 5 parts of pure solution is filtered oil, which should have been heated and allowed to cool previous to mixing with the solution. It is this varnish that is referred to in all of the following recipes, and in all cases aifter mixing together the paint ingredients as specified below, they should be run through a paint mill. The latter should not contain iron rolls, as the particles of metal, liable to be detached, would affect the luminous proverties of the paint. Blue : 42 parts of varnish, 102 parts of sulphate of barium, $6^{\circ} 4$ parts of ultramarine blue, 5.4 parts of cobalt blue, and 46 parts of luminous calcium sulphide. Grey: 45 parts of varnish, 6 parts of barium sulphate, 6 parts of calcium carbonate, 0.5 part of ultramarine blue, and 65 parts of grey zine sulphide. Green: 48 parts of varnish, io parts of sulphate of barium, 8 parts of green oxide of chrominm, and $3 \pm$ parts of luminous sulphide of calcium. Orange: 46 parts of varnish, 17.5 parts of sulphate of barium, 1 part of Indian yellow, 1.5 parts of madder lake, and 38 parts of luminous calcium sulphide. Red: 60 parts of varnish, 8 parts of powdered sulphate of barium, 2 parts if madder lake, 6 parts of realgar (red arsenic
that the sewer would gradually fill up to the horizontal line $A B$, and then as soon as a trifling head of water had accumulated at the end A, the liquid would overflow at B. In this case the hydraulic mean gradient would be very nearly horizontal, and the sewage would not rise in the manholes sufficiently high to overflow at the weirs. For this reason the sluice valye is provided at the manhole at B. By shutting down this sluice to the required extent, the outlet can be made smaller, so that the water backs up in the sewer, and rises to the height of the weirs. The discharge will be very small compared with the discharge in the first case, but the hydraulic mean gradient will be in the same position. Reverting to the simile of the open channel on the line of the hydraulic mean gradient, it will be recognised that with a head equal to the distance between A and O there would be a large discharge if the channel were of a size equal to ontlet of the pipe; but it the channel were of a cross section equal only in area to the diminished ontlet when the sluice is partly closed, the same head of water will be required to drive a much smaller flow through the channel. With respect to the sluice valve near the top end of the sewer, if its position is at 240 ft . on the horizontal line it can be hrought into use, as it will be below the highest position of the hydraulic mean gradient. The letter references not already described are as follow. D, hydraulic mean gradient; E, pipes 30 in . in diameter; F , pipes 2 in in. in diameter; G, open channel; I, manhole: J, manhole and sluice valve; and k, weir. It is obvious that the and sluation is merely a, diagram; it is not drawn to even approximate to any scale.
Extracting Zine from Tin.-The following have been given as methods of extracting zinc from tin. (a) Raise the mixture to the vaporisation point of zinc; this involves great waste of tin. (b) Granulate the mixture, and immerse it in a colution of sulphuric acid, when the zinc will be dissolved. (c) A method employed to remove zinc from plumbers solder is to melt the latter and stir in ground sulphur; the sulphur rises to the surface, and brings the zinc with it. This method of introducing sulphur might succeed with tin in place of the solder.

Electro-silvering Tin Teapots. - Theso are instructions on silvering the inside of a tin teapot. Well scour the inside with powdered Bath brick or Trent saud until quite bright; then well rinse in potash water, and fill, whilst still wet, with a good alkaline coppering solution. Connect the teapot by a copper wire to the negative pole of the plating dynamo, and suspend a strip of copper in the pot by a wire connected to the positire pole, and see that this wire does not touch the vessel. In a few minutes the inside should be coated with a thio film of bright copper; then pour out the coppering solution, and substitute a silver-plating solution, and a strip of silver instead of the copper strip. Deposit silver in the teapot until of the required thickness; then pour out the silver solutiou, rinse with hot water, scratch with a soft wire brush, sund polish lightly.
Rendering Tracing Paper more Transparent. \rightarrow To render tracing paper more transparent dissolve $\frac{1}{2} \mathrm{z}$. of gum mastic in 6 oz , of best turpentine, and apply this to the peper with a brush and hang up to dry. Or take 2 psirts of Canada balsem and 3 parts of turpentine and add a few drops of sweet oil; sponge or brush on to the paper while alightly warm, and hang up till dry.
Making and Upholstering Fender Stool.-Fig. 1 shows a portion of an upholstered fender stool. In its construction may be used any thoroughly dry, seasoned wood, preferably mahogany, walnut, oak, or beech. The gtool may be 4 ft . 3 in. long by about 6 in. high. The framework ehould be 2 in. or 24 in. deep by 2 in. wide,
material and allowe it to fall through flexible chutes, which deliper it in even layers over a floor, where it io left to cool. The carbon, when cool, is passed through grinding mills, either vertical or horizontal; the latter resemble the burr-stone mills employed in griuding grain. The powdered carbon is separated into different grades in a set of bolting machines, the coarser grades being afterwards reground. Following the bolting process the material is delivered to a number of steam-heated revolving iron barrels or boxes, in which the carbon powder is incorporated with the binding material; this is prepared by a special process and is ground snd bolted in much the same manner as is the carbon. Being euitably mixed, the material is got ready for the moulding or forcing process. In the shaping of the moulding or forcing process. In the shaping of processer is followed; one is known as the moulding process, and the other as the forcing. In the former the material is carefully weighed, and then placed in the moulds, which consist of grooved plates of steel containing from twelve to eighteen forms, depending upon the diameter of the pencils to be moulded. The material is carefully packed and adjusted, and then smoothed off with a straightedge, sud the second or smoothed off With a straightedge, and the second or one. The filled moulds are placed on endless chains, which convey them in the direction of the hydraulic presses. Befors reaching the latter they are led over a slow-running con veyer which passesthrough a gas-heated furnace; on emerging from this the moulds are placed upon the head of the verticsl plungers of the presses. After having been eubjected to great pressure, they are

Making and Upholatering Fender Stool.
carefully framed at the corners. If desired, a moulding may be fixed round the bottom edge, as Fig. 2. Strips of webbing are nailed on the top, and over this canver. On the canvas the stuffing, which should be curled hair, is upholstered. Over this place the coverlog, which may be tapestry, leather, velvet, cretomne, or any suitable material. This is fastened by strips of leather or gimp to the sides of the stool, being fixed by ormamentril brass nails. Fig. 3 gives four patterus for the feet of the stool.

Restoring Colour of Gold Chain.-To restore the colour of a 9-carat gold chain that has been burnt black and blue, awill it in a warm solution consisting of 1 part of sulphuric acid to 20 parte of water; then rinse in clean warm water. If the colour appears too pale, swill again carefully in a warm solution consisting of 1 part of nitric acid to 10 parts of water; then rinse in clesn warm water, dry by rubbing in hot sawdust, and clesn warm water, dry with rouge. lf the chain is badly burnt, it may be necessary to electro-gild it.
Making Carhons for Electric Lampe and Batteries. -Coke, the material from which the ordinary lighting and battery carbons are made, is usually a by-product of the process of petroleum oil refining, being the solid that remains in the stills after the oils have been evaporated. Coke cerbon obtained from other gources can of course be employed for the purpose. The coke is iu the form of irregular chunks of black porous material, somewhat lighter than coal-coke, and is ground in a vertical bark mill to whet is known as pea-size, and, by means or belt elevators, is taken to large iron storage tanks above the retorts, being drawn from there into small iron cars which ruu along the top of the retorts, and discharge their contents directly into the calcining ovens. Here the coke is subjected to a high temperature by the burning of coal gea, the ovene being kept closed; ull the volatile matter and other impurities are consumed, the residuum being pure carbon, After cooling to a certain degree, the dours are opened and the material is hauled out; it falls in to a metal trough in front of the retort, a link belt conveyer in the trough conveying the carbon to an elevator. This raises the
relessed and the formed pencils, which are held together by a thin web of material, are removed and placed ons corrugated pan. The moulds must be oiled betore lefilling. The pencilase held straight on the corrugated pan until cool, when they are broken apart by hand and fed one at a time into the strlppers, which autometically drew them through very rapidly sand shave off the portione of the web that may adhere to the sides of the pencils. The scrap is returned to the mills to be ground pencile, rede serap is returned to the mills to be ground thurough which the pencile next pass, the forcing method of forming the pencils muet be touched upon. The mixture of powdered carbon and binding material is hydraulically pressed into compact cylinders, and these are fed, one at a time, into the Jumbo presses; in these large cylindere are plungers, whioh force the material through dies, upon the size of which must of courge depend the size of the resultant pencils. The material is forced out into grooved trays and broken off into lengths of about 4 ft . When cool, these ars passed through a machine and further cut to the desired lengths. Pencils produced either by the moulding or the forcing method are baked in the same manner, being carefully piled in the firebrick furnaces in regular rows; a small thickness of carbonising material is placed between each layer of pencils. When the furnace is full it is covered with a kind of clay that vitrifies in the bakiug covered with a kind of clay that vitrifies in the prevents process and, covering the bed with a scale, prevencs carbon pencils. The baking lasta for eight or ten days, at the end of which time the top of the oven is removed and the pencile, when cool, lifted out with implements resembling hay-forks. The pencile for the electric arc lamps are then corted and teated for straightuess, being allowed to roll down an inclined stael plate. Any crookedness is made spparent by light raye between the crookedness is made gpparent oy lignt raye betwed and the steel plate. After being eorted into about three qualities, the pencils formed by the forcing process are pointed in machines. Cored carbone cre filled with tho special preparations by machinery, the material in the form of a thick metallio paint being forced into the cavlty of the carbon by hydraulic press. ure.

Composition for Blackening Face. - To make a composition as nsed by minstrel troupes for blackening the face and hands, place some good corks, champagne for preference, on an fron plate over a bright fre. When for preference, on an iron plate over a bright fire. When they are thoroughly burnt, remove them from the fire, or beer, or glycerine, and place in a gallipot. To use, take a little of the black in the palm of the hand, and add a drop of the liquid previoubly employed; rub up, and apply to the face. The black can easily be removed with warm water and soap.

Taking Cross Sections of Large River.-It is supposed that a method is required of taking cross sections of a tidal river. Soundings must be taken from a boat, with a lead plummet having a round plate above to rest on the mud. The position of each section will be marked in turn by two station poles on the same bank, so that the true line can be sighted from the beat, but the position of each sounding must be obtained by observing the bearings to, or angles between, certain fixed and permanent points, as a ohimney stack, steeple, trec, house, etc. Two observations at each point will generally be sufficient. By noting

the time of sounding and comparing with the time of high and low water, the proportion between the total rise and fall and that which had then occurred will be found. The actual height of each tide must be recorded at a tide gauge on shore as long as the survey lasts. The following is a sample of the entries :-

No. of Section, 5. High water, 2 p.m.			
	※̇	范	Location.
41	2.15	$6 \frac{1}{2}$	Chimney 345. Tree 87
42	2.25	9	" 360. , 74
43	2.40	112	" 10. , 60

Chimney to tree 520 ft , bearing 104°, that is east of mag. netic north taken with prismatic compass (mag. var. N. 16 W .). The accompansing figure shows the plotting of these thrce soundings with the construction lines left in. After the soundings arc all corrected they can be
eutered on the plan, and then sections made in any required direction. When the angle has been taken between the fixed stations instead of their bearings, the method of plotting is different and also more complex. In the present method, if the bearing from the sounding to chimney is 345°, that is north 15° west of the magnetic meridian, or north $15+16=31^{\circ}$ west of the true meridian, the bearing or direction from the chimney to the sounding will be the reverse of this, or south 31^{2} east.

Making Vinegar.-To make vinegar proceed as follows. To 3 bushels of malt add 2 i gal. of water at a tem. perature of about $170^{\circ} \mathrm{F}$. after stirring well for about half an hour, strain off the clear liquid and pour on another 20 gal . of water, followed by about 10 gal., when the malt will be exhausted. The llquids are mixed and cooled quickly to $70^{\circ} \mathrm{F}$.; then the yeast is stirred in and the vat covered. After fermenting for from twentyfour to thirty-six hours, the wort must be carefilly strained and run lnto barrels (three-fourths full) set on their sides in a cool, airy place. Holes about 2 in. diameter are bored in both ends of the barrels to allow a fres circulation of air. The acetification will require several months, and the vlnegar must be filtered before being used. There is also another method of converting the fermented wort into vinegar, kuown as the "quick" vinegar process. For this an apparatus similar to the sketch below will be required. It consists of a large wooden vat A havirug a wooden partition B bored with holes.

Apparatus for Making Vinegar.

Resting on this partition is a pile of beech shavings, and above the shavings is another partition calso bored with holes. To prevent the vinegar passing through too quickly, in each hole is fitted a piece of glass tube projecting upwards an inch or two, so that this level of liquid remains on the partitions. To conduct the liquid down, each tube has a piece of loose cotton lampwick projecting both above and below, and through this the liquid is drawn by capillary attraction. The tube D is for drawing off the liquid as the bottom of the vat fills with vinegar. Near the bottom six or eight holes are bored to allow air to enter. Boiling water is first poured through the vat until the liquid comes away quite colourless. A little hot vinegar is then run in, the apparatus is allowed to stand a few days, then fermented wort is run slowly through and put back a few times until it begins to smell of vinegar ; after a time the viuegar plant or ferment will grow vigorously on the shaviugs, and good vinegar will be obtained by the one operation only.
Methods of Testing Drains.-To tell whether a drain is properly or improperly laid, exposing it only at two points, the following tests may be employed. (a) Put a measured quantity of water in at the top end and sea if the sume quantity escapes at the lower end. (b) Allow water to flow through, and then look through the drain and note if all the water has passed away or whether some is retained in hagged parts;, At the same time note if the drain is " like a gun-barrel" or crooked. (c) Float apples, small potatoes, or something similar, through the drains to test if there are any obstructions that would arrest floating matters. (d) Float a cork with attached cord through the drains, and by such aid drace a drain-bobbin through. (e) For fall, place levelling staifs on the inverts at each end and use a sighting level on the surface, or a straightedge and pocket level can be used; or (f) bends and upright pipes can be temporarily connected to the ends, the whole filled with water, aud the depth at each end measured. This would also test the soundness of the drain.

Eydrometer for Soap-making Lye,-The strength of a soap-making lye is often given in degrees Tw.; this refers to the denaity of the lye as indicated by a Twaddel hydrometer, the instrument generally used for the purpose in soap-making. The hydrometer is immersed in the lye, whose deneity can then be read off from the scale at the top of the instrument. Twaddel hydrometer degrees are converted into specifio gravities by multiplying by ${ }^{0} 05$ and adding 1 . Thus the opecific gravity of, say, $65^{\circ} \mathrm{Tw}$., is : $\left(65 \times{ }^{\circ} 005\right)+1=1 \cdot 325$.

Oval Top Woodon Box.-Theaccompanying drawings chow a method of constructing a atrong oval top
iron, 1 oz . of powdered gum arabic, $\frac{1}{2}$ oz. of powdered white sugar, and 1 dr of powdered cloves; macerate for an hour or two. (2) Powder and mix together 3 lh. of Aleppo galls, 1 lh . of copperas, $\frac{1}{2} \mathrm{lb}$. of gum arabic, and 1 ib. of white sugar. For une, dissolve 2 oz. of the powder in 1 pt. of boiling water. (3) Pulverise and mix thoroughly 50 parts of logwood extract and 1 part of bichromate of potash. Add $6 \frac{2}{2}$ parts of indigo blue. (4) Pulverise and mix together 16 oz. of nutgalls, 7 oz . of copperas, and 7 oz . of gum arabic. Add two or three powdered cloves to each pound of powder. (5) A simple method of preparing ink powder is to reduce soluble nigrosin to an impalpable powder by grinding. (6) Ink

Fig. 3
wooden box. The sides, ends, and bottom should be of wood about in. thick, jointed together as at Fig'. 1, 4, and 5. The top of the lid may be formed of two $\frac{1}{2}$-in, boards bent and glued together and nailed to the end pieces (see Fig. 2); or strips fin. hy about 2 in in, wide, jointed and glued together, may be used (see Fig. 3). The principal dimensions aregiven in the illustratione. Two or three coats of paint will be more serviceable than a covering. In the illustrations, Fig. 1 shows a front elevation; Fig. 2, an end elevation; Fig. 3, an alternate method of forming the lid; Fig. 4, a general view of the box; and Fig.5, the method of joiuing the side to the front.

Recipeg for Ink Powdere,-Recipes for ink powders are an follow. (1) Add 1 qt . of water to a mixture of 4 oz . of powdered galle, 1 oz . of powdered sulphate of
paper, which serves the same purpose as the powder, is paper and then pressing them into a compact form. For use, a little piece of the paper is torn off, and steeped in a amall quantity of water.

Cutting Fur Skin.-A large fur that is to be reduced to half ite original bize may be cut in the following manner. First prepare the pattern to which the akin is to be cut Place the skin fur side down, upon the table, arrane ine pattern on the skin, and mark out with arrange the pattern on the skin, and mark ourp knife pencil, chalk, or crayon. Then cut with a sharp knur), (scissore must not be ussd, as they will spoil the furi, being careful that the knife cuts only through the skin and not the underlying fur. Keep all the pleces for corners or places which the pattern does not quite cover.

The Terms Man-power and Horee-power, A man can do from one-fith to one-ninth the work of an average horse, the proportion depending on the nature of the work; one mechanical horse-power ($33,000 \mathrm{ft} .-1 \mathrm{l}$. of work per minute) equals the power of about four and a half horsee. There is no exact definition of the term man-power.
How to Make a Studio Camera,-A studio camera to take $12-\mathrm{in}$. hy $10-\mathrm{in}$. plates may be made of $\frac{3}{3}-\mathrm{in}$. mahogany. First construct the baseboard (Fig. 1) of the size shown in the illustration, by tongueing together. Then make two - trips E and F (Fig. 2) 16 in . by $\frac{3}{3} \mathrm{in}$. by $\frac{3}{10} \mathrm{in}$., and glue und screw these in the spaces A and B (Fig. 1). They will then be fin. apart, and extend 2 in. from the edges, and stand ${ }^{\frac{\pi}{n}}$ in. A strip I $2 \frac{1}{4}$ in. by 16 in . is next strongly attached, as in Fig. 2 , with a tin. slot for a clamping rod running from about 2 in. or 3 in. from each end. A similar slotted rail is then made to come over c and D (Fig .1). Next form the extension frame (Fig. 3) to run freely in the grooves of the baseboard rails. Fit the focussing screw J (which may be purchased ready prepared for about 46.) by screwing down the bolt G to the baseboard, and the nut to the end of the extension frame at H. Construot the sliding frame (Fig. 4) by dovetailing four pieces

The focussing ecreen frame is formed as in Fig. 10. The tongue X engages with the groove U (Fig. 9), and the $\frac{1}{1}$-in. rebate Y is for the focugsing ground glass which is held in by narrow strips of brass across the corners. Attach the screen frame to the reversing back by double hinges at Z z (Figs. 9 and 10).
Rusty Nickel-plated Surfaces. -- All electro deposits of metal are slightly porous, and so when a thin deposit of nickel on steel or iron is exposed to moisture the tiny drops penetrate these pores to the metal beneath and cause rust. A thicker deposit offers a better protection, or better still is a coat of copper deposited on the parts and well burnished previous to being coated with nickel.
Needles Breaking in Sewing Machine.-The needles in a Singer or other sewing machine break either because the needle-bar is bent, causing the needle to strike on the inside edge of the hole in the needle-plate; or the shuttle, or shuttle race, or both, may be worn, thus allowing the shuttle to fall forward eufficientily to get on the wrong side of the needle-that is to say, the point of the shuttle passes on the outside of the needle instead of the inside. If the bar is bent, straighten it by striking

each 16 in . by 3 in . Inside this fit a frame $\mathrm{K} 1^{\frac{3}{8}} \mathrm{in}$. wide, flush with the front edges, and screw across two grooved pleces L for the rising front, 3 in . by 16 in . The rising front board may next be got out, with the two rebated rails for the sliding front; this is sufficiently explained by Fig. 5 . The sliding front or lens board is shown in Fig. 6. Now make the back frame (Fig. 7), giving about in. elope to the top and bottom to allow of swing. These four pieces, $14 \frac{\mathrm{in}}{\mathrm{in}}$. by 3 in ., are dovetailed togetherThen sink the nuts for the thumbscrews \mathbf{B}^{2} and the pivots A^{2}. Inside the framework fit carefully a frame work M exactly 咅in. from the back edge, and lin. wide; cover it with velvet on the near side. It is an advantage to bevel the frame towarde the centre to allow of central expansion of bellows when closed. Proceed to fit the clamping rode N (Fig. 8). These consist of along screw and nut, but the thread o need only extend about 1 in. P is a circular plas to grip the side rail, Q a washer, and R the thumbscrew or clamping nut. The bellows may be obtained ready made from dealers in photographic materiale. Glue the front of the bellows to the framework L (Fig. 4) and the back to the frame M (Fig. 7), and place under preseure till thoroughly dry. The fixed frame (Fig. 11, side view) is prepared $16 \mathrm{in} . \mathrm{by} 3 \stackrel{3}{3} \mathrm{in}$. The back frame is fitted with the pivots to the fixed frame at V, and the whole is then made up and screwed firmly to the back of the extencion frame. Now make the reversing back (Fig. 9) by first joining up a frame of four pieces, and 14 in them glue and screw two strips s and $T 1 \frac{1}{8}$ in. by 14 in., with $\frac{1}{b}$ in. groove at U. A further strip may be fitted across between the two at w (not shown) to form st stop for the slide. This muet all be done in $\frac{\pi}{6}$-in. etuff to make the frame exactly $\frac{s}{3}$ in. thick when finished
at ite highest point with a light hammer while in the machine. If when this is done the needle dips down in the centre of the hole in the needle-plate correctly, and the shuttle can be moved with the fingers enough to strike the needle instead of passing without touching, either a new shuttle must be procured or enongh of the point of the old shuttle, if not badly worn, must be rubbed off on a piece of emery-cloth to allow it to clear the needle.
Gilding Figured Oak.-In gilding figured oak with gold leaf, having planed up the surface of the wood, well glasspaper it if a smooth finish is desired; for a lough finish, glasspapering is not necessary. Evenly apply with a camel-hair brueh two or three coate of spirit varnish or brush polieh to prevent suction. When the varnish is dry, the gold size ehould be evenly applied. If required to dry very quickly, say in half an hour or lesis, japanners' gold size may be uzed. But the better plan is to coat with oil gold size one day and apply the gold leaf the next. The oil gold size can be bought ready pre pared. Or the two kinds of size may be mixed in varying proportions according to the time allowed for it to acquire its proper tack. The use of gold leaf on transfer paper is advised, as it is easier to handle and avoids waste. When the gold size has acquired ite proper tack it should have a nearly dry pulling feeliug on pressing the finger knuckle against it. In applying the gold leaf, press well down with the ball of the thumb or soft, clean, chamois leather. If the tack is right the paper will lift, leaving the gold with a bright eurface. Take up each leaf of paper as the gold is pressed home, and allow the next to overlap at least $\frac{1}{4}$ in.

Black Inlay for Mandolines. Common gluestrongly impregnated with lampblack or vegetable black, or even tine ebony sawdust, is sometimes used for inlaying cheap mandolines. Black sealing-wax is also effective. A harder substance closely resembling, sealing-wax, known as beaumontage, is made by melting together shellac 3 oz . resin 1 oz ., and beeswax soz., with sufficient lampblack as required. Roll into stioks. Both substances are run in by pressing against a hot iron. Another useful flling is made by melting together resin 3 parts and wax. part with sufficient black to colour. It may be kept in melted coudition by gentle heat, and can be pressed where required with chips of wood cut wedge shape.

Making Firelighters.-Figs. 1 to 8 show a few simple forms of firelighters. If firelighters are to be made for the purpose of sale, care must bs taken not to infringe existing patents. The pattern shown by Fig. 2 is the subject of a patent. The pieces in Fig. 3 are ioined by a wooden peg. In Fig. 4 a string or wire binding is employed to keep the various pieces in position. Fig. 5 consists of three or more sets of sticke, as

It is supposed that an article, the polish of which hes gone dull, requires freshening up. Use a mixture com posed of lime water, raw linseed oil, and turps in equal quantities. The two former ars first well shaken till thoroughly incorporated, and the mixture is then thinned out with turpentine. It is applied rather liberally to the article by means of wadding r rub well to clean away any dirt or sweat, and afterwards wipe off with a plece of rag. Then take another piece of rag, fold it up firmly till it presents a face free from creases, sprinkle thin with methylated splrit, and press well in till it presents a fairly moist (not wet) surface. With this rag give the article a smart polishing; apply lightly at first, and exer't a little pressure as the spirit evaporates. The second pad, containing spirit only, is for finishing the article ; take care to clear away any trace of oil with. out disturbing or breaking up the lac surface, to which continued friction has imparted a polish. In the case of goods on which it is impracticable to use soda water for first cleansing, it will generally suffice to wipe over with benzoline. This is sometimes used at the finishing stage, with ths object of killing any grease; instead of

Firelighters.
shown, the interior being filled up with shavings or other combustible material, and the whole bound or nailed at the corners. In Fig. 8 , in a block originally solid, a hole is pierced through the top, and a wide groove made along the bottom. These recesses are filled with tow, shavings, etc. Most frelighters are dipped, partially or wholly, into a hot solution of resin and turpentine. Crude parafin and crystal oil, carbolic acid and resin oil, and even tar and pitch, are also used; but generally preference is given to some form of resin.
The Use of French-polish Revivers.-The secret of success in the use of French-polish revivers lies in the ability to clear off any trace of oil that may be used, and in making the polished surface free from grease and dirt. Some revivers combine the two qualities, and act as a cleansing and restoring agent. Should the articis be very dirty, it should be first cleansed with warm soda water-hall a small teacupful of common washing soda dissolved in l gal. of water will answer. The same procedure may also be required in the case of goods on which creams and pastes with a wax basis have been used. Good results cannot be obtained from revivers containing ojl, vinegar, or apirit if used on a surface previously cleansed with wax. Furniture creams or pastes, or even the old-fashioned beeswax and turpentine, will, in skilful hands, give good results.
this may be used a reviver made of vinegar, oil, and spirit, to which is added a very little butter of antimony as a grease killer. Failure may result from the first as a grease killer. Fanlure may resur frome of application, or in the fact that the original polish has se sunk into the wood, or perished,that there is really no good lac surface left which can be revived.

Recipes for Stoving Enamels.-The home manufac* ture of stoving enamel to be applied to metal is not advised. The utensils employed must be free from all dirt, and the ingredients must not contain traces of im: purlties, or a good-surfaced enamel will not be produoed. purlties, or agood-surfaced enamel whil not be produoed. (2 parts of tin and 1 of lead oalcined together), 2 parts of fine crystal or transparent glass frit, and a very small quantity of manganese. Pour the fused mass into claan water, dry, reduce to powder, and again fuse, repeating these operations three or four times, taking care to present the enamel being contaminated by smoke, dirt, or oxide of iron. A snperior white enamel is made by or oxide of iron. A sllperior white enamal is many and treating I part of washed diaphoretic antion of fine glass perfectiy free from lead as before. 3 parts of fine glass perfectiy free from lead as $\begin{gathered}\text { For a black enamel, mix together } 12 \text { parts of calcined }\end{gathered}$ iron (protoxide) and 1 part of oxide of cobalt. This mixture is fused with an equal amount of white filux or enamel, made as ln the first recipe above.

Staining Poplar to Walnut Colonr, - Below is explained how to stain poplar a walnut colour. In a jar place one pennyworth of vandyke brown and a jar place one pennyworth of vandyke brown and wainuts. Pour in gradually, stirring the whlle, 1 pt . of boiling soft water. Strain through muslin or coarge dannel to ensure thorough mixing. Apply the solution whilst still bot with a brush, working the way of the grain; rub well in, and wipe off the surplus with rag. Several coats may be given till a good depth of tone is seained. When quite dry, smooth with fine worn glassgained. When quite dry, smooth with fine worn glasspaper, then wips over with raw linseed oil. Ths work is fllers may be dispensed with. On close-grained woods it will generally suffice to apply one or more coats of spirit Farnish as polishing proceeds.
Constructing a Covered Midden Stead. - The accompsnying illustration shows a midden stead 10 ft . loag and 7 ft . wide, with 9 -in. brick walls, 2 ft . 6 in. high round three sides. The end is left open, so that a cart can be backed In, and the roof is kept high enough for the same purpose. The floor should be covered with flags laid with a fall, as shown, and in the end wall a periorated grating allows the liquid to run through a pipe into the pit. The pit is 5 ft . deep,
and for the body under coating hody varnish, putting on a medium coat only. After standing for thres or four days it is ready for flatting, previous to the last coat of varnish being put on. Be cargful not to flat it more than is necessary to remove any small nibs, etc., as the mors it is flatted off the morg absorbsent the under coat becomes, in a measure taking up the gloss of the finishing coat wash off thoroughly, and give a good full coat, being sure not to get runs or fulness in any corners. Use finishing body varnish for the body and pale oarriage varnish for the underworks. Let the cart gtand at least two weeks. before using it, sponging it in the meantime with plenty of water so as to harden the varnish.
Action of Self-lighting Incandescent Burners.-The active material in most of the self-lighting incandescent burners is the matal platinum in some form or other, and the reason for its employment depends on the fact that it is capable of condensing either on its surface or in ita pores a large amount of oxygen, the latter being derived from the air; the result of this is that when a gas such as hydrogen is brought in contact with the metal the two gases unitg and in time chemical action ensues. Now coal gas contains, roughly speaking, about 50 per cent. of hydrogen by volume, so in allowing a stream of coal gas to impinge on a pellet of specially

prepared platinum the heat generated is suficient to ignite the gas. The form in which the platinum is usually employed is that known as spongy platinam, aud is obtained by dissolving metallic platinum in aqus regia (nitric and hydrochloric acids), which converts it into perchloride of platinum (PtCl_{4}); the solution is then mixed with chloride of ammonia, which combines with the perchloride of platinum to form a yellow in soluble galt (ammonio-chloride of platinum). This presoluble salt (ammonio-chloride of platinum). This prevery gently in a stream of coal gas es long as any fumes of hydrochloric acid are evolved. The spongy platinum thus obtained can then be used in the form of pellets, either alone or mixed with other substances.

Softening Snake Skins.-To soften snake skins soak them in water for a night; they should then be soft enough to unroll. Soaking should be carried far enough to enable the skins to be opened without force, but must not be prolonged. By using warm water, about an hour's soaking may suffice.
Cleaning Rust from Iron.-In cleaning iron that has gone very rusty, coat it with paraffin and then scour while wet with coarse sand. A wirs scratch-brush, if at hand, will help to remove the rust more readily When all the rust is off, wash in strong soda-water and silver sand. If the iron is very rusty go over it with an old file before putting on the paraffin.
Renovating Leather-covered Furniture.-In renovating faded leather-covered furniture that is slightly worn in parts, first wash the surface of the leather with warm wator in which a little washing soda has been dissolved; this will remove grease, etc. soda has been dissolved; this will remove grease, etc. methylated spirit and add $\frac{1}{2}$ gill of French polish. Make up a cotton-wool rabber, soak in the solution, and lightly rub the leather all over ; if the colour is not deep enough, go over the surface again. Now take 1 pt. of furniture cream and $\frac{1}{2} \mathrm{pt}$. of linseed oil, slightly warm them separately, then mix well together. Put some of the mixture on a sponge or soft woollen rag, and apply to the leather ; finally, polish off with a soft dry cloth.

Makiog Ammonia.-Ammonia may be made by heating an intimate mixture of sal-ammoniac and slaked lime and passing the gas evolved into water until the latter is saturated, but the method would be very expensive. Ammonia is now made in large quantities by distilling gas-liquor, liquor from coke ovent, or washing waters used in serubbing the gas from blast furnaces, with lime; ammonia can be bought so cheaply that it does not pay to make a mall quantity.

White Paint for Plant Labels.-To make a white paint as used by gardeners for plant labels, grind equal weights of zinc oxide and barytes with the smallest possible quantity of pale gold eize and thin with turpentine. A cheaper method of painting the labele is to coat them first with milk of lime (i.e thin slaked lime), and then, when dry, with silicate of soda diluted with four times its bulk of water. Finish with fine sandpaper.

Apparatus for Bevelling Frames.-A vertical apindle moulding machine, with a cutter block similar to that shown by the sketches below, is the simplest thing to use for bevelling the frames, and for cutting out the curved part B (Fig. 1). If a spindle machine is not available and large quantities of frames
the above is added for seusitiaing as required potassium bichromate solution in the proportion of 12 drops per ounce. This bolution is made by dissolving $\frac{1}{2}$ op of of potassium bichromate in 5 oz . of water, and adding about $\frac{1}{2} \mathrm{dr}$. of liquor ammonia. Allow the gelatine to soak for a time, and dissolve by heat in part of the water. Dissolve the sugar in the remainder, and add gently whilst stirring. Varioue coloure may be used, but Chinese ink is a favourite with workere in a umall way. Allow this to coak till it is in a thin paete, then add to the jelly until a piece of paper fioated upon it and drained appeare quite opaque when held ugainet an ordinary gas jet. Stir thoroughly when adding the pigment, and put in only a little at a time. Any pigment may be used which is in a fine state of division.
Setting Up a Surveyor's Tevel.-In setting a eur. veyor's three-get acrew level firgt вee that the parallel plates are about parallel, and the screws juet up to their work; set the lege open a convenient dietance, and stand between two of them, with the left hand and stasping the tripod head. Place the telescope across the direction of the leg at the right hand, and move the leg backward or forward to bring main bubble central. Then place the telescope in line with this

are to be made, a strong lathe-head could be fixed in a vertical position to a etrongly framed wooden table, and a cutter block and two irons fitted. The dlameter of the block, with the irons, would have to he twice the the block, With the irons, would bave to ho twice the Fig. 1. Fig. 2 is a front view of the block and irons, Fig. 3 an end view of the same, and Fig. 4 is a conventional view of the block.
Preserving Bait for Fishing.-The only way to keep the true colour of roach that are to be nsed as bait for jack fishing is to preserve them alive. Make a wooden box 2 ft .6 in . long by 1 ft .4 in . wide by about 9 in . deep. This will hold from twenty to thirty fish. The joints of the box shomld be put together with thick white lead. The water should be changed about once a fortnight, or oftener if the full number of fish is kept. The tank should be looked over daily and dead fieh or lee removed at once. Dead fieh may be preserved as followe. Wipe them dry and drop them into a widemouthed bottle containing glycerine or apirit of wine. Cork up tightly and cover the cork with melted wax.

Making Carbon Tiseue and Supports.-The following formula for stock jelly for carbon printing can be highly recommended. Nelson's opaque gelatine $402 .$, Colgnet's gold label gelatine loz., loaf gugar $1 \frac{1}{2}$ oz., water 1 pt. Heinrich' 6 emulsion gelatine may be eubstltuted for Coignet's if the latter cannot be procured. These are harder than Nelson's opaque. Gelatine that has been artificially hardened with alum must not be used. To
leg, and move it in or out to bring the bubble again central. This is the leg adjustment common to all forms of level and theodolite, and should never be omitted. The fine adjustment for a three-screw level whll then be as followe. Place the telescope parallel with two adjacent screws and bring the bubble central, by turning them "thumbs in "or "thumbs out," as the case may be. Then move the teleacope round so that the ohject glass is centrai between these two screws, and the eyepiecc over the third one, and adjust the third screw to bring the bubble central. The bubble ought now to remain in the centre of its run for any position of the telescope. By mea s of a cross level on the end the leg may be set approximately true for both directions in one operation, approximately true for both directions in one operat.

Ethereal Solution of Gold,-An ethereal solution of gold is made thue: Dissolve 1 dwt. of pure gold in 1 fluid oz. of warm aqua regia (3 parts hydrochloric acid, 1 part nitric acid, and 1 part water), evaporate the liquid until it appears like red eyrup, then make up to $\frac{5}{2} \mathrm{pt}$. with hot distilled water. Pour this into a pint glaesstoppered bottle, add a fiuid ounce of sulphuric ether, and well shake. The ether will take up the gold from the acid, and fioat above it when at rest. This bolution is applied with a camel-hair pencil, and on bright lron and ateel it forms a fairly adherent coat, which may be lightly bteel it forms a fairly adnerentitat, which may metale as burnished. It will also depositits gold on other metad as a lsind of gold paint. As it is highly volatile, and lo affected by light, it ehould be kept in a closely stoppered bottle in a dark place when not in u8e.

Glaze for Finishing Furniture.-To make a glaze for finlshing furniture dissolve 8 oz . of best gum benzoin in lpt. of methylated spirit; keep it warm and frequently shake till dissolved. Carefully strain and store away, shake till disedive. Carefully strain and store away, imparts a final brightness in place of spiriting out, but has no body for polishing purposes.
Instrument for Locating Leakage of Water.-Herewith is a sketch of a stopcock key and sounding tube combined, which can be made easily and at a small outlay. An instrument similar to sketch has been in use for more than thirteen years at alarge waterworks in the South of England, and has been found very valuable for the detection by sound of waste; by uising this inetrument at the surface considerable success has
in marble polishing, but the grits in this case are used flat instead of on cdge. The grits mostly employed are secondsand snake (water of Ayr), which are sometimes pounded up and used on a worsted wad or boss, the seconds grit first, and then the snake. Then mix in equal proportions powdered sulphur and French chalk, and use on the boss moderately moistened with water, working uniformly over every part, and finally finishing with putty powder (oxide of tin). A little sweet oil rubbed on afterwards hrings out the veins, and renders the polish brilliant and lasting. The beginner should practise on waste pieces of alabaster hefore attempting to polish anything of value.
Fitting upa set of Specimen Woods.-The following is a sugestion for fitting up about forty speclmens of different woods. The specimens might hs arranged as shown by the accompanylug illustration. The fronts of all the pieces are in line asat C, but any single piece may be taken out by being pushed back near the top at A, when it will assume the position B. The fronts should bs

Instrument for Locating Leakage
of Water.
been met with in localising underground leaks. The letter references in the illustration are explained as follows. A, face of ear-piece ; B, z-in. brass tube slide, 18 in . long, C, socket packed between brass bush D and nipple; E, ron tee; F , stopcock cover hook, $3 \frac{1}{2} \mathrm{in}$. long, screwed to fit loosely for convenience; G, section of $\dot{d}-\mathrm{in}$. iron barrel ; H, soldered joint.
Working and Polishing Alabaster. - Alabaster, although considerably harder than Bath or Caen stone, is worked, like thoss stones, with toothed saws and steel drage of varying degrees of fineness, first the coarse and then the fine heing used. The surface left hy the drag is rubbed with coarse sandpaper to remove the marks of the drag, and then with fine sandpaper, all these operations being done in the dry. The suiface is next grounded with stone grits and water, as

Fitting up a Set of Specimen Woods.
polished. If the pieces are thin they may be backed up to the proper thickness (as at c) by commoner material, in which case only half the front should be polishedpreferably a diagonal half.

Winding-in Watch Mainsprings.-In using a mainspring winder for watches, place the eye of the spring on the hook of the winder. With the left hand take the harrel and hold it to the centre of the spring, guiding the spring in the barrel as it is wound up by the right hand. The left hand must grasp the barrel and spring together firmly so as to prevent the spring slipping out as it is wound in. The outer end goes in last with a click.
Moulds for Brass Casting.-Sand, with an almost equal composition, only varying in the size of grain, should be used for moulds for making clean brass castings. It should he composed of about 94 parts of silica, 5 parts of clay, and l part of iron oxide. The bulk of the mould may he sand from the new red sandstone formation. The face of the mould should be covered with a mixture of 8 parts of charcoal flour and 1 part of fins sand, or may be dusted with peaflour and then with the charcoal mixture.

How to Braze Band-saws.-By one method of brazlng band-s\&ws it is necessary to provide an iron, shaped as in Fig. 1, the two arms of the fork being at least $1 \frac{1}{2}$. long by $\frac{1}{3}$. wide, and welded and attached to a handle of $\frac{1}{2}$-in, or $\frac{6}{6}-\mathrm{in}$. round iron, about 2 ft . long. A cramp (Fig. 2) is also required; it is made out of 4 -in. cramp (Fig. ${ }^{\frac{1}{i} \text { in. iron, and is thickened at the ends to take } \frac{1}{3}-1 n \text {. }}$ set bolts (see Flg. 3). File sach end of the saw for the set bolts (see Flg. 3). File each end of the gaw for the shown in Fig. 2, taking care that the saw is quite straight. Twist one loop of iron binding wire round the splice to hold it in place; then bind about a poot or more, according to the width of saw, of soft bress brazing wire round the splice. Moisten the whole with a saturated solution of borax, heat the iron (Fig. 1) to a bright heat (technically knowu as a spurtling heat), and slip it over the saw so that the splice comes between the slip it over the saw so that the splice comes between the splice, remove the iron, let the saw cool to a dull red, and then quench in oil, afterwards filing up the braze. Perhaps the most simple and reliable method is to use bright-hot tongs and black-hot tongs. File the ends of the saw taper for the length of two or three teeth, so that when lapped one over the other they will be the thickness of the blade. Dsmp the ends, then place a little powdered borax and brass spelter between the ends that are being lapped. Heat a pair of hears tongs in the fire until bright-hot, then close them tightly on the joint until the spelter runs, which will occur, if the tongs are properly het, in less than a minute. While slipping this pair of tongs off, another pair, made black-hot, must be quickly alipped on by one who has been holding them in readiness, and closed tightly on the joint. Remove
solder on the dial, and heat to redness with a blowplpe. jet. The sllver solder will run, gnd, on cooling, preduce a solid joint without laaving displaced the foot. The copper dial blank is prepared for enamelling by being cleansed in diluts sulphuric achd, and it is then flattened on a die with the aid of a spatula, and slightly raised to the shape of a lunette. White enamel for copper dials may be made by incorporating, in a molten state, 14 parts of sil ver sand, 10 parts of borax, 18 parts of red-lead, 2 parts of nitre, 12 parts of oxide of tin, 4 parts of fint glass, and $\bar{\hbar}$ part of binoxide of manganese. Utmost care in selecting the materials, and great cleanliness in using them, ars essential, and in most cases watchmakers find it desirable to purchase the enamel ready made. A small quantity of the enamel is put in a muffle furnace, removed when red-hot, and immersed in cold furnace, removed when red hot, and immersed in cold water. It is broken up with pestie and mortar until grains being essential for successful results. The enamel is mixed into a paste with water, and applied with a spatula to the dial blank, which, aiter lagveng been tapped to level the enamel, is laid aside. When dry, apply the enemel to the other face of the blank, which should be laid on a block covered with soft wax. When dry, the dial is fired; on cooling, it is carefully examined, spots picked out with a graver, and its surface is ground. A shining surface is imparted by a second flring, the blank having been washed and dried pre: viously. For painting the figures, the wbite, as the dial blank is now known, has its surface pencilled into divisions while it is attached to a division-plate which has a movable radial rule. The paint used for the figures is a black enamel, capable of fusing at a lower temperature

these, hammer the joint tightly, and clean up with a single-cut flat file. Ho set the teeth, lay the blade of the saw on a small steel anvil, the edge of whlch is bevelled. saw on a manistegl anvil, the edge or which is bevelled. The teeth must overhang tha bevel, and every alternate turn the saw, and treat the remaining teeth in like manner. To correct any irregularity in the set, the teeth should be side-jointed. This is done by placing a topping file lougitudinally gaginst the sides of the teeth, and lightly passing it over all the teeth on esch side. A rest for the saw can be made from a piece of flat iron, as shown in Fis. 4, where R is the rest. The part H may as shown in Fis. 4, Where k is the rest. The part H may ae clamp. The saw is placed on the rest, and held in a clamp. The saw is placed on the rest, and held in are tightened on the sew and rest by turning the littio thumbscrews T. Fig. \bar{o} is an enlarged view of one of the clamps. These may he made from $\frac{3}{10}$ in. or $\frac{1}{4}$-in. flat iron; the rest is made from $\frac{5}{\frac{5}{2 n}-i n}$. or $\frac{z^{2}-i n \text {. flat iron, and }}{}$ must be perfectly straight. When brazing, keep the back edge of the saw fair with the edge of the rest.
Making and Enamelling Copper Watoh-dials.Briefly, the processes involvedin making and enamelling the copper dial of a watch are as follow. The blank, from which the dial is to be made, is prepared by placing a small sheet of copper on a steel dis and making a hole in the centre with a conical punch. This produc s a conical projection, the top of which is then filed off, and the hole is broached out to accord with the hole in the steel die. The copper is then trimmed to \& disc form, sufficient bsing left on it to form a rim to retain the enamel, and after having its rim thinned down, the blank is lald for a frame and the positions of the feet are marked. Tha feet may be brazed on with syelter; or, prelerably, they may be soldered on wlth silver solder.' To do this, moisten in the mouth a plece of wire having a flattened end, and with it place in posltion a small piece of
than does the white ensmol already applied. The black enamel is finely powdered and worked to the proper consistence with oil of spike lavender. The hour num. bers are drawn in roughly, dried by a gentle heat, their ends cut off with compasses having an ivory point, with which the figures sre then ruled true. The rest of the fignring is painted in with a fine brush, and the dial is again fired. Whilst still hot, it is placed on a flat ring of fireclay, and, with the aid of a pair of spatulas, is made quite straight and flat. The edge is then smoothed with files and with water-of-Ayr stone, and is then gilt. A hole is cut in the dial to receive the sunk disc that A hole is cut in the dial to receive the sunk disc that both of the faces so as to assiat the solder in holding the seconds dial in place, the latter having its edge shaped to correspond with the groove in the larger dial. To solder in the seconds dial, run in from the back an alloy (fusible in boiling water) of 5 perts of tin, 3 parts of lead, and 8 parts of bismuth, and after applying a flux a clesn and reliable joint will result.
Determining Diameter of Pulleys.-To obtain a cloge approximation to the diameter of pulley required, multiply the dianeter of the driver in inches (saiy) by its speed in revolutions per minute, and divlde by the spesd in revolutions per minute required frem the drlven pulley. Assuming the pullay on the englne-shaitt to be 22 in. in diameter, its speed being 220 revolutions per minute, and that the speed of the driven pulley is to be 110 revolutions per minute, the diameter of the driven pulley should be $\frac{22 \times 220}{110}=44 \mathrm{in}$. If the required speed were 300 revolutions per minute, the pulley should be about $\frac{22 \times 220}{300}=16 \mathrm{in}$. (say). For greater exactness the thickness of the belt should be known; in making the calculation this should be added to the diameter of the driving pulley and subtrsoted from the quotient to obtain the diameter of the driven pulley.

Paint for Marking Glass.-For ordinary purposes glass may be stencilled with an ink made by grinding lampblack to a paste with gold size or boiled oil. If the paint is to stand beat, grind to a paste red oxide of iron with fluid sillcate of soda, and apply as above. iron with fluid silicate of soda, and apply as above. pose if a mineral colour, such as red oxide, were added.
Stripping Gilding from a Silver Chain,-Sometimes the gold wears off in patches from gilded silver and other chains, and it is desirable to remove the rest of the gold, though regilding the chain is generally preferable. To remove the gold, proceed thus: In a basin put a tablespoonful of nitric acid and three tableppooneful of muriatic acid with an equal quantity of water, and make the whole warm. Caxefully swill the chain in this, and well rinse in clean water until all the gold has been remored ; then dry the chain and polish it.

Design for Wooden Bedstead.-A wooden bedstead, as illustrated, may be made from sound ash or birch, and, for a full-sized bed, should measure 6 ft . 6 in . by 4 ft . 6 in. over all. The post and rails shonld be about 2% in. square, and the foot and head boards $\frac{5}{B}$ in, thick
dynamo, the next a three-cell accumulator ; and among primary batteries the next best would be four d-gal. Bunsen cells. Anode plates of pure copper must be employed; these are connected by No. 16 S.W.G. copper wire to the positive pole of the generator. If the plates do not dissolve freely, but become encrusted with a green slime, a small quantity of potassium cyanide and of liquid ammonia should be added to the solution. The surfaces of all articles to be copper-plated by this process must be cleaned and prepared. Iron and steel articles may be cleaned from pust by steeping and swilling in a pickle composed of 6 fluid oz. of sulphurie acid and $\frac{1}{3}$ oz. of muriatic acid in each gallon of water. They must then be rinsed in clean water and immersed in a pickle composed of $\frac{1}{3} 1 \mathrm{~b}$. of American potash dissolved in each gillon of hot water. If the surfaces have been pitted, the corroded parts must be polished with emery held on a mop in a polishing lathe, after which the articles nust be well swilled in the hot potash pickle to free them from oll and grease. All surfaces must be well polished before the copper is deposited, because the whin coat will not permit much polishing afterwards. Articles made of lead and tin, or their alloys, must be first scoured with sand and water, using a hardbiush for

When flnished. The height from the floor to the side rails should be 1 ft . 2 in.; the total height of the foot 3 ft . 2 in , and the head 3 ft .8 in . If the bedstead is fitted Fith a wire mattress, laths or cords will not be required for the bottom.

Electro-plating with Copper.-The metalson which a coat of copperis deposited by electricity are lead and its alloye; tin and its alloys; iron, tinned iron; zinc; and steel. When articles made of these metalsare to be silver plated, nickel-plated, or gilded, it is always advisable añd sometimes necessary previously to coat them with copper. This cannot be done in a copper sulphate solution because that dissolves the metale. Various solutions have been used; but for the most successful one dissolve copper sulphate in hot rainwater. When cold, add strong liquid ammonia in small quantities and stir well with a stick each time. At first a green precipitate will be obtained; then, on adding more ammonia, the green precipitate will dissolve and form a clear azure-blue solution. To this add one of potassium cyanide until the liquid assumes an amber tint, when rainwater should be added. The usual proportions are: Copper sulphate, loz.; potassium cyanide, 3oz.; liquid ammonia, 1 oz. rainwater, 2 qt . Distilled water may be used instead of rainwater, but spring and river waters are not suitable because of the earthy matters held by them. The Bolution should be held in an enamelled iron vessel. If it is kept supplied with free cyanide and free ammonia it may be worked cold at from 6 to 8 volts; but the deposit-may be improved by heating the solution to from $150^{\circ} \mathrm{F}$. to $170^{\circ} \mathrm{F}$., and the vat may then be worked at from 4 to 6 volts. The best generator is a plating
the purpose, to free them from oxide ; then rinsed in the hot potash pickle; again scoured with finer sand to polish them; wired with short lengths of No. 24 - \mathbf{i}.W.G. soft copper wire; again rinsed in the hot potash pickle, and transferred direct to the plating vat. The potash pickle will prevent rust forming on iron and steel articles, and will clear oxide from lead and tin and their alloys; but it is advisable to transfer the articles quickly to the plating vat, and not to rinse them in water on the way. Zinc articles are cleansed in a similar manuer but very fine sand or finely powdered bath brick must be used in scouring. lif articles are bright and free from rust or taruish, only a light brushing with a vegetable fibre brush in the potash pickle will be necessary to prepare them. Eaich article must be attached to a short length of copper wire, which suspends it in the vat. Use No. 24 S.W.G. tor small articles, and No. 18 S.W.G. for heavy ones. Each article should be held by the slinging wire during the final rinse, and the free end of this wire is bent over a brass rod on the plating vat, attached to the negative pole of the generator. Move each article to and fro with a rinsing movement when placing it in the vat, to remove any air bubbles on the surface. The current should be cegulated by a resistance, usually a long length of German silver wire furnished with a switch. The resistance can also be increased by diminish ing the surface of the anode exposed to the plating solution, and by placing the anode further from the article being plated. If the current is too strong, the deposited copper will be dark in colour and loose in character, and this will also happen if the solution contains too much copper. Movement of the articles whilst being plated will assist in securing a bright and smooth deposil.

Some gas is given off from the articles whilst deposition is going on, but this should be regulated by adjusting the current. Ouly a few minutes is reınired for platin' each article. The plated articles should be rinsed in plenty of ciean water to free them from cyanide and copper salts. If the surface is to remain coppery, the article shonld be rinsed in hot water, placed at once in hot bran or hot sawdust, and moved about thersin until quite dry and bright. Pure copper readily tarnishes in the air when damp, but may be brightened with a scratch-brush. If the surface is to be nickel-plated the scratch-blush. If the surface is to be nickel-plated the articies must be rinesd and tiransired at once to the nickel-plating vat. If a thicker deposit of copper is a thin film of copper in the alkaline solution above men tioned. If the plated articles are to be gilded, get a very thin and bright deposit of copper, or brighten it with a scratch-brnsh; then rinse and transfer at once to the gilding vat. If they are to be silver-plated, coat with a thin film of mercury before placing them in the silverplating solution. The solution is made by dissolving plating solution. The solution is made by dissolving to 10 parts distilled water, then making it up to 1 gal. of solution with distilled water. Give a brisk swill in this, and then rinse in clean water.

Making Smail Silk Tassels.-The following particnlars are on making silk tassels for banners, etc. On a table lay a large and rather heavy book a (Fig. 1). Place the reel of silk B at onesnd of the book, and keep the silk the reel of silk B at one and of the book, and keep the silk C straight, by passing it under the book. Now take the
end of the silk in one hand, and in the other hand
of the air which is exerted on the surface of ths mercury in the short limb, and in order that it may do this the short limb must be open or a hole must be blown in its side. The indicator is a metal pointer, Which is moved to the upper surface of the mercury from day to day ; it simply shows how the barometer stood the day before. Usually there is a dial on this form of barometer, and a pointer that moves round the dial; the pointer is actuated by a string aud a Weight in the shape of a glass rod, which rises and falls on the surface of the mercury in the shorter limb.

Eiectro-bronzing, - Electro-bronzing can be done With an alkaline coppering solution made as follows, Dissolve 2 oz. of copper sulphate in 1 quart of hot water; add this to $\frac{1}{2}$ gal. of rain-water containing 4 oz. of potassinm carbonate; then add 2 oz . of liquid ammonia, and stir until the green precipitate has been dissolved; mix this liquid with a solution of 6 oz , of potassium cyanide in $\frac{1}{2}$ gal. of rain-water, and filter for use. This cyanide in $\frac{1}{2}$ gal. of rain-water, and filter for use. This solntion is best worked at a temperature of $100^{\circ} \mathrm{F}$. from 6 to 9 volts. It deposits a bronze-coloured copper at low temperatures with the higher voltage. The bronze tint may be deepened by rinsing the coppered goods in a solution of sal-ammoniac.

Construction of Photographic Studio.-The secompanying illustration shows a photographic studio and the manner of fitting it with blinds A and B and a head screen C. The blinds a are frames covered with muklin, and run in grooves. Two rows of blinds of different

material may be fitted and arranged so as to overlap so that perfect control of lighting may be obtained. The blinde B are on spring rollers, and pull down from the roof. The head screen C may be swung at any engle or trom side to side and fixed with thumbecrews. Thers is no advantage in having both sidas of the studio glazed, though it is sometimes ussful in taking Rembrandt pictures, or when the studio faces east and west. Abrut 3 ft . from each end F may be left opaque, as the ends are never required. It is most important to bs able to tilke the le1't side of the face when looking away from the light. Much, however, depends upon the situation aud surroundings. The curtains D and E run loosely on a surass rod. The ventilators are shown at H.

Fixing a Loose Endstone in a Geneva Watoh.When the bottom endstone of a Geneva cyliuder watch is "fixed," it ls set in a small plate of brass und hald by a screw to the "chariot." To replace the fixed endstone by a loose one, push out the fixed stone from its setting, hollow out the setting from the inside a little with a ronnd-faced champering tool, to cut away the sharp, rough adge, and pick out a loose endstone that will just lie flush in the hollow. Then place the loose will just le fussh like a minnte plano-couvex lens) with endstons (shaped flat on the jewel hole and the round side up, lay the small piece of flat brass over it, and screw it down as before. The brass plate will then hold the endstone tightly arainst the jewel hole. No cement of auy kiud is required.
Making Electro-gilding Solutiong,-Electio-gilding solutions are made with cyanide of gold dissolved in a solution of eyanide or potassinm. Use 3 dut. of gold cyanide in each quart of distilled water, and add just enongh potassium cyanide to dissolve the gold. Work at $150^{\circ} \mathrm{F}$. with a 2-volt to 3 -volt current, nsing a pure gold anode.

Distinguishing Pebble Lens from Glass.-Pebble lenses may be distingnished from common glass spectacle lenses in the lollowing manner. If the tip of the tongre be placed on a piece of glass it will feel rather warm and smooth, or woolly; but if the tongue be placed ou a piece of quartz it will be cold, with a peculiar crisp feeling. Another test is hsirdness; a crystal of quartz will readily scratch glass, but the crystal will run over a pebble without lasving any scrateh. A natural stone is a much better conductor of heat thin any glass, and so to the tongue will feel cold; sud being a variety of quartz, it will not be scratched by anuther crystal of quartz. If the pebble is supposed to be, say, a topaz or a ruby, then, being harder than quertz, it will in its turn scratch quartz. If the pebile is a diamond, then it will serstch a ruby or sapphire. Another rough and resdy mathod of testiag hardness is to pass a small fine-cut file over the edge of a bit of glass; there will be a somewhat dull, cutting sound emitted. If the file be passed over a bit of quartz the sound will be clearer and shsrper.
Pormanence of Toned and Untoned Prints. An untoned print is not so pormsnent as oue that has been toned; indeed, the object of toning is to protect the easily affected silver in the print by coating it with a metsl that is better able to resist adverse influences. The value of toning may be demonstrated by the following experiment. Prepare some sulphuretted hydrogen water (SH_{2}) by placing a small piece of iron sulphide in a test tube A (see sketch), half filling it with water, and adding a little sulphuric acid. Fit a cork B, bored to take ε length of glass tube C. Fit mp a glass

Apparatus for Testing Photographic Prints.
flask with tubes D and E, and nearly fill with distilled water. Connect D and 0 with a length of rubber tubing. Now warm the test tube in a gas flame, and the gas will resdily be driven off through the tubes, and eventually bubble through the water in which it dissolves. Allow the action to continue spontaneously for an hour. This operation should be performed out of doors. Cut in operation should be performed out of doors. prints-one that has been toned a decided blue, and the other untoned. Place one half of each print in the SH_{2} obtained from the flask. Both pieces will become lighter, and will be altered in appearance, as will be seen on comparison with the untreated halves. On removsl from the SH_{2}, the toued print will be found to have faded equally with the other, but will be louss altered otherwise.
Solution for Whitening Electro-plate.-For whitening letters engraved on electro-plate, dissolve 5 dr . enough potassium cyanide solution to throw down the silver in white curds, and then to dissolve these curds. Procure a strip or a stout wire of pure silver, wrap s few folds of cotton rag round one end to ferm a small mop, and connect the other end to the silver or copper plate of a Smee or Walker battery of one or two cells. Connect the engraved plate to the zinc plate of the battery, soak the mopin the silver cyanide solution, and pass it along each line until sll the lines are nicely silvered.
Determining Contents of Cylindrical Vessels.-To find the contents of cylindrical vessels in cubic inches, square the dismeter of the vessel in inches (that is, multiply it by itself), and then multiply by 7854 and by the height in inches. To find the contentsin cubic feet, take sil dimensions in feet. Knowing the contents in cubic inches, divide by $277^{\prime 2} 7^{2} 4$ to find the contents in gsilous. Dividing the contents in cubic feet by 16045 answers the same purpose. Shorter methods will suggest themselves from the following. A cylinder 1 ft . in diameter and Ift.
long will hold 489 gal., and a cylinder 1 in, in dismeter and 1 ft. long will hold $03 t$ gai. Also, capacities vary with the lengths of the cylinders and with the squares of the diameters. Thus a cylinder 1 ft . in diameter would of the $12 \times 12=144$ times the contents of a cylinder of equal length but 1 in. in diameter.
Encaustic Paste for Photographs.-Encsustic paste, used for polishing photographs, has the following composition. Pure wax, 500 parts; gum elemi, 10 parts; benzole, 200 parts; essence of lavender, 300 parts; oil of spike, 15 parts; apply this paste after the print is mounted.
A Simple Oil Filter.-A simple oil filter may be msde from two clean meat tins placed one above the other ; in the upper tin, with a bradawl, punch a number of small holes, and over these spread's piece of flannel.
Hard Soldering with Sliver Solder.-In hard soldering with silver solder, first file or scrape the parts bright, and cover them aud the solder with a paste of borax and water. Heat gently at first so as to harden the borax; then continue to heat by blowpipe until a red heat is resched, at which the solder will run. The secret is to blow continuously until the solder runs, and not to stop half way.

An Enlarging Camera.-These are brief instructions on fitting up a camera for enlarging to whole-plate, using a t-plate Instantograph lens. The csmera consists of a light-tight box E with rails H, slong which runs a whole-plate printing frame G, grooved to fit. The camera I is placed upon the level platform a supported by B, and rscked out to the correct extensiou. The negative C is then placed in the position nsually occupied by the focussing screen. An imsge is projected through the lens D on to a sheet of bromide

An Enlarging Camera.
paper placed in contact with the glass F, the frame having been adjusted to the correct distance from the lensalong the rails. If a fixed focus camera (which will be found very inconvenient to use) is preferred, the box need only be fitted with a hinged and light-tight door, on which the bromide paper is pinned. If the focus of the lens is 5 in . the box must be 15 in . long if fixed, or 17 in , with the frame and the small camera extended $7 \frac{1}{2} \mathrm{in}$. Procure a whole-plate frame and meke the box to fit. ${ }^{\frac{1}{2}}$ To focus, place a sheet of ground glass in the printing frame.
American Clock Striking Wrong.-When an American clock, after being wound up, continues to strike until it runs down, the remedy is this. Take off the hands and disl and watch the clock strike. It will be seen that at each blow of the hammer a wire bent at a right angle and hammered to a thin edge drops into the spaces between the teeth of a large wheel on the left of the clock. In this wheel, at irregular intervals, are deeper slots. First see that the wire drops centrally into these and does not touch either side. This can be adjusted by bending the wire. If this does not remedy the fanlt, look to the next wheel. On its axis there is a circular brass plate with a slot in it. When the wire first mentioned drops into a deep slot in the large wheel, another wire arm should drop into the slot on the next wheel and so stop the striking train. Allow the clock to strike very slowly by checking the fly with the fingers, and observe very carefully whether the wire lever last mentioned drops properly into the locking slot. If it does not go deep enough, bend it down a trifle.
Re-soling Rubber Shoes.-A fresh layer of rubber may be attached to the soles of a pair of rubber sandshoes in the following manner. Put the shoe on a last, and rasp the old sole all over till it is quite clean and rough. The new sole must also be trested in the same way, and the dirt and dust brushed out. Now give both the old and new soles a coat of very thin solution, and when dry give another coat (or two if required) of slightly thicker golution. When tacky, heat both the sole and the bottom of the shoe, so that the spirit left in may evaporste; then place the two together, drawing the sole a shade tighter, so as to give it a little tension.

Soldering Britannia Metal.-Britannia metal may be soldered with pevterer's' solder, which may be made of 2 parts of bismuth, 1 part of lead, and 1 part of tin. Such a solder is usually ohtainuble of any dealer in metal-workers' sundries; or it may be made by meltiug the lead in a plumber's ordinary ladle and adding the tin and hismuth. A little resin should be sprinkled on the surface to prevent oxidation of the molten alloy, which should then be well stirred, and poured into an iron mould. When using the alloy, with a sharp knife first scrape ths metal where it is to be soldered, aud then rub a little tallow over the cleansed par't. Melt some solder from the stick upon the part to be soldered, and, with a fine jet from a blowpipe, blow gently on the solder untll it flows over the parts to bs joined.
Malsing Conical Bellows for Camera.-Imitation leather and black twill joined with thin glue and fiour paste are suitable materials for ths conical bellows for a paste are suitable materials cor the paste should consist of 4 parts of thin glue to l part of flour, the latter rendering the pasts less likely to crack. Two thicknesses of twill should be used. Taks a piece of leather and a piece of twill, each 1 yd. by ${ }^{i}$ yd., and join and pin down on a board, inside uppermost, having first well rubhed the board with chalk. Draw a line A B in the centre at the bottom, say $7 \frac{1}{3} \mathrm{in}$. long, and from the ceutre of this erect the line $C D$, and at 18 in. from D
 draw the line E F parallel to A B, say 4 in. long, to fit Now
rising front. Now join the points $A F$ and F. Now place the blunt point of the compasses at B and with any radius describs an arc of a circle; then with ths point G where the are cuts $B F$ measure the distance $G H$, and with the same radius mark off at K and draw a line from B through K $7 \frac{1}{2}$ in. long. This gives the angle for the

Conical Bellows for Camera.
sides. The other sides are marked out in the sams manner. The fourth side is divided into two, so that the join may come in the centre of the bottom. An extra piece 1 , in. wids, is provided for joining. Now rule a series of lines $\frac{1}{2}$ in. apart parallel to the bass lines. The folding and creasing lines ares thus marked out, the thick lines representing the under and the thin ones the upper lines. A convenient plan fur ruling the lines is to fasten the material loosely to the board with a drawing-pin at o. The material may then be swung round at an angle, a T-square being placed parallel in each case to the longer thick line as M, N aud soon, or parallel alternately to AB and A P, ths other lines being ruled ou each side in the same fashion. The diagonal lines are put in with a set-square, so that ths angles mirized are 4°, the other lines heing parallel to them. Cut off tha surplus, join up, and creass into shape with the fingers. I'he heavy lines are best put in with the stylus, which will show them on the reverse side in white chalk. It is advisable first to practise the ruling aud creasing on some brown paper. Bellows cau be purchased ready made very cheaply.
Keeptng Fish in Tanks.-In a fish tank, its size, the number of the inhabitants, the presence or absence of snails and vegstables, and the source and nature of the water supply, are important factors. Several gold fish and carp would in a small tank soon exhaust the supply of oxygen, while their products would still further impoverish the water. If a whita powder covers the hodies of the fish it is of fungoid growth, but the cause has been much debated. Still, it is generally agreed that nitrogen is necessary for the growth of every kind of fungus, and therefore it is reasonable to say that nitrogenous matter in solution must be in excess. This may bs ths result of the decomposition of animal matter, and the best way
to correct it is by adding oxygen to the water mechanically by causing a circulation of water, either by a fountain playing and thus entraining air umong the falling drops, ol by allowing a stream of water to pass through the tank. A cruder method would be to suspend a leak ing vessel above the tank, thus allowing water to pall, taking air with the drops. A natural method would be to add growing watsr-weeds, and thus allow them to givs oxygen to the water. In some cases lime in the water has been held to be a cause of the powdery appearance, but lime is not a necessity to fungi. The affected fish may be quickly cured by placing them in a vessel into which water is constantly dripping from a tap.
Removing Fur from Kettle.-A simple plan for re. moving fur from a kettle is to hoil some common whiting in the vessel (watch carefully, as it soon froths over) and wash out. If necsssary, repeat the process and then scrape out the softened fur. This does not damage the vessel as chiselling is apt to do. A wire should bs passed up and down the spout until clean.

Making a Postage Stamp Damper.-To make the damper, fit in a small jam jar a sponge. Now from a cigar hox make a box (Fig. 1), which can be polished or varnished, the bottom being in two pieces; the extreme bottom E (Fig. 2) has a keyhole cut in the centrs before

FLG 2
Postage Stamp Damper.
fitting together. Agroove is cut for a screw head (passing through the keyhole) to run in; and by means of a Ecrew inserted in the table on which it rests, the hox is easily locked or removed. First nail the two sides B and front C of the box to the bottom D, then bevel aff the corners with tha chisel or knife, so that two corner pieces A can he fitted on flush. Nail on the top, which pieces A call be fitted on fiush. Nail on the top, which which must have a hole rathar smaller than the insids of the jar, through which the sponge in the jar pratrudss. Fit the two corner piecss on, and chisel them to shape as at A (Fig. 2) after fixing. The jar can be easily withdrawn through the open back for re-filling.

Bending Brass Tube. - A piece of $1 \frac{1}{2}-\mathrm{in}$. brass tuhe may be bent in the following manner. First carefully anneal the tube, and when it is cold, tie brown papsr over one end, and insert this end in saud. Now melt enough lead to fll the tube, and pour it into Now tube from a plumber's ladle. In a firmly fixed bench cut a hole a littls larger than the tube, and chamfer the sharp edgs romnd the hole. Remove the paper at the end of the tubs, and pass the latter through the hole in the hench to the desired position of the bead. Pull the top and of the tube over against the rounded shoulder at the top of the hole; pass the thbe a little farther throngh the hole and agaiu bend, and repeat until the desired curve is obtaimed. Bruises and repsat until the desired curve is obtamed. Bruish a in the throat of the bend may be worked ont pitia flows out and leares the interior clear.

Pitch of Eeary Cart Wheels.-The pitch is governed by the dish of the wheals; thus, a wheel having I_{t}-in. dish would lay out more than a wheel having only $\frac{3}{4}$ in. The general rule when setting out the wheels is that the face spokes in the bottom halves shall be parallel with each other-that is, square up from the ground line, no matter what dish there is. To obtain the length of ths axle-tree, having set the wheels out to the required width for the track, hold a short straighredge on the hack of the nave, parallel with the spoke, measure the distance from the straightedge to the hack of the tyre, and deduct twice this measurement from the inside width of the track; this will give the length of the axletree at the shoulders.
Repairing Flushing Cisterns.-To remedy the constant fiow of a small ctrean of water down the side of a water-closet hasin, first empty the cistern by pulling the chain. If, while the cistern is being refilled, the flow of watel continues, the plug (or valve) A in the hottom of ths cistern requires a new washer. In repairing, cut the wire G and lift out the plng A. Unscrew the nut which secures the washer to plug A, and replace the old washer by a new piece of thick leather of the same size as the old piece; replace the nut, and screw up tightly. Put new wire in place of Gut, Should the flow cease while the cistere in place of filled, lift (with the hand) the hall B; if hy so doing the cock' O (in the tap oy which the cistern is flled) is closed, there is water inside the ball B. If cock C is not closed by lifting the ball, it requires a new rubber washer. To insert the washer, remove the pin F (which secures arm D to lower part of 0), and remove D from C; slide the part E (which holds the washer) off D; this is in two parts.
be ground as perfectly as they can he filed. Before taking the saw out of the sharpening machine, give each tooth a light wipe with the emery wheel; this will remove a portion of the burr and any little hardness that may have heen caused in grinding. By omitting this trifling detail, great difficulty is often experienced, and expense incurred, when topping with a fle.

Casting Brass,-To judge when melted hrass is at the propse tomperaturs for pouring is a matter of experieuce. If the metal be too hot, porous castings will result; if too cold, the monld will not bs perfectly filled. A useful guide is to draw the pot immediately the metal gives off bluish white puffs of vapour, which is volatilising zinc; the latter is a part of the alloy. The heat of the metal will vary according as the castings are wanted large or'small. The smaller the casting, the hotter is the metal.

Lantern for Enlarging Photographs.-An ordinary lantern for 3 -in. slides could be used for enlarging negatives of that size or smaller, hut the condenser should always equal in diameter the diagonal of the plate. For vignetties, where only the centre of the -negative need be evenly illuminated, a smaller condenser can be used. Artificial light enlargements, ospecially those made with a condenser, are always inferior to daylight enlargements, as the working up of the negative is always made more or less visible, and there is, besides, a certain amount of hardness and granularity apparent. The illustration shows a method of fitting up, the segative being projected on to the bromide paper in the same way as slides are shown. It is essential that the negative aud bromide paper he exactly parallel. To ensure this, make a beard A 40 in . long, and screw down

Repairing Flushing Cisterns,

Lantern for Enlarging Photographs,
parallel rails on which an upright board $13 i h$. by 11 ln . may run. Screw a hlock B to fix the lantern also parallel and central. The distances hetween hoard and slide may be marked out in inches and fractions of an inch. An achromatic lens or one corrected for photogiaphy must be used, or the enlargements will always be fuzzy, even if the extenslon is corrected for the chemical rays. Use the full aperture of the lens, which may be about 4 -in. or 5 -in. focus. To enlarge from 2 in, to 12 in. by 10 in., the distances with a 4 -in, lens will be; From glide to lens stops, $4 \frac{2}{3}$ in.; from lens stops to bromide paper, 28 in . Carefully centre the light after setting the distances, and insert tbe negative and focus sharply on the whits hoard. Then cap the lens and pin up the bromide paper, and oxpose. Find the best exposure hy first trying a small piece of paper. Cover the lantern lest extraneous light should reach the hromide paper. Develop, etc., as usual.

Printing in Gold and Silver.-The printing is done in the ordinary way, gold size or var'nish being used instead of ink, and then, whilst the impression is still tacky, it is brushed over with a goft hrush dipped either in silver or gold powder. The sticky letters retain enough powder to cover them, the surplus being brushed off. Embossed letters are done in an embossing press furnished with dies.
Rosewood Graining on Glass Signs. - Skeleton letters, corresponding in shape and position, etc., with the carved or gilded letters of the sign, are written in gold (hurnished) on a piece of glass that has been cut to the exact size of the sign. The glass is then grained with water-colour, vandyke hrown and drop black ground in heer, or oak or marble may he used. When this is dry, the hackground, composed of venetian red ground in varnish, may be added with a pencil, leaving the skeleton letters uncovered. When the ground is dry, wash off the graining colour from the lettera, place the skeleton on the sign, and the carved or gilded letters of the sign will show through the skelotou gilded le

Cleaning old Pewtor Teapot.-An old powter teapot may be cleaned by boiling in strong soda-water, well brushing to remove dirt. Mix to a thick paste in good sweet oil 3 parts of flour emery powder and 1 part of crocus powder; with this rub the teapot, and polish off with dry rottenstone.

Making an Ornamental Bracket,-The bracket illustrated, when constructed, should be painted white and then enamelled white or cream. The over-all dimensions are 3 ft . 9 in . by about 1 ft .6 in . The back is in one piece. The ontline (see Fig. 1) can be cut with a bow-6aw or coarse fret-saw ; the latter must, of course, be employed

An Ornamental Bracket.
for the under part and details. The ordinary fret-saw will do, as no turning is required. The two pillars, which can be ornamented if desired, may be purchased. The thelves and under-pieces a (Fig. l) are screwed on from the back. The bordering, $7 \frac{1}{2}$ in. long to the shelves, is glued on. The shelves are $1 \mathrm{ft}, 3$ in. long at the back, the front and sides measuring 7 $7 \frac{1}{2}$. The under piecss A are 12 in. deep by $7 \frac{1}{2} \mathrm{in}$. wide at the top. Two boles are cut just ubove the top shelf, where they do not show, to receive brase-headed uails for hanging the bracket, and a nail is inserted at the foot to steady it. A mirror inserted in the back is an improvement; or photos could be covered with glass and placed In position, and an
ornamental beading tacked round, thus forming finames, A small oil painting treated iu this fashion looks well Fig. \because isa section on line $X X$ (Fig. 1), the two front under pieces heing indicated by dotted lines.
Protecting Corks from Chemical Action. - It is doubtful whether any treatment would prevent corks used as stoppers for bottles or flasks being acted upon by chemicals. It is usual to treat corks with melted paraffin wax, the corks bsing kept in the melted material for several hours. Cerasin wax is a better material, and has a higher melting-point. For this pu: pose, steep the corks for several hours in silicnte of soda solution (1 part of silicate to 4 parts of water); and then in lime water for several hours. They can be waxed afterwards, if desired.

Strength of Brick Arch.-Here are hints on finding the strength of a brick arch by calculation, and also by

Strength of Brlck Arch
construction. An example in which the span is 40 ft . and the rise 10 ft . is worked thus:-
Span 40 ft . and rise 10 ft . will give,

$$
\text { radius }=\frac{\left.-\frac{(1}{2} \text { Bpau }\right)^{2}}{-\frac{r^{\prime}}{2}}+\text { rise }=\frac{20^{2}}{10}+10=25 \mathrm{ft} .
$$

One rule for thickness of brick arch at crown $=4$ $\sqrt{ }$ radius $=0.4 \times \sqrt{2} \bar{\sigma}=2 \mathrm{ft}$., in this cabe $=\frac{2 b}{4 \frac{t}{2}}=5 \overline{5}$, say sixhalf-brick rings. Another rule for railway viaductsis, number of half-brick rings $=\frac{\text { span in feet }}{6 \text { or } 7}=\frac{40}{6 \text { or } 7}=6 \frac{8}{3}$ to
55. say six half-brick rings. Then draw the arch, as in Fig. 1. From experience of the usual course of allne of Fig. l. From experience of the usual course or arch, it thrust under a distributed load in a circular arch, it between the fourth nud flith rings, while at the abutment

It will he between the second and third rings, so that its whole outline will occupy the middle third of the depth of arch ring. From these polnts draw lines at right angles to the thrust, and they will intersect at the spot where the half load may he considered to be applied. Before the reciprocal diagram of those forces can he drawn, and the amount of the load ascertained, tlie value of the horizontal thrust must be assumed; thus, suppose the maximum safe load to be 10 tons per square foot on brickwork, then the mean pressure over the whols depth of arch will he 5 tons per square foot, or with an arch 2 ft .3 in . deep, a total pressure per foot run, through the arch, of 11×25 tons; this will be the measure for ling 2-3in the stress diagram (Fig. 3) ; then drawing 3-1 parallel to the thrust at abutment in Fig. 2, and a vertical line for $2-1$ to intercept it, the stress diagram is made complete, and from this the valus of 1-2 is measured off. This will be the load on half of the arch, and double it will be the total distributed load on the arch, including weight of hrickwork. It should then be ohecked $\mathrm{h} y$ working the reverse way, starting with a distributed load, and finding the line of thrust and maximum pressure, as in Fig. 4 (stress diagram, Fig. 5), where the load on the arch is translated into cubic feet of hrickwork placed ahove it, and the area of each $4-\mathrm{ft}$. width taken for weight on that part.
Making a Head for a Waggonette. - Below are given instructions on making a waggonette head. fig. 1 shows a side view and Fig. 2 a back view of the

11 in. thick, got out to Fig. 4, from which it will he seen how the glass course is boxed ont. The fence rail of the door may he made in the solid, lin. thick, and boxed out at the top part, or a piece siv. thick can be screwed on and panelled to form the monlding. It is customary to have single or double sliding glasses in the frout. If double, they should work sideways, as in a hrougham; if single, up and down, when suitable provision must be made in the pillars. For fixing the head, the sams method as is employed for the seats should do, the holes through which the key-bows pass being got in the plates on the seats if possible.

Pearl Inlaying on Metal.-"Pearl inlaying" $1 s$ the name given to a process by which pieces of pearl are attached to the surfaces of metal and sometirues of papier-maché. Mother-of-pearl, known also as pearl oyster and white pearl, is chiefly used for the purpose. It has a clear white surface covered with minute grooves which decamposs and reflect the light, imparting a number of beautiful tints. Aurora shell is used; this has a wrinkled appearance and is known also by its various colours. It is made from the shell of the mollusc known as the sea-ear or ear-shell. Another pearl used for the purpose comes from the green snail shell; this is distinguished by its glistening shades of green, yellow, and pink, blended together. In preparing the pearl for inlaying, the rough shells arg cut with fing saws, the pieces being then ground on hoth sides on a grindstone until of the

head as flnished, worked out to desirable sizes. Birch seats, as shown at A in the section, Fig. 3, can be used, the pillars being half checked into them, and the seats being strengthened by light steel plates across. The two standing pillars to form the doorway at the hind part are $1 \frac{1}{2}$. wide, got out to the size of the dool pillars in Fig. 4, and let in to the end of the seat, having a litin. half-round plate fixed on the top of the seat and up the pillar for about lft. The four corner pillars, 2 in. square, are got out to the shape of B (Fig. 3); the four pillars to form the side shape of B (Fig, 3) ; the four pillars to form the side
lights are 2 in. thick hy ling. wide, and when in placs should measurs $1 \mathrm{ft} .9_{\frac{1}{2}}$ in. hetwaen. The cant-rails 0 (Fig. 3) are 24 in. deep hy lin. thicis, and the front and hind roof cross-hars $2 \frac{1}{2}$ in. wide by $1 \frac{8}{8}$ in, thick; these are stoutly made, to give a good fixing for the iron eyes, by which the head is slung up when not in use. In panelling round, $\frac{1}{2}$-in. hirch may be used at the hottom pert D (Fig. 3), screwed to the pillars and seats, the top edge going above the hottom odge of the top quarter panels $\frac{5}{8}$ in., and being planed off on the outside to give a level bearing. The top panels are of mahogany or white wood full $\frac{1}{4}$ in, thick, well canvassed on the inside, fixed on with panel pins, and mitred together at the corners; the roof boards are of 4 . yellow pine, covered over with moleskin or prepared canvas, being brought well over the edges and tarcked; a sein. wood cornice is afterwards put on to hide che tacks and give a flnish, also to prevent rain running down the sides. To hide the screws fixing the hottom panels, mouldings lin. wide and full $\frac{1}{4} \mathrm{in}$. thick are planted on, mitred at the corners, and cleaned off level with the top panels. The overhang ($2 \frac{2}{2}$ in.) at the hack of the body is taken up by the thickness of the door pillar, hut should it be nejessary to make the overkang wider at this point a fillet can be screwed on inside, or the door bottom can be made wider than the pillar. The door pillars are
requisite thickness. With a pair of ordinary scissors the pearl is now cut in to the form of leaves, flowers, etc., or when many pieces of the same size and shape ars required, a die press operated by foot-power may be employed. Another method by which a number of similar pieces may be ohtained consists in gluing the several thicknesses together and, holding the composite lump in a vice, shaping with a fine saw. Files and drills also assist in the shaping. Soaking in water will separate the pieces, from which the glue can then be washed. To prepare the iron or other material to receive the pearl, it should he well cleaned and then coated with lampblack worked up with varnish. When this is thoroughly dry, a coat of black japan is applied, and when this is tacky the pieces of pearl are pressed on with the finger. Being left two or three hours in a hot oven, the japan dries, and then the whole is varnished and prain stoved, this process heing repeated several times. The varnish should be applied thickly, so as to bring up the surrounding surface to the level of the pearl; the varnish is scraped off the latter with a knife when the stoving operations are finished. The pearl is then polished with pumice-stone and water, and the varnish is rubbed smooth with very fine and wet pumice powder. The article now has the appearance of being inlaid, it the film of varnish applied is sufficiently thick. It is hivions that the whole process is not one of real inlaying. The next stages of the work can be successfully carried out only by a person possessed of an eye for the artistic. The pieces of pearl are made to assume the forms of flowers, etc., their stems and leaves heiug sketched in with a camel-haip pencil dipped in gold-size or in a mixture of varnisiand turpentine. When tacky, old-leaf is applied, superfluous gold being rubhed off with a piece of silk when the size or varnishis dry. The flowers and leaves are further tonched up with paint, and the job is finished hy coating with the very hest varnish.

Covering an Octagon Dome with Sheet-lead.If the roof is already constructed, horlzontal lines should be drawn between the hip roils at equal distances (say 6 in .) apart, measured on the surface of the roof as shown in the elevation half of Fig. 1. 'the lower half of the figure, and the vertical dotted lines, are drawn only as aids to finding the true position in the elevation of the hip rolls to the centre bay, so us to be able to measure the width of the latter at all parts. Similar horizontal, and a centre porpendicular, lines are to ha drawn on the piece of lead to be used, and t e dimensions transferred one at a time from the roof to the lead, and the poiuts joined together by freehand, as shown by Fig. 2. outside the lines thus found, draw others 4 in. aud 8 in. distant for the under-cloak and over-cloak respectively. The sides of the hay are then hossed upright; or, if the contour of the roof is very round or very hollow, they

Fig. I
can be doubled down flat until placed in position, and afterwards worked up and dressed to the rolls. If the bays are not very large, the nailing on the top end, and also the under-cloaks to the rolls, will support them. With a roof of this shape the grip of the metal ou the rolls will also help to support it. If the bays are put on in two pieces, or if laced rolls are used hetween the hip rolls, further support is obtained withont the use of soldered dots. About three copper tacks can he used for cach bay to hold up the hottom edge. The covering for the top should be bossed out of a round piece of lead, the top should he bossed out of a round piece of lead, 9 in., to cover the nailing and make it watertight at that point. Copper nails should be used in preference to iron nails.

Glazing Photographic Prints, - A good polish can he applied to P.O.P. prints in the following manner A thoronghly clean piece of plate glass, which may be large enough to take one or several prints, should be dusted ovel with French chalk and then woll polished with a dry solt duster. While the priat is still in the
washing water, place the pollshed glass under it, get the printinto position, and then llft it out of the water. When the surplus water has run off, a piece of blotting-paperis placed on the print, and with the help of a rollel squeeges the print is pressed into closs contact with the glass. When thoroughly dry, the print will readily peel of the glase. Floating the print on to the glass under water ensures the absence of air buhhles. The prints will dry quickly in a current of hot air. The polished surface is not waterproof, but the print may be backed with water proof paper, which should be pasted on the back of the print while it is still on the glass slab, so that the two may dry together. Photographs with a highly glazed surtace are still in great demand anong a certain surtace are still in great demand anong a certain preference for platinotype, bromide, and albumen prints. Enamelling is a process only suited to subjects requiring microscopic definition. It may he mentioned that it is now ackuowledged hy photographic experts generally that too much detail and too clear definition are not deairahle in a portrait.

Varlous Methods of Bleaching Ivory - Many methods of whitening yellowed ivory have been proposed from time to time, and the mors reliable of them are given below in the order of their simplicity as near as possible. In a few cases the ivory is directed to be exposed to sunlight; this should be done always under glass, which prevents the formation of cracks. (1) Immerse the ivory in a very weak solution of sulphurous acid, and rinse in clean water. (2) Boil with a paste of

Setting out Lead Bays for an Ogee Roof over a Ventilator Octagonal on Plan.
burned pumice-stone and water ; expose to sunlight. (3) Expose to the fumes of hurning sulphur. The air should have free access to the ivory. (4) Immerse for one hour in a. saturated solution of alum in water, rub with a woollen cloth, and wrap in linen to dry. (5) With a woollen cloth, and wrap in linen to dry lime, or in water impregnated with chlorine. (6) Place in a. thin paste of lime and water. Gently heat, and when white remove, dry, and finally polish. (7) Brush with a solution of 1 oz. of nitrio acid in 100 z . of soft water. Rinse in clean water, and expose to sunlight. (8) Wash with soap and water, and place, whilst wet, in sunlight, continuing the washing two or thres times a day until bleached. (9) Rub with fine pumice powder and water, and whilst still wet expose to sunlight. If unsuccessful, apply the pumice powder again. (10) Support the ivory a little above the hottom of a shallow glass vessel by strips of zinc, pour in spirit of turpenting, and expose to the sun for three days. (11) Remove grease by treating with a solution of common soda, and immerse the ivory in peroxide of hydrogen, to which liquid ammonia has been added in the proportion of 1 pt , ol the former to 1 oz . of the latter. Gently heat for from twenty-four to thirty-six hours, remove, and dry slowly in the open air; rapid drying may eplit ths ivory. (12) The Artus process is to place the ivury for two days in a solution of 23 oz. of carbonate of soda in 90 oz. of water contained in a glass or porcelain vessel. Well wash in pure water, and then imuerse in a solution of 34 oz . of sulphite of soda in 91 oz . of water. In five or six dayb tims add to the solution a mixture of 2 oz . of hydrochloric aoid and 11 oz. of water. Cover the vessel containlng the ivory for from twenty-four to twsuty-six houre, and then remove the bleached ivory, afterwards well washing it in clean water.

Lene for Photographic Portraiture.-A portrait lens is a'lens so constructed as to give fair definition with a large aperture. Rapidlty of working is the mostimportunt quality of a portrait lens, and to obtain this certain sacrífices have to be made. Sharp definition, which is zenerally undesirable, is obtained only at the expense of modelling. Roundness of field is a defect common to portrait lenses, but the newer and more expensive lenses are a vast improvement on the older and cheaper kinds. a good rectilinear lens is better than a bad portrait lens. A single lens, or one half of a rapid rectilinear lens, makes a good portrait lens, but it is slow.

Design for a Round Footstool.-Fig. 1 shows an elevation and Fig. 2 a plan looking from below of a footstool that is strong and has a good appearance. Any

Fig. 1

Making a Round Footstool.
hard wood about in. thick is suitable for its coustruction. The quarter-round fillets form a good method of fixing the legs to the top.
How to Make Fly-papers.-Here is a recipe for making fly-papers. Add 4 oz. of syrup or treacle to 1 pt . of water and boil with 1 dr. of white arsenic. Steep squares of moderately thick blotting-paper in the liquid and allow to dry. The papers are to be kept damp while in use. It need hardly be pointed out that white arsenic is a deadly poisou.

Polishing Black Marble.-To polish black marble, the wrought surface is lubbed with fine sharp sand and water until all the narks of the chisel or saw are removed and an even face is produced; it is then gronnded-that is, rubbed with grit stones of varying degrees of fineness, commencing with the coarse or first grit, next the second grit, which is a little finer, and fluishing with snake
stone or water-of-Ayr stonc. Particular care must be taken in each process of gritting that the marks or scratches of its predecessor are removed, so that when the surface is "snalied" no scratches are visihle. Then rub with a boss or pad of worsted material sprinkled with four emery and moistened with water, and finally with a pad of felt sprinkled with putty powder (calcined tin). The chief factor in producing a good polish is persistent and attentive rubbing. An imperfect polish may be due to the slab not being properly grounded or gritted, which is the case if, on looking closely into the polish, small scratches are visible all over the surface; it must then be almost entirely repolished. If the polish is dull only, then the slab has not been sufficiently rubbed with the felt.

Replacing Erolion Roof Slates.-To replace a broken slate, the nails that fix it to the batten must be broken or drawn by means of the slate ripper. The old pieces of

Method of Replacing Broken Roof Slate.
slate will then easily slip out. A strip of lead ahout 8 in . long by lit in. wide must then be nailed to the batten that is near the bottom of the space to he covered by the new slate, and will bs seen through the joint of the two slates immediately under, and then the new slate can be slipped upwards until it reaches the proper position, when the end of the lead strip can be bent upwards and will hold the slate in place. The strip of lead is exed will hold the slate in place. The stip of lead is Exed C, Fig. 2, is the place the new slate has to fill, and the top end has to pass upwards under DD. Fig. l' is a section and Fig. 2 a plan. Slates are fixed on to the battens hy nailing with two copper or zinc nails, the former preferred. The slate immediately above the one that is nailed covers the nail heads, as shown by Fig. 3.
Removing Cores from Antelope Horns. - To remove the cores from a pair of antelope's horns, place the horns in a warm, moist place, say inside a hot manure heap, until the connecting tissues between the horns and the bony cores become sufficiently decomposed to euable the horns to be pulled off.

Acetylene Gas Generator.-The varlous patented apparatus for making acetylene gas from carbide of caicinu have generally had the idea of working automatically, so that as the gas is consumed a fresh supply is made, and the plant thus made continuous. The two methods generally adopted are either that the carbide shall be added to the water or, what is perhaps better, the water added to the carbide. Carbide, however, has such a great affinity for water that it will take it from any source, and consequently the mannfacture of the gas often goes on long after the gasholderg are full. The chemical action is expressed by the following formula. $\mathrm{CaC}_{2}+\mathrm{H}_{2} \mathrm{O}=\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{CaO}_{\text {, showing that when carbide }}$ of calcium (CaC_{2}) and water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ are mixed the result is acetylene ($\mathrm{C}_{2} \mathrm{H}_{2}$) and lime (CaO). One ponnd of calcium carbide will make 5 cub. ft. of gas. The of cast method of making an acetylene gas generator is to follow the lines of a coal-gas making plant, and to have a gasholder large enough for the daily consumption, and to introduce so much fresh carbide as will serve just to fill the gasholder each day. The apparatus is very simple to make. It should consist of a rather deep sheet-iron tank, so that both the gasholder and the retort may be inserted in it, while the former may be allowed to travel up and down inside the upper portion of the tank, which will thus form guides for keeping the gasholder vertical. As carhide giveg off a considerabie amount of heat when acetylene is being formed, and as this is likely to prove dangerous it is beet to have the retort, and the pipe from it to the gasholder, under water. Such an arrangement is shown in the sketch. The retort A is best made of cast-

Acetylene Gas Generator.
iron, with a finnge for fastening to the sheet-iron tank, and a lid to be fixed on by a cross bar fitting into two ears or lugs on the sides of the retort. The pipe C for supplying water to the retort is brought out from the tank, and a cock Ffitted so that it can be shut off. The supply-pipe D to the gasholder B is arranged in like manner, so that when recharging the retort the cock can be closed and the gas in the gasholder preserved. E ghows the gas outlet pipe. The water in the gasholder tank will absorb a large quantity of acetylene gas until saturated. Acetylene has approximately fitteen times the lighting value of common gas, but only two and $凡$ half times the heating value, so that it is not advisable to use it for cooking or heating purposes where cost is a consideration. Acetylene gas destroys iron burners by enlarging the holes, etc. On most burnere, after being in use a short time, a soot is deposited; this should be removed by a tooth or other brush. The usual burners consume $\frac{1}{2}$ to 4 cub. ft. per hour.
Granite-working Tools.-The granite-working tools used in Cornwall and in Devonshire are as under. Fig. I shows a hand hammer; its shape varies, but it should be stiff near the eye, as there is then less risk of its splitting when driving plugs. Its weight is usually from $4 \frac{1}{2} \mathrm{lb}$. to 5 lb . It is made of solid cast steel, the hammer being about 5 in. long and the handle about 9 in. long. Its chiel use is thus explained; When a rough block of stone conies prom the quarry, the mason gets his monld for the bed, marks its shape on the bed, and if there is only about 1 ln . or $1 \frac{1}{3}$ in. of waste stone, he takes the pitching tool (Fig. 2) and hand hammer aud pitches it olif. If, however, the waste stone is in greater quantity, he removes the excers with the spall hammer (Tig. 3). The spall hammer weighs from 18 lb . to 24 lb ., and is used for hammering rough stones into shape. .Next the nason takes a chisel that is made of best silver steel, is
octagon or oval in shape, and is 8 in . long (size when new), with lin. at the flat end. A peg-mark is then chiselled at each of the corners. Four hardwood bossing pegs (Fig. 4), lin. long or mole, and made tine, are then put one at each corner. A live is then put round and the drafts are marked, then the punch, loin. long and made of $\frac{1}{8}-\mathrm{in}$. steel either octagonal or oval in shape, is used for removing all superifuous stome. Next the mason takes suad axe or chopping axe, the blade of which is about $7 k$ in. by 24 in., and the handle about 16 in. long, and chops all round the drafte, keeping the axe in front of him. The patent axe is then used. A four-bladed axe is used for the roughest patent-axe work: a six-bladed axe is generally used for ordinaty work. The box of this axe is in two parts, and there are four bolt holes in each for screwing it up when the blades are put in. The blades are from 2 in. wide, and the handle about 16 in. long. After being sharpened on a grinding stone, they are tempered and screwed in the box. When once tempered by a good smith, they will staud three or four grindings before being tempered again. A patent axe may be four-cut, six-cut, eight-cut, or ten-cut. It is not often above ten-cut. After single-axing the bed of the stone, take the six-cut and axe all round. If eirht-cut work is specified, take the eight-cut axe over the six-cut work, as this leaves it fine for the over the six-cut work, as this leaves it fine for the
edges or arris. Next take the chopping axe and chop down all the knots or knobs left from the puncl.

When a nobbling pick is used, as it still is in Cornwall, a stone can be left a little rougher from the punch; then, nobbled down, it comes basier for the tooth axe, as very few granite masons punch fine enough for a tooth axe. A nobbling pick is a pick that, being wrn down to 71 b . or 81 b , is no longer ueed for scappling. A Bcappling pick, which is of the same shape as that shown in Fig. 6, weighs, when new, from 12 lb . to 18 lb . It is of solid caststeel, and is used when there is rather too much for punching and not enough for the plug and feathers. A nobbling pick is very useful for tooth-axed work, to which it gives a clean appearance. Good slad axes and tooth axes may be made from short picks, but there must be no flaws in the pick. The handle of the nobbling pick is about 18 in, long. After the face has been nobbled, a tooth axe, as illustrated, is used. For work left after this tool, called tooth-axed face, the axe is about 4 in . wide, and the handle about 16 in. long (8ee Fig. 5). Wig. 6 anows a cross axe, the handle of which is about Fig. 6 shows a cross axe, the hande of which is about A patent or bush chisel, with four or five blades, is used for axing mouldings or places inaccessible to the bush hammer. The complete chisel is about 10 in . long, and the blades are about linin. wide, and are bolted in with one bolt in a groove into which the blades fit. In nee it is struck lightiy on the head with a hand hammer: The muckle (large) hammer ls for chasing or making a channel when splitting up the granite. The hand-dril for borlng holes to split the granite has a $\frac{3}{4}-i n$. bit, and is made all in one piece of Bolid cast-steel (Bee Fig, 7), It is held in one hand and struck with the hand hanmer, turning altermately, to a depth of 3 -in. holes about 4 in. apart. Then the feathers and plug are put in, the round side of the feathers facing in the hole the way it is to becut; then the plug is driven in until the granite splits. The plug and feathers are each sbout the granite
4 in. $10 n g$.
"Rotted" Brass.-Brass in course of time andergoes a molecular change which renders the alloy very brittle, and this action somotimes causes cracks to open in the metal, particularly if it is subject to variations of temmetat, pare when moisture is present. Brass wire when subject to tension rapidly loses its working properties. In either of the above cases the alloy is known as " rotted" brass, and may be distinguished from newmade brass by bending it sharply to an acute angle; if slgus of partial fracture are quite absent, the metal may be used.

Flash-fue Washing Copper.-Compared with the flash-fue copper, the wheel-flue is a primitive and costly arrangement. It is much less easily heated, and therefore requires more coal than a flash-flue copper, and, moreover, it cannot be cleaned out without taking the lorickwork down to get at the flue. Herewith are llustrations of a flaish-flue copper. In building the copper, set the door-frame on the second course of bricks and proceed as indicated in the illustrations. Set the slab plate next to the door-frame, 4 in . wide, and bars
driver and removed first. When the stem portion of the tap has been removed, the small part that has the wornout washer on it will either come away with, or will be found loose in, the body of the cock, and can be lifted "ut with the tinger's. This part is frequently called the "jumper"" and to this the washer is secured by a swall screw collar, which is easily removed with a screwdriver. When the old washer is removed and the new one is slipped on, this screw collar is replaced; it inerely holds the washer on. The jumper and other parts are then replaced in their order. Washers of red rubber are more lasting than ordinary white or gray washers.

Constructing Magazine Back for Camera.-The bag changing box is the most eatisfactory form of a magazine back to hold twelve quarter-plates in sheaths. This changing box consists of a box A with grooves at the front B to take a sliding shutter after the manuer of a dark slide. The back o is removable to allow of the insertion of the block of sheaths D, and to it is fixed a spring E that forces the sheaths together. A bag F is fastened to $G G$; this bag is mads of flexible materin, and is of the shrpe shown. When the box is fixed in the slide rails of the camera, the shutter is drawn and the front plate is exposed. The plate is changed by gripping, with the thumb and forefinger, the top of the sheath H throngh the bag, withdrawing the sheath gently and pushing it in at

Constructing Magazine Back for Camera.

12ln. long by 9 in . wide will be quite large enough for a boiler of this size, which will boil in half an hour, with much less coal than a wheel-flue, which would take two hours to boil. When flash-flus coppers get choked up at the bottom of the chimney, it is only necessary to lift out the copper, clean it out, replace it, and point round the top with a little lime putty; the copper is then ready for use again. A 6 -in. sanitary pipe makes a good and cheap chimney for this size of boiler furnace. It is best to cut either a stone or a frebrick quarrel to fit round the top of the copper, which makes a little projection, and sets the work off a little. The illustrations represent, respectively, Fig. 1 , front elevation; Fig. 2, plan; F'ig. 3, transverse section; Fig. 4, longitudinal' section.

Renowing Washers in Cold-water Trps.-The first thing to do when renewing the washers of water taps is to shut off the service pipe leading to the tap. If the pipe is from a house cistern, then the stop-cock must be closed. If thers is no stop-cock, the hole in the cistern must be plugged with the pointed end of a broom-handle. If the cock to be repaired commnuicates directly with the main, then the main cock in the cellar, if there is one, must be closed, or the water company's cock in the pavement. Having cut off the water from the main, unscrew the upper part, the middle stem, of the cock with a spanner. Sometimes a small ordinary sorew will he fonnd in the edga of the shoulder part; this must be unscrewed with a sorew-
the back. The next plate in the sheath is thus forced forward. A lever \mathbf{X} is provided to lift the front plate.

Straightening Watch Hairsprings.-The straightening of a hairspring is a difficult and tedious job. First unpin the spring from its stud and place it on a watch glass upon a sheet of white paper. Then with two pairs of fine-pointed tweezers, one pair in each hand, proceed to re-shape the faulty coils. Begin at the centre of the spring, and follow it round with the eye until the exact point of the first departure from trueness can be noted. Rectify this and proceed, always working from the centre to the outer coils. First get the coils concentric, true, and at equal distances from each other. Then proceed to get the spring flat, working as before from the centre to the outside. To act properly a hairspring must be flat. true in the "eye," and all the coils must be free of each other and at an equal distance, The outer coil should pass freely between the cur'b pins and, when the balance is at rest, should not touch either curb pin.
Joining Rubber to Canvas.-In joining strips of rubber to new canvas the latter is liable to soak up much of the rubber solution. The only satisfactory way of preventing this is to treat the rubber with the solution (made as on p. 52) and, when the latter is "tacky," to press the strip on the canvas. The canvas would be rendered harsh and stiff if it were treated with anything to prevent the rubber solution coaking in.

Patterns for Tuyere Bond,-The tuyire bend, of which Fig. 1 is a plan, is to be mado in five segments, joined together with angle iron, each segment being made with four plates tin. thick. 'Co obtain the pattern, first draw a plan of the bend, as Fig. 1, and then the semicircle ad on the eud of the tigure as shown. As the segments of the beud are to he each made in four pieces, the position of the seams may be fixed by making $a b$ and $c d$ each equal to one-fourth of the end semicircle. Draw lines at right angles to $\mathrm{A} a^{3}$ from the division points b c to give the points a^{1} and a^{2}; then, using 0 as centre and radius to a^{1} and a^{2}, draw arcs of circles to show the position of the seams. Now divide the outer curve of one segment into any number of equal parts, as A, B, C, D, and F, and also divide the inner curve into a similar number of equal divisions; then join the points on the inner carve to the points on the onter curve, as $\mathbf{A} a^{3}, \mathbf{B} b^{3}$, etc. To work the pattern for the outside section of the bead, make the

Patterns for Tuyère Bend.
etraight line ACE (Fig. 2) equal in length to the onter curve of the bend. From points a and E (Fig. 2) drop perpendicular lines, and make them equal in length to the arc of a circle be (tig. 1). Draw a line from c (Fig. 2) parallel to AE to form the rectangle for the pattern (Fig. 3). The pattern for the inside section of the bend is worked in the same manner, $a^{3} c^{3} e^{3}$ (Fig. 3) being equal in length to the inner curve $a^{3} c^{3} e^{3}$ (Fig. 3) being equal in length to the inner curve
(Fig. 1), and be (Fig. 3) heing equal to be (Fig. 2); the rectangle is formed complete by the samu method of working. For the side pattern, take $0 a^{2}\left(\mathrm{Fi}_{\mathrm{r}}\right.$ 1) as radius and draw an arc of a circle o a ${ }^{2} e^{2}$ (Fig. 4). Make $a^{2} e^{2}$ equal in length to the curve $a^{2} e^{2}$ (lig. 1), and then mark off on the curve the divisions a^{2}, b^{2}, etc. (Fig. 4), transferring these from Fig. 1. Through o c^{2} (Fig. 4) draw the line $c^{2} c^{1}$ on the pattern, and make the length from c^{2} to c^{1} ergual to $b c$ (Fig. 2), or equal to one-fourth of the circumference of the end of the bend. Using this length as
radins, and $a^{2}, b^{2}, d^{2}, e^{2}$ (Fig. 4) alternately as centres, draw ares of cilcles at the top of the figure. Now with $a^{1} b^{1}$ (Fig. 1) as radius, and using c^{1} (Fig. 4) as centre. draw arcs of circles to cut those already drawn, and to give the points b^{1}, d^{\prime} (Fig. 4). With the same length as radius, and b^{\prime}, d^{\prime} as centres, cut the two remaining arcs to give the points a^{1}, e^{1}. Join $a^{1} a^{2}$ and $e^{1} e^{2} b y$ straight lines, and then draw a curve to pass through the points $a^{1}, b^{1}, c^{1}, d^{1}$, and e^{1}, to complete the pattern.

Design for a Marble Clock Case.

Design for a Marble Clock Case.-The accompanying illustrations show a design for a clock case. The upper is a front elevation showing the clock itself in position, whilst the lower is a section. If the design is not wide enough, an additional pilaster on each side may be added. The ornament in spandrils and tympanum added bhe ornament ind should incised and gilt.

Hollowing Iron Cones. - Sheet metal cones axe usually hollowed before the seums are formed, by work. ing along the curves forming the top and bottom parts of the pattern, and then in to the centre, with a binck hammer used on a beech block with holes cut in the end of a depth suitable to the curve of the work. If the cones are to be of galvanised iron, the zinc scales would cones are to be of galvanised iron, the zinc scales owno continually peel off the iron dpring the hollowing cones of biack iron, and then to have them galvanised.

Ring Weights on Safety Valve.-The recognised, method of deciding on the number of ring weights remuired to balance a certain pressure.in a dead-weight qufety valve, the latter being fixed, is to put all the rings on and, when the water is in the apparatus, to lift one or ou and, when the water is in jore just leaks ; then put back more rings off until the vaive just leaks then put back people, after putting a ring back to stop the loaking, put one more on, to make sure. The rings generally pepresent a pressure of about 41 b . to 6 lb . per squale inch, but this depends on the weight of the ring and the area of the aperture it closes. A l-lb. ring bearing on an area or the aper. in. area would represent ilb. per square aperture of 1 sq. in. area would represent making the ring heavler and the hole smaller.

Construction of Small Panelled Doors.-Joiners and cabinet makers have different methods of constracting small doors. Fig. 1 shows part of the elevation of a plain one-panel door, as made usually by the joiner. Fig. 2 shows the ends with the stiles by the joiner. Fig. 2 shows the ends with the stiles in section, the dotted lines indicating, as in Fig. 1 , that the panel is in grooves worked on the inner edge

Construction of Small Panelled Doors.
of each piece of wood forming the frame, and that, once together, the panel is fixed so that it cannot be removed. Figs. 3 and 4 show the cabinet-maker's method; movable panels are used, the inner and back angle of each piece of wood forming the door being rebated. The panel can then be removed by unfixing the beads shown in Fig. 4. It is obvious from this that the advantage of this construction is considerable in French-polished articles. In cases where a raised or bolection moulding is used, as in Fig. 5 , no rebate is necessary. The mortises and tenons of cabinet work are rarely cut through, as less exposure to damp renders this less needful, and a better appearance is secured when the ends of tenons are not visible.

Curing a Rabbit Skin,-To cure a rabbit skin, it must be Presh flayed and cleaned of all fat and particles of flesh by scraping it with a bluut knife whilst stretched, fur inwards, upon a rounded surface such as a haluster rail. Then steep it in $i=$ solution made hy mixing thoroughly together when dry 4 parts alum and 1 part common salt, and then adding as much Warm water ab will dissolve the mixture. The quantity depends on the size of the skin. To ascertain when it has soaked long enough, squeeze the liquid from it. Then double it, with the skin side outwards, so as to make a crease, and when the line shows white the soakiug can be stopped. The soaking usually takes about forty-eight hours. Make a paste of flour and water, and,
having jinsed the skin, dip it for a minute in the warm gruel. Then wash it clean with cold water, aud dry It. When ahout half dry, stretch again on a board, and rub with pumice. Small skins, when freshly flayed, can be cured by being soaked for a few days in a solution of tan. This can be made by boiling oak bark or oak galls in rain or distilled water, or by dissolving tannin in soft water. Fill a pot with oak bark, and boil it in twice as much water for three hours. Use the solution cold, and take out and ruls the skin as often as possible duriug. the process.

Circular Saw Bench.-The accompanying illustrations show a bench with a small circular sitw driven by means of two toothed wheels turned with a hook-handle. In addition to the toothed wheels, a shaft carrying a flywheel F (Fig. 1) is shown. The momentum of this wheel will greatly assist in the turning of the bandle. As the saw cannot be driven at a very high speed, the feed speed must nacessarily be slow; a saw up to 8 in . in diameter will be quite large enough for such limited power. A bigher speed could be obtained by having a greater number of toothed

Circular Saw Bench.
wheels and arranging them differently, but this would whean a loss of power. In Fir. 2, which is a plan of the frame of the bench, wheels, etc., in position, T is the large toothed wheel, 2 ft . 6 in. in diameter, geared in a pinion p, 2 in . diameter, which is keyed to the saw spindles. This pinion gears in another pinion, or small toothed wheel ${ }_{P}{ }^{\prime}$, $4 \frac{1}{2}$ in. in diameter, on the flywheel shaft H. On the end of this shaft the fly wheel F, Ift. 3iu. diameter, is keyed. This wheel should have a fairly heavy rim. W is the saw, and B the bearings in which the saw spindle and wheel shafts run. The hook handle K is secured to the Wheel shafts runt of the shaft that carries the large toothed wheel. Fig. I is a side elevation of the bench complete; B is the bench, which may be about 2 ft . 6 in. from floor to table, and T is the large toothed wheel. The speed of pinion P will be fifteen times the speed of the large toothed wheel'r.

Re-pointing the Pivots of a Drum Clock Balance. -In sharpening the pivots of a drum clock balance, hold the axis of the balance by one end in a pinvice and sharpen the centre of the other end on an oilstone, at the same time revolving the pin-vice rapidly in the fingers with a twirling motion. This will keep them circular and prevent flits being formed. Watch and clock drills are also held in a pin-vice for sharpening and carefully rubbed on the oilstone. An inspection of and careruly drill will show the correct shape and angle for the cutting edges.

Felt Hat Reviver.-The best material for cleaning felt luate of any colour is ro-distilled heuzine. After well rubbing this into the hat, give it a good brushing to renove the clirt; grease-spots should he well rubbed with a rag dipned in the ligutd. For grey hats, mix a littls light magnesia with the liquid and brush out the powder after drying.

Applying Asbestos Pasta. - In applying asbeetos paste to a boiler shell, hot-water pipes, steam pipes, stc. first rib some of the paste on the surfaces with the hund or with a piece of cloth or canvas, leaving it quite rough so as to form a key for that which follows. The first coat is rubbed on to ensure the whole having actual contact and holding securely to the boiler. When the paste is dry, with a trowel apply the remainder in about i-in. layers, leaving the surfaces rough (except the final one), and letting each coat dry before applying the next. The surfaces treated should be quite hot whilst the paste is being applied with the trowel; the heat slightly opens the pores in the metal, and this prevents cracking or shelling afterwards.
Machlne for Bendlng Brass Tubes, - A bending machine for brass tuhes consistis of three small rollers, which work simultaneously and are adjustable; they are in the form of a triangle, as bhown in the illustration. I he tube is passed hetween the rollers and is hent round in a circular manner, and according to the adjustment of the rollers so is the radius of the circle altered. Each separate size of tuhe requires separate rollers. Very thin tubes will require first to be loaded with sand before passing them through the machine, otherwise the walls of the tubes will buckle and so apoil the work.

Machine for Bending Brass Tubes.
The same machine framing will take any number of dilfereut sized rollers.

The Manufacture of Kld Gloves.-Ladies' kid gloves are made from skins taken from a five-weeks-old kid, whilst gentlemen's gloves ade made from as stronger skin coming from s two-months-old nnimal. Among the glove leathers in general use are (1) glace kid, a poliched material coloured on the grain or hair side; (2) undressed kid, coloured on the flesh side ; and (3) castor kid, coloured on either or both sides aiter the grain has been scraped off. From twenty to twenty-form complete pairs of gloves can he made up from one dozen sking, the actual number depending, of course, on the bize of the gloves; ladies' cloves range in size from $5 \frac{1}{2}$ in. to $7 \frac{1}{2}$ in. round the palm of the hand, gentlemen's from $6 \frac{3}{\text { a }}$ in. to 10 in., and girls' from 4^{1} in. to $6 \frac{1}{2}$ in. In making gloves, the first operation is the shaving of the dressed skin, which is damped and laid out flat, grain side down, on a marble slah whilst a knife or shsver is made to thin down the skin to the proper thickness; to prevent the knife slipping, flour is sprinkled on the skin. After heing atretched, the skins are cut by hand into glove parts of the desired size, and then are riddelled -that is, lines showing the shape of the fingers are made with a stimp, each size having a different stamp. The thumb pieces are marked in a similar manner. The spaces hetween the stamped lines are ahout dounle the width of the fingers, so that when the leather is stretched over the tough cardboard pattern, the lines may be drawn more closely together. The glove patterns are from 10. in. to $11 \frac{1}{2}$ in long, and from $\frac{1}{2} \mathrm{in}$. to $5 \frac{1}{2} \mathrm{in}$. wide. A separate puttern for the thumb and fourchettes is required (the fourchettes are the pieces between the fingers). A pattern is placed on a table, the markedout end of the piece of leather is laid on the finger end of the pattern, and the leather is stretched hy hind until the spaces betweon the lines are of the same width as the fingers on the pattern beneath; then the thumh and fourchette pieces are doue iu the same way. Atter a close inspection the glove parts are taken to the cutting presses, in which are movable steel dies encircled by sharp steel kniveg; six thicknesses of glove leather ure placed over the die, then a strip of puper, and then a
piece of rubber. By pulling a lever, an iron plate is forced down on the rubber diso, the leather hoing forced over the knife edges and cut as required. The thumb pioces are cut in a similar manner, and then the backs of the gloves are embroldered by machine. Fourchettes of suitable size are selected and cut, two at a time, to the desired shape by a die. In bewing together the gloves with an over-seam atitch, the piece between the thumb is sewed on first, then the thumh, and then the fourchettes, and so on. A parrow strip of binding is sewn on the insids to keep the leather from tearing where the hooks or buttons are placed. Sharp-pointed pincers are used to bring the parts together for sewing, and the glove is lyeld in position by means of two circular pressers which revolre when the sewing machine is at work and cause the glove to move forward during the sewing operation. The sewn glover are placed in a damp cloth for about ten minutes and then flattened and pulled into shaps by hand rubhing on a. smooth table: sometimes a wooden roller is used to flatten them. Black gloves are given a lustre by being ruhbed hy hand with a mixture of neat'sfoot oil, soap, vaseline, and grease. To poltsh glace kid gloves, they are distended on a piece of cardboard and pressed against a plush-covered wheel ahout 12 in . in dismeter making 350 revolutions per minute. The glove日 are then ready for the huttons, clasps, etc.

Making a French Whip-top.-To make the simple wooden top here illustrated, all that is required is a

A French Whip-top.
piece of round wood about 21 in . long and sbout lin. in diameter; a piece of a stout hroomstick will answer the purposs very well. It ghould be cut or turned to one of the shapes shown by Figs. 1, 2, and 3, and a small brass-headed nail driven in at the bottom as shown at A in Figs. 1, 2, 3, and 4. The top may bs roughly ornamented with bands of colour as shown in Fig. 5 This cives a pretty effect whilst the top is Fig. 5. This gives a pretty effect whilst the top ing spinning. The lash of the whips used to spin these tops is genersilly The lash of the whips used to spin these tops is generghly a strip of dried eel-skin, but a
stick auswers the same purpoee.

Cleaning Animal's Skull.-The simplest method of skeletonising an animal's skull is to boil the skull until all the flesh can be easily removed with pieces of bluut wood : hut steaming the skull would be better if it could be arranged; these methods are liable to make the bones very greasy-lookiug. Another method, though very disgusting, ie to macerate the skull in cold water, and, when the flesh has putrefled, to ccrape and scrub the bones until clean. The whole can then bs whitened by soaking for shout fix hours in 1 gal. of watse to which has been added 2 oz . or 3 oz . of chloride of lime. The skull may be coaked in water until the flesh sud fibres are soft onough to be scraped off. Special bone-scral st's are used by professional osteologists, but for a single speciused by professional osteolag ins dirt can be removed men a penknife would sulfice. Ths dirt cand beda, comby well scrubbing with plenty of sosp and sods, combined with the scraping ; and if, after soaking in the chloride of lims solution, the result is not satisfactory, wet the skull every moruing and evening, and leavs it exposed to the stin and wind until bleached. Two things should be remembered-every particle of flesh, skin, etc., mnst be removed; also, the scraping, having heen commenced, must he finished, or the skull placed hack in the water.

Double Sashes for Deadening Noise.-A window sash frame with a double pair of sashes is employed often

Design for a Small Tracery Window.-Figs. 1 and 2 are the plan and elevation of a small two-light window In the Decorated style ($1300-1400$), with a tracery head. The size of the sill is 12 in . by 9 in ; it is weathered and stooled, and also holed to receive two saddle hars. These are of $\frac{5}{g}-1 n$, wrought-iron. finished with trefoiled heads as shown, and there are also to each window three

Design for Small Tracery Window.

[^2]

Fig. 1

Fig. 2
Douhle Sashes for Deadening Noise.
for deadening outside noise. The accompanying illustrations show such sashes and frames, Fig. 1 heing a vertical section and Fig, 2 part of a horizontal section.

Blackening Niokel. - The best methods of blackening nickel are the first and third given on p. 55 for blackening brass. Nickel may be blackened by placing for a sufficiently long time in sulphuretted hydrogen gas.

Beading Spindle for Lathe. - The accompanying illustrations show the construction of a beading spindle
the fence. Fig. 5 shows the top part of the epindle; and Fig. 6 one form of solid cutter for beading. The size can be varied to suit circumstances.

Wax Filling for Engraved Plates. The following are methods of filling engraved plates. (I) Fill up the cuts with finely powdered sealing-wax of the colour

Beading spindle for Lathe.
for a woodworking lathe. The table standard with bearings can be one casting as shown, and made to fix to the lathe bed in the same manner as the l'est or headstock. A hardwood disc must be tnrned and secured to the mandril of the fixed headstock as shown at A (Fig. 1). The beading spindle must be provided with a grooved pulley, into which an indiarubber ring mint be fixed and pressed firmly to the disc A as indicated. Fig. 2 is a side view of the table standard as fixed to the lathe bed. Fig. 3 is a part plan of the table and fence. Fig. 4 shows the top with movable disc, and slotted for eet-screws for
required, press down, and see that but little of the wax is left on the surface of the plats. Warm the plate gradually until the wax is melted, and put aside to oool. Then finish with a Tam-o'shanter stons to remove any wax left on the surface of the plate, and polish with oul and fiannel. (2) Some engravers prefer grinding ths and fiannel. (2) Some engravers prefer gring ing in sealing-wax in gold size, and, when (the plate is flled in
and set, polishing with alcohol. (3) Dissolve sufficient black or red sealing-wax in alcohol to make a thick paste, and fill the engraved lines. When the alcobol is evaporyted the wax becomes hard

Preparing Watch Plates for Gilding,-Watch plates are prepared for gilding in the following manner. After being rubbed smooth with water-of-Ayr stone, the plates are immersed for a second or two in a mixture of 4 parts of hydrochloric acid and 5 parts of nitric acid, both at full strength. They are theu thoroughly rinsed and scratch-brushed, after which they are ready for gilding. Sometimes the plates are heated before dipping them in the gold solution; this softens them, but enables a good colour to be got with a very little gold,

Trestles for Tea-tables,-Figs. 1,2 and 3 show a tea-table trestile with four legs, and Figs. 4, 5 , and 6 one with three legs. Fig. 7 shows the joint most suitable for connecting the legs to the top beam. These joints
or intouaco, is oomposed of finer materials than are contained in the first coat; the second coat is floated on in two coats, and is properly finiahed till the surface is true and of an even grain. If the picture is a large one, only as much of the wall's surface as can be covered in a day's work is prepared. While the surface of the wall is still wet, but firm, a cartoon or tracing of the proposed design is laid over the prepared portion of the Wall, and the lines of the picture are lightly indented on the wall with a blunt bone or hardwood point. When the intonaco is firm enough to bear the pressure of the finger, the colour is pution. To bide the joinings hetween each day's work, the painting is as far as possible sus. pended at the folds of drapery or in the shadows. The painting must be done quickly, and mistakes can only

Trestles for Tea-tables.
may be fastened with nails, but a stronger method is to glue and screw them together. The leading dimensions and sizes euitable for ordinary purposes are shown; these, of course, may be varied to suit circumstances.
Fresco Painting. - There are two kinds of fresco painting-that done when the plaster is wet is called fresco buono; that done after the plaster is dry is called fresco secco. Dampness in the basis is fatal to fresco work. Freestone is a bad basis, and rubble is worse. Brick is perhaps the hest, and the brickwork must be perfectiy dry before the first coat of plaster is applied. The first coat consists of 2 parts of clean shary sand, carefully washed to free it from all impurities, mixed with 1 part of best old lime. To prepare the lime, mix it in a trough to the consistency of cream; then pabs it through hair sieves into jars, where it must be allowed to settile, the water being poured off. The second coat, 19
be rectified by cutting out the defective piece and applying fresh plaster. The colours for fresco work are ground and mixed with water, but only those colours capable of withstanding the action of lime must be used. The following are a few of the suitable colours: Vermilion, Venetian red, Indian red, burnt sienna, aureolin, jellow ochre, terre verte, French blue, ultramarine, cobalt, burnt umber, Verona brown, Vandyke brown, Caledonian brown, raw umber, raw sienna, ivory black, lampblack. It must not be forgotten that the colours dry much lighter than they appear when freshly laid on the wall; the art of mixing the colours, therefore, so as to obtain the desired tone in the finished work can be acquired only by experience. In executing fresce secco the wall is damped before the colours are laid on. It is, of course, a less tedious and less troublesome process than fresco buono, but the result is considered to be inferior.

Making Eogwood Extract.-Extract of logwood is made by grinding logwood under corrugated rolle to reduce it to a coarse powder; the latter is then boiled with water under pressure to extract the whole of the soluble ingredients, The solution thus made is then evaporated to dryuess in shallow or vacuum stcamheated pans, and forms the dry extract. Logwood chipe heated pans, and forms the dry extract. Logwood chi

Hood for Invalid Carriage. -The method of fixiug a hood on an invalid carriage will depend on the shape and size of the hody of the latter. Fig. 1 shows a four-stick head made on a cod 1ron a (Figs. 1 and 3), welded into a frame B (Fig. 1) made of l-in. by t-in. flat iron. This frame goes round the body, being shouldered down at the front end to slip into eyes made shouldered down at the fre fixed one on each side of the as Fig. 4. These eyes are fixed one on each side of the screws or bolts, which are tapped into small hoss plates let into the body. At a con venient point, a prop, as Fige. 5 and 6 , is welded to the frame to take the head joint 0 (Fig. 1), small props, as Fig. 7, being fixed on at D and E (Fig. 1). The positions of these props are obtained by fold. ing down the head, so that when the joints are on they ing down the head, so that when the joints ane another. The hoop-sticks Figs. 1 and 2) line with one to the cod iron by slat irons (see Figs. 1 and are secured to the cod iron by slat irons (see figs. 1 and
3), being fixed from the inside by three screws in each
shoulders of the spokes, and fix a pieoe of panel-board on the bench. With the length from the centre of thestock to the shoulder of the s,oke as radius, describe on the panel-board an arc large enough to reach to three spokes of the wheel, ind dress out, leaving the line fall on in the centre of the pattern, so that when the pattern rests on the shoulderg of the spokes it is elightly off the end ones. Gauge the pattern round to the required depth, and having got the felloes, face them up true and depth, and having got the felloes, face them up true and the pattern, and square; then chop them round the baok in. Wider than the width of the spoke and $\frac{1}{2}$ in. less in depth. The felloes are now ready for cutting in. To do this, turn the wheel face downwards on a tub, and cut the felloes to such a length that each joint comes central between each pair of spokes; thus each felloe should reach to the centre of three spokes. The joint, When cut, should be slightly open at the top; this can be obtained by trying with a small bevel in the centre of the fellos, marking alongride of the blade, reversing the bevel, and altering until the desired joint is obtained, cutting each end off to tbis bevel in the depthand square across in the width. When all the felloes are done, they should rest against the shoulders of the spokes and just meet at the joints; mark each side of the tongues on the face of the felloes, number them in rotation, and take them off to bore the tongue and

Hood for Invalid Carriage.
dowel holes. If the wheels are dished considerably, it is necessary to bole the holea for the tongues slighty forward to bring the sole of the felloes square with the ground line; but in a good ordinary wheel, bore the ground line; but in a good ordinary whee, wore the beyond the front of the spoke a in. The dowel holes are bored rather towards the top in depth and central in width; care must be taken to bore them parallel with the face of the fellues and horizontal in length. The felloes are now rounded up. Drive them on, a little at a time (of course, first putting a dowel in each right-hand end when the face is to the right of the worker'sarm), striking the far side of the tongue from the joint. When they are nearly down on the shoulders, put a wedge tu each tongue, noting that the wedges are a trifie narrowel each tongue, noting that the wedges are a trifienarrowel Working the felloes down into place by giving a wedge a blow, and then a felloe, and so on. When all the felloes are down and of a good fit (if not correct at frst, the spokesshould be kerfed in with a pad saw at the shoulders), face the wheel round on the frout, gauge off full $\frac{1}{\text { a }}$ in. for the round of the face, then the width of the tyre, rounding up the front and back to these lines: clean off the joints in the belly of the felloes, and round over to meet the rounding on the tace. Clean of any unequal places on the sole, file up aud nandpaper, and the work is ready for painting. If the ends of the spokes come flush with the back of the felloe. shey ehould be slightly gonged out before the tyrlng is done.

Preservatives for Paste.-Certain substances are added to flour pasten, limuid glues, etc., to prevent them turning mouldy. Aluin is a moderately good pregervative turning mouldy. Aluste, though not absolutely protective; the pasts for paste, though not absolutely protective; the pasts
should be kept in a dry place in a closed bottle. A very small quantity of wil of cloves, carbolic acid, or corroslve sublimate will prevent mould forming; uss only a mere trace of these, as they are poisonous.

A Lettor-box in Sheet Metal.-The letter-box shown by Fig. 1 is made of tin-plats of the thicknsss known as DXXX. Set out the pattern (Fig. 2), punch holes along the edges for the screws that fasten it to the door, and cut out the piece A either to the size given or larger if proferred. On a hatchst stake, $6 e t$ off or larger in proferred. onr flanges represented by the at right angles the four flanges represented by the
outer dotted lines. Now hend beck same tool the two sides and the bottom along the inner dotted lines. The top is bent in ths same manner, but lastly, owing to the taper. See that the corners mitre correctly, and then solder them strongly from the inside. The door (Fig. 3) should first be cut about 1 ln . wider and lin. longer than the rectangle A (Fig. 2). It is then notched for the hinges, and at the corners, and an oval piece, or a dia mond if prgferred, is cut from the centre. Wire the door to the dotted lines, and hand two straps of tin (cut to fit the notches) over the exposed wire at the notches. These, when sunk over a sharp-edged tool or in a crease-iron, will form the hinges. To ascertain where to cut tha keyhole, hold the lock at the back of the door at $\frac{1}{2}$ in. from the edge, and press well to the door. The lock pln over which the key fits will thus mark the position of the keyhole, which should he punched larger than the barrel of the key and finished with a small file. The lock can now be soldered in position. A rectangular piece of glass smaller than A. (Fig. 2), yet larger than the oval in Fig. 3,
important operation. The granite should be of good quality, hard and durable, with good weather-resisting properties, and should bs broken to pass a 1 din. ring. The pieces should bs angular ; anything of a flat, chippy nature should be avoided, for it cannot be rolled into a compact mass, and the traffic very soon wears it away to sludge. Give the road a unitormly thick (2 in . to 3 in .) coating of this material; then run the roller on the sides, and work to the centre. The next material required is the hinding, which must he chosen carefully. Ons of the best hinders is a fine sandy gravel, and one of this to six of material is a fail proportion. This having been spread on the road, water it freely, brush well in with stiff brooms, and fill up all slack places as the rolling proceeds. When the surfacs has begun to assume a mosaic-like appearances, and the hinding hegins to accumulate on the top, it should be swept into the channels. Fine granite chippings are rolled in at this stage, for the purpose of filling up all interstices between the larger stones, but if $\frac{1}{2}$-in. angular stones wers used for this purpose the road would be much more free from sludge, lor on any road on which the traffic ls heavy the thin chipping must very soon bs ground to dust.

Making Roll-shutter for Roll-top Desk.-Theaccompanying illustration shows a good form of section for the

$F_{10} 1$

Fig. 3

A Letter-box in Sheet Metal.
is required. Fix this to the back of the door with four small tabs, which must have been soldered on previously. Lay the door over ths hole in the letter-box, adjust so that the lock will answer satisfactorily, and then solder the hinges to the box. For a bead frame for the box door, cut two strips of tin $\frac{1}{8}$ in. longer than the length of the door, and two $\frac{1}{2}$ in. longer than the width, each to be $\frac{1}{b}$ in. wide ; sink them half round in a crease-iron, mitrs the corners, and solder them to the letter-box around the door, so that it will drop in freely. Scrape and fils off superfluous solder, clean well with emery cloth, and then paint and varnish the box to suit the door on which it is to be fltted.

Making a Macadam Road.-One of the essential requirements of a good road is a solid foundation, and without this it is impossible to keep the contour and the surface in good condition. After the excavating has beer done, good hard stone pitching should bs packed edgewiss from 9 in . at the channel to 15 in . in the centre of the road; sos that these stones are packed close. Go over the pitching with nobhling hammers, knocking off any prominent pieces of the stone. Put on the top a quantity of small scappling or hard bricks, and break these up, so as to fill all open spaces. A coating of good clinking cinder, rolled in with a heavy horse roller, will make a good compact foundation for the macadam. Iron ore slag or copper slag, if availnble in the district, will serve admirably for the next coat. Spread a coating of either of these materials, or of granite to pass a 3-in. ring, from 3 in . thick at channels to 6 in . in the centre of the road, and then traverse the work with a steam roller. The road will now be ready for top capping, a most

Section of Roll-shutter for Roll-top Desk.
roll-shutter of an American roll-top desk. Each strip of wood is moulded to the section and firmly glued to a wacking of stout canvas. Before gluine, the edges which are in contact should be rubbed with linseed oil to prevent any glue adhering ; do not oil the part that is prevent any ghe adhering; do notued. The sections shown are actual size.

Sizing and Varnishing a Papered Room.-Below are instructions on revarnishing the walls and ceiling of a room covered with sanitary paper. Well wash the ceiling and walls with warm water and ox-galls- $\frac{1}{3} \mathrm{pt}$. of the latter in 1 gal, of water. Then give a covering of gluesize (1 lb . of best Scotch glue in 1 gal. of water), applied with a sponge. The sizs should be allowed to dry for twenty-four hours before applying the varnish. Do not use crystal or paper varnish. For the walls, get $\frac{1}{2}$ gal. of grood kauri varnish, 1 qt . of turps, and 1 qt . of raw oil. For the ceiling, use turpentine varnish.
Making Zinc Yollow.-Zinc yellow is a chromate of zinc mixed with oxide of zinc. To make zine yellow, boil separato saturated solutions (l) of 29 oz . of sulphate of zine in water and (2) 20 oz . of chromate (not bichromate) of potash in water ; mix, boil for one hour, collect the precipitate on a filter cloth, wash several times with water, and dry at a low heat. Another method is to dissolve $12 \frac{1}{3}$ oz. of bichromate of potash in hot water ; mix 6 oz . of zinc oxide to a cream with water, and stir it into the bichromate solution. Allow to stand for twentyfour hours, boil for one hour, then filter, wash, and dry.

Varieties of Marbles.-The table of the better-known marbles given below has been complied chiefly from Lee's "Marble and Marbla Workers," though other authorities have been consulted as wall. Marbles may be classifled in different ways, but perhaps the most
convenlent method ls to divlde them into seven colour groups - black, brown, green, grey, red, white, and yellow. A sharp division ling between these colours cannot be drawn in all cases, but the classlflcation holds good for most practical purposes.

Name.		Predonninant Colour.	Whence Obtained.	Remarks.
Rouge Royal	...	Red	Belgium	Grey yeins and whits patches on red ground ; contains holes.
Russet	Bro	England	Deep brown, mottled.
St. Amande	...	Grey	Eelgium	Dove colour with reddieh tiut. \{ Sound and of close texture: grey and black, flowered and
St. Annes ...		Grey	Belgium	$\{$ Sound and of close texture: grey and black, flowered and $\{$ veined with white.
St. Béat		White	France	Very pure, but inferior to Carrara statuary.
St. Sylvester		Red	Portugal	$\left\{\begin{array}{c}\text { Sound and takes high polish; flesh-colour ground with darkred } \\ \text { and white veins and light brown and white patches; very } \\ \text { haudsome. }\end{array}\right.$
Sarrancolin		Red	France	Fawn and dove markings over red.
Sicilian ..		White	Italy	f Hard and white, with hluish cast; best quality bears exposure t well.
Sienna		Yellow	Italy	$\{$ Ground ranges from white to brown through all shades of yellow; purple and black veins.
Statuary	\ldots	White	Italy	Rarely obtained quite pure ; the best comes from Carrara.
Statuary Vein	...	White	Italy	For statuary work; more or less veined.
Vein	..	White	Italy	White, with veins.
Verde Antique	...	Green	Italy	White veins on deepgreen; the best of the Genoa marbles.
Verds di Levan	...	Green	Italy	Purple and red veins on green grouud.
Verde di Pegli	...	Green	Italy	White veins on green ground; contains holes. (Obtained in emall blocks only, and takes high polish; dark
Verde di Prato		Green	Italy	spots and whits veius over deep green.
Verona Red	...	Red	Italy	Fawn-colour patches on light red ground.
Vert d'Arriege	...	Green	France	Gight and dark green veins on white ground.
Vert Isabella	\ldots	Green	France	Green and whits veing on fawn-colour ground.
Vert Maurin	\ldots	Green	France	Sound, and obtainedin large blocks; white veins on dark green.
Vert Moulins Victoria Red	\ldots	Green	France	Green patches and veins and white spots on red ground. Mottled light red.
Waulsort	Brown	Belgium	$\left\{\begin{array}{c}\text { Fairly sound and takes good polish ; dark brown with patches } \\ \text { of white, black, red, and pink. }\end{array}\right.$

Cutting and Polishing Diamonds.-The processes through which a piece of carbon passes in the course of its conversion into a natural diamond are not known to man; all that is known is that the carbon crystallises. The natural home of the diamond is supposed to be a rocky matrix; but this is theory only, there being no evidence that a diamond has becn discovered so situated. The mountains that supply the debris in which the gems are contained are composed of schistose rocks intermixed with quartz, sandstone, brescia, flinty elate, limestone, etc. All that is actually known concerning the original position of the diamond is that the only rock in which it is found in the mountains is the limestone brescia. Of course, as discovered, the rough gems are quite dull and lustreless, and it is necessary to cut and polish them; there must be principal planes or facse, and around thess a considerable number of smaller ones placed at correct angles, so that by refraction a blaze of light, whose every ray is in harmony with the rest, may result. The facets must be so cut that light, in passing through, is refracted in such a way that a maximum of brilliancy is obtained, The diamond being the hardest of known substances, its own dust is the only available material with which it may be polished and worked. The dust is obtained by grinding up worthless diamond particles in a steel mortar, the minute fragments obtained in the working of the diamonds also being saved for the purposs. Bort diamonds, black or grey carbon partly crystallised and found in conjunction with the ordinary diamond, are also used, these being just as hard as the clear diamond. By rubbing two diamonds together, they are mutually abraded or worn away; hence, a valuable diamond is cut by rubbing it with a comparatively worthless black one of equal hardness. Both clear and black or bort diamonds are fastened in the ends of sticks of cement, the black one having its cutting angle so placed that it may be used to the best advantage. The workman holds the clear stone in his left hand, and rubs it with the black one held in the other hand, the dust produced by the abrasion falling into a double metallic box whose inner receptacle has a perforated bottom; the coarser particles left in this receptacle must he powdered in a, ateel mortar for use as a diamond polishing medium, whilst the powder that has pasced through the perforations is already sufficiently fine for the purposs. Diamond cutting is slow and tedious work, and requires the utmost care and skill. It is possible to split or divide a diamond if advantage is taken of its grain or cleavage plane. Sometimes a large piece issplit off a stone, and the tinle and expense of a prolonged abrading process avoided; but the splitting operation is a risky one. The stone is studied closely, and its line of cleavage is ascertained; it is then cemented to a suitable support. The sharp edge of a razor-like chisel is carefully adjusted to the line of cleavage, and a smart rap with the hammer is given to ths chisel. If the splitting is successful, much expense will have been spared; if unsuccessful, it is likely that the diamond is spoiled, and is comparatively worthless. In the polishing of the cut stones use is made
of a turu-table. In Holland, which for many yeare monopolised the diamond cutting and polishing in. dustry, ponderous machinery was employed, the wheels being braced and wedged like the running-gear of a sawmill. Sinca 1870 or so much interest in the industry has been awakened in America, where a lighter, more compact and serviceable machine is in use. It is a small iron-top table having solid iron supports and double bearings, so that the polishing wheel in the centre revolves herizontally with its surface flush witi that of the table; perfect steadiness is obtained with this machine. The cut stone to be polished is fixed in soft lead heaped conically in a copper cap, and the flat surface of the wheel is charged with a paste of diamond dust and oil. The copper cup holding the diamond is placed in a heavy iron clamp, in which it is held inverted above the polishing wheel, which is then made to revolve at the rate of about 1,500 revolutions per minute. Nothing but the diamond presses upon the wheel, a rather musical sound being produced by the contact if the wheel is doing its work. When one facet has been polished, the wheel is stopped, the lead in the copper cup melted, ths diamond reset, and another portion of the diamond is worked. Most careful measurements and experiments worked, Most careiul measurements and experiments angular proportion in the facets is obtained.

Chemists' Show Bottles.-The following supplements the information given on p. 13. In filling show bottles, first put in suticient distilled water and add the concentrated colouring solution, made as below, so as to give a tint which, with a light behind it, shows up better than a decided colour. The greater proportionately the diameter of the bottle, the less colour will be required. For a blus liquid, dissolve 1 oz. of blue vitriol in $\frac{1}{3} p t$. of water, and add sufficient ammonia water to diesolve the precipitate first formed A green liquid may be made by adding bichromate of potassium to the above blue one; if turbid, add ammonia water. For purple, dissolve 1 gr . of calicylic acid in 2 fluid drachms of alcohol and 2 oz . of water; add 30 drops of tincture of chlorids of iron dissolved in 2 oz . of water. For red, diseolve $\frac{1}{2}$ dr. of iodine by means of $\frac{1}{3} d r$. of iodide of potassium in $\frac{1}{2} p t_{\text {. }}$ of water, and add loz. of muriatic acid. An orange tint is obtained by dissolving bichromate of potash in water. For yellow, dissolve 3 parts of bichromate of potash and 2 parts of carbonats of potassium in water. To prevent the bursting of the bottles by freezing, alcohol or the bursting of tho should replace a part of the distilled water used for thinning the colouring solutions.
Making Imperial Yellow.-Imperial yellow is a sulphide of arssnic, and the materials employed in making it ars very poiconous. Three parts of white areenic are mixed with 1 part of powdered sulphur, and the mixture is heated in an iron pan provided with a cover, into which the sulphide guhlimes in a solid mass. The plg. ment is simply coarsely ground, as its colour is not improved by fine grinding.

Parifying Zina,-The method generally adopted commercially of purifying zinc is to melt the metal in a reverberatory furnace having an inclined bed, in which the metal collects, and the lead, helng of heavier specific gravity, falls to the bottom. Thls allows the impurities to oxidise and form a scum on the top of the metal. Of course, the metal is kept just at melting point, otherwise a large loss of zinc by volatilisation results. It is practically impossible to purify zinc on a small seale. A plan that might be tried (although its success cannot be guaranteed) would be to melt the zlnc under a thick layer of flour charcoal. Should there be any bismuth or arsenic in the metal, these impurities might be driven off, as they volatilise at a much lower tomperature than zinc. Lead, which would be the largest impurity, would separate out and would be poured last, so that the major portion of the zinc would he comparatively pure.

Wells System of Measuring Distances.-The accompanying figures show the Wells apparatus used by surveyors for judging distance when taking trial levels without chaining the horizontal distances. It may also be used as a check upon chained measurements. The apparatus consistsof aneedle pointa attached to the diaphragm of any levelling telescops, and movabls in a vertical direction so that its distance from the horizontal crosshair or wire may bs regulated by the micrometer screw

PLAN
Wells System of Measuring Distances.

B, the tap of which is graduated, as shown in the plan, to serve as a reference in setting the needle point. The index-pointer to this graduated circle is fixed upon the front of the telescope over the eye-piece, as shown in front of the telescope over the eye-piece, as shown in np and down by the micrometer screw B between the limits marked "traverse of needle," travels in the same vertical plane as that in which the cross-hairs are fixed. To set the needle, measure any distance, say 100 ft ., upon level ground, set up the level so that the telescope stands over one end of the measured distance, while the staff is held at the other end. Focus the telescope accurately, and mave the needle-point A in the diaphragm by the screw-head B until exactly 1 ft . of the staff image is enclosed hetween the needle-point and tho horizontal cross-hair in the diaphragm. In this way a datum distance reading may be obtained, from which other -distances of varying lengths can be easily calculated. The divisions non the top of the screw B (see plan), where the index-pointer touches, should then be noted for future referance.

Crazy China-work,-Jars decorated by crazy chinawork, or china patchwork, form useful and arnamental vases, pot-pourri jars, etc. Take an ordinary brown earthenware stew-pot, together with its lid, thoroughly wash them, and allow to dry. Cover the outsides of the jar and lid with putty to a thickness of $\frac{1}{}$ in. or so. This putty is the ordinary material, to be obtained at any oilshop, and may be made hy well mixing 2 lb. of sifted whiting with $\frac{1}{2}$ lb. of dry white lead, and then making into a stiff paste with raw linseed oil. After standing for a few hours, work it up in the hands, and then it is fit for use. The miscellany of odds and ends with which the jar is decorated includes broken china, hits of crockery, coloured glass, buttons, shells, little pieces of
flint, etc., and all these must be washed thoroughly, and allowed to dry before being applied; they should be broken up sa as to he not more than $\frac{9}{4}$ in. in diameter, and are embedded in the putty just as fancy dictates; it is not desirable to make any attempt at producing a pattern. If the putty is allowed to bulge out betwern each two pieces of china, it should be tauched up whlth gold paint when dry. It is a matter of tasto hut, in many opinions, gald paint daes nat improve china patehwork Instead of the ordinary putty, a cement made as follows may bs used. Stand a stone jam jar half flled with melted glue in hot water, and stir in whiting until the mixture is of the conslstency of cream, aud with this coat the article to he decorated, and allow to dry. Thicken the composition by adding whiting whilst hot, and apply the paste to the already coated, but dry, articles. The china fragments are then embedded; this ground is affected by water. Besides vases, such articles as drain-pipe umbrella stands, flower-pots, plaques (having a papier-mache or tinplate base), photograph frames, jurdinieres, etc., may be decorated in crazy china-work, In cases where the base is a very porous one, as, for example, an nnglazed flower-pot, a coat of common varnish may precede the application of the putty.

Drilling Holes in Glasg.-In order to drill a hole in glass, it is necessary to have a hard and wellotempered steel drill. This may he prepared by heating to a dull red, and then plunging into mercury so as to become hard. It is, however, necessary to temper the shaft of the drill. Imhed the point of the drill in a piece of lead. The temperature of the shaft of the drill can he raised by msans of a blow-pipe till theres is a blue colour nearly to the point. The drill and lead together are now immersed in cold water, when the first will be ready for work. This tool, when maunted in a holder and with the point moistened with turpentine, attacks glass rapidly. Do not press too heavily when working the drill, and, if possible, work from both sides of the glass successively. To enlarge a hols thus obtained, use a rat-tailed filg soaked in turpentine. A steel drill may bs hardened, when at a red heat, hy dipping it into any cool liquid. Another method is to saturate commercial muriatic acid with zinc-do this in the open air. The drill should he ground hefore hardening. When at a red heat, dip it in the solution to harden; or a spear-shaped drill, heated to a red heat and hardened in mercury, and then gharpened on an oilstong, may be used. Still another method is to forge a drill at a low temperaturs and harden it in water. The drill is firmly rotated at the desired spot with an alternate motion, and lubricated with a saturated solution of camphor and spirit of turpentine. Dilute sulphuric acid may also be used as a lubricant. A very simple tool for boring glass is a drill made hy heating an old three-cornered file, which is then cooled slowly in ashes. The end is fled to a conicul shape and again heated, and then hardened by plunging into water. The drill is flyed in a brace and rotated, turpentine being used as a lubricant. To remove the drill from the hole, rotate the drill in the reverse way. A reliable method of drilling holes, in which a tube is used, is as follows. Make a drill from brass tube of the required diameter, and into the non-cutting and drive a piece of wirs to project somewhat, and flla the projecting part to fit a drill-stock. The cutting end of the brass tube is next to be slotted with a few saw-cuts running parallel with the tube's length: the inner ends of the cuts must terminate in holes drilled, before the slots are cut, at right angles to the tube's length. The number of slote required depends upon the diameter of the tube used. Two pieces of wood, measuring, say, 3 in. wide, In. thick, and long enough to suan the piecs of glass, ire screwed firmly together with ordinary wood screws are screwed furmly together with ordinary wood through near the ends, whilst through both pieces of wood a hols is bored large enough to admit the drill freely. This hole through the wood is to he countersuak gt both ends. The two pieces of wood are next separated, by partly removing the screws, and the glass is placsd between them to bs held as in a kind of clamp, the hole for the drill bsing hrought exactly over the gpot where the glass is to be hored. Soms 90 or 120 grade emery powder mixed with water is then placed in the countersinking to act as a grinding agent. Ths in the countersinking to act as a grinding agent. not so quickly as to splash out the wet emery. Whan the drill is half-way through the glass from one side, a hole should be started from the othsr side and completed, to prevent the chippiug of the edges. Holes from in. to 2in. diameter cnu be bored with this appliance. It takes about four minutes by this method to drill holes up to $\frac{1}{3}$ in. diameter in \AA sheet of glass $\frac{1}{B} \operatorname{in}$. thick.

Making Artificial Oilstones.-One way of making artifcial oilstones is to mix fiuely powdered sand with a small quantity of shellac; heat the mixture, then placa it under great pressure in a mould and allow to be. come cold.

Use of Sensitometer in Photography.-A sensitometer (or actinometer, as it is sometimes called) is an instrument for meaburing the sensitiveneas to light of photographic plates and paper. In certain printing processes in photography, wirh as the carbon and the dusting-on processes, the action of light does not cause any visible change iu the sensitised material exposed under the negative, and the latent image has to be developed after the exposure has been made. In these circumstances, theref re, it is important to adopt some method by which a correct exposure mas be ensured. Although the sensitiveness of the paper may be knowu, two unknown factors, namely, the density of the nsgative and the actini. power of the light, render any calculation to ascertain the correct time of exposure impossible. It is to overcome this difficulty, therefore, that the sensitometer has been devised. The sensitometer consists of a series of tiny negatives of different densities; under the negative that matches the working negative is placed a strip of any printingont paper that prints a visible image, and when this test piece of P.O.P. is printed to the required depth, the print from the other or working negative is also sufficiently printed. A simpler form of sensitometer consists of a small bex inside which a strip of printing-out paper is coiled; a portion of this paper is brought beneath a piece of coloured glass and exposed till it reaches a standard tint painted round the glass. Experience alone teaches how to allow for the difference in contrast in the negative and the print and for the variation in light. Carbon, for example, is proportionately more sensitive than silver when the light is dull; and, if the light is particularly rich in ultra-violet rays, the silver chloride would have an advantage. A sensitometer is sometimes used in platinotype printing, but in this case the finint primary image itself acts as a sensitometer and is a good guide to an experienced printer. A rough form of sensitometer may be made by pasting a number of strips of tissue paper one on the other, each successive strip being abcut $\frac{1}{3}$ in. shorter than the preceding, thus forming a scale of density. An almost equally satisfactory plan is to utilise as a scale different parts of a negative having a good range of density, using, of course, a strip of paper cufficiently long to allow of the frams being opened without moving the paper. Sensitometers for tosting the speed of bromide plates and meters for terting the speed of bromide plates

Renovating Piano Keys.-In removing scratches from piano keys, first find out whether the key coveringe are of ivery or celluloid by wiping them over with methylated spirit; if they are of celluloid, a strong smell of camphor will be emitted. The scratches, if deep, can only be removed by taking a thin shaving off the surface of the key; if not deep, polishing with finc grade pumice powder and benzoline may be tried. If it is necessary to remove the upper surface, the keys should be dealt with one at a time by placing them on a block, on the face of which has been nailed two strips of wood to form a groove. If a suitable iron plane is not available, a finely set smoothing plane may be used, though good work can be done with a cabinet-maker's steel scraper and glasspaper. If the key coverings are of celluloid, use, instead of a plane, No. 1 and No. 0 glass-paper, held tightly over a cork pad. When all scratches have been obliterated and the surface of the keys is quite level, and the sharp edges are removed by gentle rubbing with worn paper, the polishing may be done. Polishing pads are made by tightly stretching several thicknesses of woollen cloth or a piece of felt across a smooth board, and by its side a piece of chamois leather; cloth and leather should be so secured that the nails cannot get in the path of the keys. Ivory keys may be polished by liberally sprinkling the cloth or felt with methylated spirit, then rubbing whiting on till a thin paste is formed. The keys should be done one at a time, turned face downwards. Rub briskly to and fro till a fair polish is gained. The surplus moisture is wiped off with a piece of rag, the final polish being imparted with the chamois pad, on the face of which has been sprinkled some dry whiting, or, better still, some putty powder. Celluloid keys are similarly polished, except that finest grade pumice powder and benzoline should be used instead of whiting. As the nature of celluloid varies, it may be necessary to use putty powder and oil in order to gain a first-class polish; in that case, use a separate pad. Benzoline, owing to its inflammable nature, should not be used near any source of artificial light.

Making a Projecting Swinging Sign.-The projecting swinging glass-faced sign affords a permanent advertisement, and is made easily. The design should first be drawn in every detail. Next get a deal board about in. thick and of the width and height of the shield, or whatever shape deter'mined. Lay a paper pattern of the design on the board, mark round with a pencil, and with a keyhole saw cut out the shape, taking great care not to crack any of the corners or in
any way damage the culves in working. Round this shaped hoard is put a $1^{\frac{1}{2}-i n . ~ r i m ~ o f ~ t h i n ~ h o o p-i r o n, ~}$ having holes pnnched in the centre in various places, as well as two holes to screw in the hooks for hanging, as shown partly in the accompanying illustration. Then bend the rim round the wooden shield and fix with round-headed screws. When this is overlapped at the top about $1 \frac{1}{3}$ in. for strength, there will be $\frac{1}{2}$ in. of rim on each side, which is ample for glazing. Next take the paper template and cut off about $\frac{i}{8}$ in. bare all round, and have two glasses cut to this size in 15 oz . clear glass. Try them in the shield frame, and see that they fit easily and do not pinch at any of the corners. Then set out the wording for the sign, which minst be put on the back of the glass and backwards. The way to do this is to make the drawing npon tracing paper, which, when turned over, presents the lettering backwards and ready to place beneath the glass; then trace in the colour desired. The enamel-paints cold in small tins would do well for this work, and, being supplied in many varieties of colours, afford a choice and scope for arrangement. Of course, in choosing colours for an advertisement, striking contrasts, not too glaring, are the

A. Projecting Swinging Sign.
best, as they draw attention. Using white letters witb a chocolate background, or black letters with whits or sky blue background, and 80 on, any number of different arrangements can be applied, and it remains with the worker to choose the colours so that the projecting sign, when finished, will not look un ightly if compared with its surroundings. Get a small brush called a writer, and trace in all the letters in the desired colours, taking care to keep the colours properly thinned with turpentine and not to get a thick body of colour on that will take a long time to dry. When all the lettering or design is traced in, put aside for a day or two to get thoroughly dry and hard, and then paint in the background with an ordinary sash tool. Of course, there will be two glasses to do, one for each side of the sign, and different wording can be arranged, 60 that there will be two announcements on one sign. When both glasses are finished they are ready for glazing. The putty for this should be mixed with a little colour, making it the same, or nearly the same, as the colour of the background. Lay the glass in the frame and putty round. The bracket is made with three pieces of iron. The upright, to be screwed to the wall, is a piece of sheetiron about 2 in. wide, with holes for screwing. The projecting bar is fixed to the upright and curved at the end, and the support at ithe top is riveted to the upright and horizontal bar as a strengthener for the latter, which supportis the sign. The sign should not be fixed lower than 7 ft . from the pavernent.

Flatting for Steel Castings.-To malse a flatting or filling for rough steel castings, mix together 1 lb , of whits lead and $\frac{1}{4}$ lb. of terebine; thin down with turpentine till the mixture is of the consistency of paint. This flatting will dry quickly and leave a smooth suriace, on which the finishing colour may be applied. Black is on which the finishing colour may be apple mix $\underset{\mathrm{t}}{\mathrm{Ib} \text {. of }}$ wenerally used. Io make a good bleack with $10 z$ of driers ol litharge; then add the hlack pigment, ground in oil, to the required shade, and thin down with turps till the whole is of the consistency of paint. Another mixture consists of 1 lh . of black paint, 7 oz . of linseed oil, 2 oz . of turpentine, and $\frac{5}{4} \mathrm{oz}$. of litharge. Mix the litharge with the paint, then add the oil, and finally the turpentine.

Design for Front of Pigeons' Eouse.-Figs. 1 and 2 show front slovation and side elevation respectively of the front of a pigeons' house, about 9 ft . long, 4 ft .4 in. high at the sides, and 6 ft . 8 in. high in the centre, including the turned finial. The framing should be of wood ahout 3 in. by $2 \frac{1}{2}$ in., mortised and tenoned
piece of board first; after staining with the potansium permanganate, wash out the brush in water, or the salt will destroy the bristles. An antiqus shade on oak carvings is obtained by staining with umber which has been busid in water with a little potash. Wood stained in this manner is not polished, but it receives a covering of limpid varuish. For wax-polishing carved work, benzine wax is preferred to turpentine wax becauss To prepare benzine wax, put and notches so much. wax into a vessel, cover, the wax with benzine, and closely stopper the vessel and allow to stand for a day in a cool place; care is needed in thess operations, as benzine is highly inflammable. A thick paste will form; remove a little of this with a knife or spatula and dilute it with benzine in a flat dish to about the consistency of milk, and apply this to the carved work by means of a moderately soft bristle paint brush. After standing for moderately soft bristle paint brush. After standing for with a good bristle brush, when a faint lustre will appear. To give a red tinge to the wax, add a little of an

Fig. I

\therefore Fa 2°

Fig. 3
Design for Front of Plgeons' House.
together. The joint at the angle of the sill-pieces and angle-posts is shown at Fig. 3. The appearance would be improved by fixing strips of $\frac{1}{2}$-in. or $\frac{6}{8}$ in. bead along the vertical edges of the posts, and the wirework could be fixed to this as indicated in Fig. 4.
Staining and Wax-polishing Wood Carvings.The following is a description of how wood carvings are finished by staining and wax-polishing. Before staining wood carvings, the surface must be made very smooth to prevent the wood swelling on theapplication of the stain. For this purposa, polish the surface with a wad of very thin soft shavings, firmly pressing with the hand until a faint lustre appears. Fing varieties of wood should not be stained. Walnut, pear, oak, plum, and mahogany retain their natural colour, and are waxed only and subsequently hrushed, by which means they attain as somewhat darker tone and antique appearance. A handsome dark-brown shade on walnut is obtalned by first coating dark-orown shade on walnut is obtained by first coating infused, and polishing after twenty-four hours, A simple method of staining carvings is to coat with a dilute solution of potassium chromate and then with a diluts solution of potassium permanganats. By varying the strength of the solutions and the number of applications, all woods, from the hardest to the sot'test, can be stained effectively. It is wise to try the stains on a
infusion of alkanet in benzine; for bloe, add a solution infusion of alkanet in benzine; for bioe, add a solusian blue in benzine; and for a mahogany of Pruscian blue in benzine; and for a manogany colon. After use, clean the brughes, etc., with a hot soda solution.

Repairing Goloshes. - It is difilcult to find a cement that will adherg to the composition of which goloshes are made. Still, the following method of repairing may prove successful. First, the part to be repaired must brove successiul with a coarse rasp. If repaired must bs roughened with a coarse indiarubher solution and serve a piece of vulcanised indiarubber in the same way; when both are nearly dry-that is, just tacky-warm them by a slow fire and then press the patch to its place. When it is set, trim up with knife, file, and sandpaper. If the old stuff is hard, mix some gutta-percha with indiarubber solution by warming the former till it is well melted and then whirring the two well together. This, if not too thick, can be put on with the tinger; if it is thick, it majain honad on with $几$ warm iron, after a coat of plain solution has been applied to the golosh and has dried. Then to repair, a piece of thin sheet gutta-percha can be thrown into hot water, taken out when soft, wipsd dry, and then held on the golosh near a fire. When cold and hard, finished witf knife and glasspaper.

Enamelling Slate Mantelshelf. - The process of enemelling slate, as for instance a mantelshelf, is as follows. A dark lacquer or tar varnish is applied with a brusin to the surface of the slats, which is then placed in an oven and baked from twelve to forty hours, according to size, the heat being just sufficient to fuse the lacquer. The slate is then treated with a coat of enamel, and again pleced in tha oven to harden. This is repeated several times till the surface is parfect and the slab is ready for polishing, which is effected by rubbing with ready for polishing, which is efrected by rubbing with woollen bosses and powdered pamice-stone, finishing
off with a little powdered rotten-stone. Scratches cannot be effectually removed from a polished (enamelled) slats mantelshelf; rubbing with an oily rag will, however, soften down the scratches. The only real remedy will be to have the shelf re-enamelled.

Consumption of Gas by Various Burners.-Thetable below gives the consumption of gas in the different varieties of Bray's flat-flams burners in ordinary use, under a pressure of ten-tenths, or lin. With regard to the apparent inconsistency of some of the figures, these are based on tests made at the instancs of the Leeds Corporation.

	Cub. ft. per hour.	Cub. ft. per hour:	Cub. ft. per hour.	Cub. ft. per hour.	Cub. ft. per hour	Cub ft. per hour.
0	$3 \cdot 6$	3.05	-	-	-	
1	$3 \cdot 9$	$4 \cdot 02$	4.8	$3 \cdot 53$	4.26	$3 \cdot 86$
2	$4 \cdot 9$	$3 \cdot 97$	$5 \cdot 2$	$4 \cdot 22$	$4 \cdot 95$	4.46
3	4.8	4.90	6.37	4.61	$5 \cdot 64$	$5 \cdot 25$
4	$6 \cdot 67$	$5 \cdot 15$	$5 \cdot 88$	$5 \cdot 69$	$6 \cdot 74$	5-55
5	$7 \cdot 97$	6.67	$8 \cdot 14$	6.37	6.93	$5 \cdot 85$
6	8.35	$7 \cdot 65$	$8 \cdot 60$	$7 \cdot 55$	$8 \cdot 82$	$7 \cdot 53$
7	$8 \cdot 65$	8.05	9.04	$8 \cdot 60$	10.00	$8 \cdot 72$
8	10.60	$10 \cdot 60$ 11.20	$9 \cdot 40$ 10.50	10.00 12.60	$9 \cdot 30$ $10 \cdot 10$	$9 \cdot 30$ 9.31

The ordinary Welsbach incandescent burners are of three types. First, the "C" burner, consuming about $3 \frac{1}{2}$ cub. ft of gas per hour, and giving a sixty candle-power light; second, the " S ," consuming $2 \frac{1}{2}$ cub. ft . of gas, and giving a light of thirty-five candles; and third, the "Gom" burner, consuming $1 \frac{3}{c} \mathrm{cub}$, ft. of gas, and yielding a light of thirty-five candle-power. The "New" Welsbach burner is made in the following sizes:-

No. of Burner.	Gas Consumption at 1 in. pressure. Cubic feet.	Candle-power (about).
0	3	20
1	1	30
2	2.2	50
3	3	80
4	3.8	105
7	6.5	185

Gilding Glass by the Chemical Process, - Gold chloride dissolved in distilled water is employed for gilding glass by the chemical process. The chloride is prepared by dissolving pure gold in nitro-muriatic acid, evaporating the liquid nearly to dryness, dissolving the gold salt in distilled water, then neutralising the romaining excess acid by the addition of soda. The solution should contain 100 gr . of gold chloride in 1 pt . of water, and must he filtered through blotting paper before use. Four-fifths of this gold solution must then bs mixed with one-fifth of solution made by dissolving 600 gr. of pure caustic sodain 1 pt . of distilled water, and filtering it through blotting paper. This mixture is poured on the surface of the glass to be gilded, and the goid reduced therefrom by one of the following re-agents. (1.) Pass a current of ordinary illuminating gas through 1 pt . of absolute alcohol for one hour, then add an equal quantity of pure glycerine diluted with its own volums of distilled water. From 10 to 15 drops of this mixture will be required to each 10 dr. of the gilding mixture. Add the re-agent a moment or two before using, and pour this on the glass surface to be gilded. In a short time the mixture will turn green, and its gold will be deposited in a bright condition on tha glass. (2.) Chemically pure glycerine, mixed with the caustic soda solution previously described (equal quantities of each) may be employed instead of No. 1. (3.) Dissolve 300 gr . of glacose in
dr. of distilled water, and apply heat unthil one-third of the water has evaporated; then mix the remainder with an equal bulk of 90 per cent. alcohol. Twenty drops of this re-agent will give the gilding a reddish tinge. (4.) Dissolve $185 \mathrm{gr}_{4}$ of white sugar in 25 dr . of distilled water, add $\frac{1}{3}$ dr. of pure nitric acid, and dilute the whole with an equal quantity of 90 per cent. alcohol; then boil the whols for a quarter of an hour. Two drachms of this mixture to each 10 dr . of the gilding mixture will be requixed. (5.) Employ $2 \frac{1}{2}$ dr. of amyl-alcohol instead of the above. This gives a special brilliancy to the gilding. (6.) An equal quautity of cane sugar brandy will produce a similar result. The glass to be gilded must be quite clean and free from spots. The solutions must also be freshly prepared, and filtered free from dust.

Making Draw-hooks.-Figs. 1 and 2 shows a locomotive engine drawbar hook and shackle of a pattern generally used. The method of making the shackle ls explained on p. 67. The hooks are usually made of Bessemer steel, forged to shape under a steam hammer and stamped with a pair of blocks. If wrought-iron is used, the hooks are forged to the shape shown hy a (Fig. 3), placed on a block B, which revolves by steam

Making Draw-hooks.
or hydraulic power, and the wheel C bends the hook to the required ghape, the object being to have the grain of the iron following the bend of the hook. The "Gedges" hook shown by Figs. 4 and 5 is ussd as astandard railway wagon coupling by most British companies, and is undoubtedly the hest form of wagon book, but it is not generally used on engines. The pin of a pin-and-shackla coupling is apt to get bent, and the coupling is then couping is apt to get bent, and the coupling is hook stiven by Figs. 4 and 5 it will be seen that the part A (Fig. 4) is flat so as to slip in the part B (Fig. 5). This does away with the pin, and gives free working to the coupling.

Making Chrome Yellow.-In making chrome yellow $62 \frac{1}{3}$ parts of lead acetate should be used to 292 parts of bichromate of potash. These salts should be dissolved separately in hot water, and the solutions allowed to become quite cold before they are mixed. Pour the bichromate solution into the lead acetate solution, stirring the whole. After mixing, allow to settle, then pour oft the clear liquid; add cold water, stir well, allow to settle, and pour off the clear liquid. Repeat this washing several times, then pour the chrome yellow into washing cloth stretched on a frame; allow all the water to run off, press, and dry very gently in a clean oven or drying chamber. Paler shades may be obtained by r'aplacing a portion of the bichromate with sulphate of soda.

Mechanics.

Counting the Vibrations of a Clock Balance:In testing a lever clock hairspring by counting its vibrations, fix it temporarily to the balance, and with a pair of tweezers hold the outer end of the spring in such a way as to let the bottom pivot of the balance rest on a watch glase on the board. The spring should rest on a watch glage on the board. the spring ghould be drawn up into a gpiral, letting the weight of the weight resting on the bottom pivot. In thip position a turn of the wrist will start the balance spinning, and it will continue for some time, enabling the vibrations to be counted for a full minute if necessary.
Reciprocating Water Motor,-Fig. 1 is a aide elevation of a reciprocating water motor, with the back end in section showing the piston packed with the ordinary hydraulic cup leatbere. Fig. 2 is an end elevation with valve gear for reversing the flow of elevation with valve gear for reversing the flow of
water. For the latter purpese an ordinary four-way.

M the inlet. Fige. 3, 4, and 6 show the four-way cook drawn to a larger scale. Fig. 3 is a section of the cock with the weh of the plug in position for making the backward stroke, as in Fig. l, exhausting from the back. Fig. 4 is an elevation of the cock partly in section. Fig. 6 is a section of the plug, which should be carefully Frig. 6 is in to make it watertight, there bsing yo glond, but only the light epring at the back to keep it to its face. The cock and plug must be cast in brass or gunmetal. Fig. 7 shows the quadrant and arm. To avoid confusion, only a few dimensions are shown. Those not given can easily be found by constructing two scalse, as all the drawings are to scale, Figs. I and 2, not dimensioned, being one-sixth full size.
Burnishing Photographs, - Below are given instructions on buruishing photographe with a bar burnisher. First examine the bar to see that it is free from scratches. Unscrew the nut and remove the

Reciprocating Water Motor.
cock is used. The plug of the cock is reversed by the quadrant A carrying the lever B past the centre, and on falling it carries with it the armo. Fig. 5 is a side elevation of the arm, showing the position in which it must be keyed on the plug spindle. The weight on the lever B chonld only be enfficient to overcome the friction of the plug and gland. In Fig. I the piston is chown at a little more than half of its backward stroke. The quadrant A has commenced to take over the lever B and weight, and on getting to the centre line will take with it the arm 0 (Fig. 2), and on centre line will take with it the arm o (figg. 2), and on fall together, throwing over the plug. A piece of indiarubber to form a cushion to hreak the fall of the lever must be fixed on each side of the bracket carrying the plug spindle. The quadrant is worked by the rod \mathbf{E} (Fig. 1) from the crose-head F on the piston lod. The working cylinder G is a piece of 3 -in, drawn hrass tube 16 in . long. The ends are two iron castings, with a port lin. in diameter in each. The back end has a cover, and the front carries a stuffing box, as shown in Fig. 1. The feet for bolting down the motor are cast with the ends. The pipes H , of lin. wrought iron, are fixed to the crlinder ends with fianges I. The ends and brass cylinder are bolted together by three stay bolte K, but only two are shown. At the back end the heads are countersunk to allow the cover to be bolted on, at the front the ends are taken through, all being drawn tight together by the nuts. Lia the exhaust pipe, and
slab holding the plated bar. If the bar shows any scratches running across it, rub from end to end With a piece of fine emery cloth glued fiat to a bar of wood till the scratches disappear. Dnst carefully all the parte and replace the slab. Now light the stove beneath the slab. Moisture on the slah must be wiped away till it ceases to appear. A pubricator should be made up by dissolving about 20 gr of castile soap in 20 z . of methylated spirit. The lubricator is rubbed over the face of the print and allowed to dry spontaneously. Some workers prefer to rub the soap over dry with a silk handkerchief. Wet the tip of the finger and just touch the end of the bar. If it hisses it is warm enough. A trial print is now passed through the burnisher, and if it is neither scratched nor scorched, but showe sood polish, the rest of the prints may be burnished. The print must be passed through at one sweep; a stoppage means a line or dent across the print. In passing the print through the burnisher, lift the near part above the print through the burnisher, lift the near part above the opening: thia will cause the print to ourl slighty watd through the burnisher lengthwise. The great disadvantage in using a bar burnisher is ite tendency to scrateh, although this trouble is minimised by careful use. For this leason "enameller"," such as the "Quadruplex Enameller," ares geverally used. In these machines the print passes between two plated rollers heated from below. A "lubricator" is not needed, and scratches are imposeible.

French Polishing Decorated Woodwork, - To French polish woodwork the surface of which has been printed upon, or has had priuts transferred to it, the method of procedure may be as follows. Dissolve loz. of best isinglass in 1 pt . of water, strain through flannel or fine muslin, and set aside till cold, When the solution should be of the consistency of jelly; if not, add isinglass. When the printing is quite dry, slightly warm the jelly so that it will flow, and brush it over the article in one direction only; use a camel-hair brush, and work from end to end, Set aside till dry, then go over the article again from side to side; this will ensure every part being covered. When the work is quite dry, polish may be freely applied. Transparent polish made from white lac should be used.

Preventing Moisture Dropping from Glass Roof. -One way of preventing condensed moisture from. dropping from a glass root would be to fix small gutters dropping from a glass root would be to fix small gutters 1 and 2), and mitre them to a similar gutter running along the bottom rail of the skylight, as shown at A (Fig. 3). To allow the moisture to escape into the gutter D, a hole B to C (Fig. 3) having an outlet in the throating at c should be bored between every two bars. By having the rebate of each alternate bar about $\frac{2}{8} \mathrm{in}$. deeper, the glass could be glazed a little sloping as indicated at
front or sight and to receive the turned-down portion of the hook. The rattling of reeds is often caused by an uneven floor; damp may also cause the reed cell to owell, thus pinching the reed frame and preventing the tongus vibrating freely; or a false tone may be caused by the reed frame having jarred out a little. To remedy, insert the reed hook in the notch of the reed frame, move it backwards and forwards a few times, and finally press it home well. Should this treatment not prove sufficient, ease the edge of the reed frame with a smooth filc. Other causes of faulty sounds are loose objects, such as screws, hat pins, nails, and loose keys, hinge joints, or panels. If the lock gives trouble in this way, remove it and hammer up the sides a little. Wedge up any loose panels, insert a plece of cloth under any spring that may be touching direct on the wood of the swells, and tighten all loose portions theft vibrate or jar in unison with any particular note or chord. Should creaking occur in the blow pedals, lubricate with tallow or blacklead in preference to oil. If a

Figs, 1 and 2; this would cause the moisture to flow to one side, and the small gutters a need only be fixed to each bar having the deeper rebate, as is made quite clear by Fig. 2 .
The Preservation of American Organs.-On the arrival by rail of an American organ it should be unpacked carefully. Before use it should be thoroughly cleansed, inside and out, from dust, which will sometimes get into the organ, especially if the top portion is taken off to enable the instrument to be packed in a small cass. The minuiest particle of dust may check the vibration of some of the smaller reeds; therefore, if a reed doss not sound, or gives out a false note, use a reed hook as shown by the sketch. One should be putinto the instru. ment, or a good substitute is a button hook with a long shank. The stops being drawn and the swells lifted with the hook, pull the yeed frame out and give it a smart tap to jar out the foreign substance. The reeds belonging to che principal and fute stops are in front. To reach them, first unscrew and remove the key slip, a piece of fretwood directly under the keys in front: then the stops being drawn and the swell cover thus lifted, the ends of the reed frames will be visible. The dulciana and diapason reeds are at the back of the reed board, and are readily accessible arter the removal of the portion of the case at the back that is generally secured by buttons or screws. The sub-bass reeds are in sight in a separate box on the top of the wind-chest. When drawing a reed, be careful not to insert the hook so far as to catch the reed tongue. A notch will be found in the reed frame at the
key sticks or becomes sluggish in its movements, try moving it up and down gently lather than attempting to take theaction apart. Putbrietly, each key rests upon a small, perpendicular, wooden pin, generally of cedar; each pin stands on a valve, and each valve is held in position by two springs. If the key falls below its proper level and is otherwise free in its movements, not binding on the guide pins, the valve may not act by reason of a spring slipping out of place; or it mas be prevented from closing by some foreign substance having lodged upon it, which may sometimes be removed by vigorous blowing. Often these pins swell with moisture and cannot then work freely through the guide holes. Blacklead will be found a suitable lubricant. In instruments containing more than two sets of reeds, the taking apart of the action wore than two sets of reeds, the taking apart of the action The cabinet portion of the case should be treated in a similar manner to high-class furniture, the polished surface being frequently freshened. The use of wax polish is not advised unless it is applied thinly and frequently; most of the polish revivers may be used with good effect, especially Ronuk, which merely requires diluting with turpentine for dull finished cases. A good reviver is made of lime water, linseed oil, and turpentine in equal parts; mix the first two together thoroughly, then add the turpentine and shake before using. Apply with wadding, a little at a time, and rub well; wipe off with rag, and finish with a swab of clean soft rag slightly damped with methylated spirit. Apply this damp pad only lightly at first, and add a little pressure ar the methylated spirit dries out.

Making Prussian Blue and Vermilionette. prussian blue is made by adding a solution of ferrocyanide of potassium (yellow pruesiate) to a solution of ferric chloride, or by adding the former to a tion of ferric choride, or by adion of ferrous eulphats (green vitriol) and afterwards with nitric acid or other oxidising agent. The precipitate ls allowed to settle, washed several times with water by decantation, collected in filter bage, pressed, sud slowly dried. Vermilionettes are made by mixing orange lead and barytes with water, then sdding eosin and lead acetate until the colouring matter is eosin and lead acetate until the colouring matter is The pigment is finished ss in the case of Pruesian blus. The colours are made in large wooden vats; filter preeses and drying stoves are required also.

Drilling Hard Steel Watch Pinions,-Ready made drills are generally too soft to cut watch pinions; they have to he rehardened by heating the bledes only in a flame and rapidly withdrawing them with s sudden jerk. This is called "tlirting" them, and the sudden cooling in the air effects the hardening. Sharpen them before in the air effects the hardening. Scarpen them berore is found too hard to be drilled even by this method; it then has to be lowered to a blue temper.

Electro-plating Aluminium,-For copper-plating aluminium, the bath may be cyanide of copper, 6 parts (hy weight); cysnide of potassium, 9 parts; phosphate of soda, 9 parts; and water, 100 parte. For cold-plating, chloride of gold, 2 psats; cyanide of potsssium, 2 parts ; phosphate of sods, 2 parts; snd water, 100 parts. For nickel-plating, chloride of nickel, 7 parts; phosphste of sods, 7 parts; snd water, 100 parts. For silver-plating, nitrate of silver, 2 parts; cyanide of potaesium, 4 parts; phosphate of sods, 4 parts; and water, 100 parts. Keep the bath whilst plating st a temperature of from 140° to $158^{\circ} \mathrm{F}$. (60° to $70^{\circ} \mathrm{C}$.). For the anode, use a strip of the metal which is to be deposited. The baths given above metal which is to be deposited. The baths given

Medicated Soape.-It is obvious that of primsry importance in making medicinal or medicated soaps is the employment of a purs hase. However effectusl as a remedy for ekin disesses the medicinal soap might be, the presence of an impure and alkaline bsse is almost sure to cause roughness and desquamstion (the formation of scale) on the skin. Medicinal sosps of good quality are prepared with Voiry's plain cocoanut oil paste soap as a base. This is made as follows. 12 parts by weight of cocoanut oil ar'e boiled in a porcelain dish with 8 parts of soda lye ($10^{\circ} \mathrm{B}$.) ; to the cresm thus ohtained, add 5 parts of soda lye (20° B.), and arrest the boiling when a sample placed on a cold body becomes solid. Add a qusntity of distilled water, bring again to the boil, and sdd 5 parts of common salt. The soap is eeparated by decantation after cooling, cleansed by washing twice in a 20 per cent. solution of ordinary salt, snd afterwards in cold distilled water. The excess of water is squeezed out, and a plain pasts soap is the product. The first medicinal soaps made contained tar, and were neither pleasant looking nor agreeable to use, but for all that they were useful and effective. Recipes for tar soaps are: (1) Beat together 1 part of tar, 2 parts of liquor potassa, and 2 parts of soap in shavings. (2) Mske up in the usual way 4lb. of cocoanut oil, 2 lb . of tallow, ilb. of juniper tar, and 3 lb . of soda lye ($40^{\circ} \mathrm{B}$.) For a vaseline tar soap, ssponify 40 ib . of cocoanut oil and 6 lb . of tar with 22 lb , of lye (40° B.). Melt 41 h . of Fellow vaseline, and stir into it the sosp, with the addition of 1 lb . of lukewarm water. (3) Rub up 1 part by weight of tar with 9 parts of Voiry's paste soap. Possessing the good qualities of tar, and but few of its pronounced disadvantages for use in medicinal soap, is carbolic acid. A soap containing as much as 25 per cent. of this can be used for the hands, hut is not suitabls for general use. Even carbolicsoap, though an improvefor general use. Even car on on tar soap, is not an ideal materisl, ss it has a strongodour. Recipes for carbolic soaps are: (1) Melt 20 lb . of half-pulm soap and add 11 b , of starch, and mix thoroughly ; then add loz. of carbolic acid in crystals, 2oz. of oil of lavender, and loz. of oil of cloves. (2) Incorporate in a warm mortar 75 parts of powdered stearin Boap with 25 parts of pure carbolle acid, and press the product into tablets. (3) Melt 150 par'ts of 'resh cocoanut oil soap, and add 10 partis of a solution ot alcohol, 6 parts of carbolic acid, 2 parts of caustic potash, and l part of oil of lemon. Stir thoroughly, and pour into moulds. (4) Dissolve 2 parte by weight of white csrbolic acid in 1 part of 90 per cent. alcohol, and gradually rub up with 38 parts of Voiry's paste soap. Salol enters into the composition of many soaps, and eqpecially into shaving eoaps, suggested as a remedy for and preventive of bycosis parasitaria, a diseass contracted at barbers' shops from razors and accessories. In making salol shaviug soap the base is prepared frist. ilb. of beef suet is melted with illb. of cocoanut oil and allowed to cool to $120^{\circ} \mathrm{F}$. ; after adding 14 oz. of 18 per cent. caustic soda solution and $2 \frac{1}{2} \mathrm{oz}$. of

24 per cent. caustic potaeh eolution, the maes is etirred at a gentle heat for half an hour, or until it is homogeneous. Perfume is added consisting of 40 minime of oil of caraway, 50 minime of oil of bergamot, 30 minims of oil of lavender, 20 minime of oil of thyme, and 6 drops of essence of mirbane. While the maes is etill warm, loz. of finely powdered ealol is added, and the whole is heated to $113^{\circ}{ }_{F}$, at which temperature the antiseptic melte; it is stirred thoroughly the while. When cold the eoap is cut up as desired, dried partially in the open air, and, for preference, wrapped in tinfoil. To make a salol boap powder, mix together 35 oz. of finely pow. a calol boap powder, mix together 35 oz. of finely powof bergamot, and 2 drope of oil of winter green; mix 2lb. of this base with 1 oz . of finely powdered salol. Mercurial soap is made by saponifying mercurial ointment ; thus 10 oz. of mercury are mixed thoroughly with 2 oz . of mercurial ointment until the globules are not visible with a lens, and then 18 oz. of powdered soap and 2 oz . or lard are added. Do not place mercurial soaps in contact with metals. Other recipes for mercurial soaps are: (l) Beat up to a uniform mass in a mortar 1 drachm of corrosive sublimate, 1 fiuid ounce of rectified spirit, and 4 oz. of powdered white castile soap; sdd a few drops of attal of roses or a mixturs solve 1 part by weight of sublimste in 16 parte of sicohol, filter, and rub up with sufficient of Voiry's paste-soap. (3) Best up into a emooth mses 11b. of white castile sosp sind toz. of protochloride of mercury dissolved in 4oz. of alcobol. Ichthyol roap is used in the treatment of eczema and rosaces, and reduces rednegs of the skin ; it may contain as much as 5 per cent. of the sodium sulphichthyolate. Boracic soap conteining borax or horic acid has many desirable qualities; the soft kinds are made thns: (1) Add a borax solution to the ordinary boft-soap ingredients either before or aiter manufscture. (2) Dissolve by heat any ordinary soft soap in a borax solution, and when cold thoroughly in corporate the two. (3) Either by beating up in a mortar or by the aid of gentle hest, incorporate loz. of borax with lib. of new Windsor sosp. (4) Add 10 lb . of soda lye ($15^{\circ} \mathrm{B}$.) to 101 b of molten white fat till as clear liquid is formed, and then add 6 lb . of potash lys ($10^{\circ} \mathrm{B}$.) and lidib. of borax solution to produce a eemi-solid translucent paste. (5) For a harder soap rub up in a mortar equsl parts of sodium borate and Voiry's paste soap and prese to the shape required. Sulphur is made up into many soape, the hest of which contsin about 10 per cent. of very finely divided sulphur, and are perfumed, as when used alone sulphur gives soap a rather unpleasant smell. Various combinations of tar, naphthol, iodides, etc., with sulphur are employed also. Recipes for sulphur soaps are: (1) Beat to a smooth mass in a mortar 802 of freshly made white curd or castile eosp, loz. of levigated fiowers of sulphur, 1 fiuid oz. of rectified spirit, tinted by infusing alkanet in it, and add a few drope of atter of roses. (2) For camphorated sulphur soap, dissolve 4 parts (by weight) of camphor in 300 parts lof molten cocoanut oil, ssponify with 153 parts of sods lye (38° B.), and add 25 parts of potsssium sulphate diseolved in 13 parts of water. (3) Rub up in a mortar 1 part (by weight) of sulphur with 9 parts of Voiry's peste soap and press to shape. Thiossvonal is a new kind of soft sulphur soap (soluble in water), in ths preparation of which sulphurised oils are used. Grube's formula is: Make fiuid the thick thio oil by adding alcohol, snd atir in an equal bulk of potash lye, also thinned with alcohol. The addition of large quantities of potash lye at one time producee separation of the sulphur, but the danger lessens towsrds the end of saponification. At lest a small excess of potash lye is added. If the liquid is quite clear, and if a sample is soluble both in water and in alcohol, all the thiosehacic scid has saponified. Neutralise the excess of alkali by edding volatile fatty acid and free the resultant soap solution from alcohol in a steam bath, and boil down to the consistency of in a steam salve, occasionally testing for neutrality; 85 parts of this are mixed with 15 parts of glycerine. A liquid thiosavonal or sulphur sosp may he made by boiling down the soap solution as obtained above to the consistency of syrup instesd of to a salve, 88 parts then being mixed with 12 parts of glycerine.

Filter for Bleaching Fluid.-An apparatue for filtering a chloride of lime bleaching fiuld may he made easily. In the tube of a large glass funnel fix a short piece of the stem of a clay tobacco pipe; on the top of this pile a few pieces of broken tobacco pipe, and cover them with a layer of fine silver sand. This arrangement can be ueed as a filtering bed for the bleaching tluid; when the bed becomes clogged and does not act properly, wash out the funuel and refill it with fresh material in the manner already described. Another method of olearing bleaching fuid ie to allow it to settle in a tall vessel, and byphon off the clear liquid. A Byphon is eacliy made by bending a pipe, or one may be purchased very cheaply.

Illuminating Powers of Various Lights for Magic Lanterns.-The following is an account of the work of M. Molteni on the projection value of varions illuminants. The measurements were made with an ordinary lantern, the stage of which carried an opaque card in which was cut an aperture $0{ }^{\circ} 7$ centimetre square, while the distance of the lantern from the screen was such that each side of the square on the screen measured 1 metre. The screen was replaced by a disc of paper, the opposite side being illuminated by a standard lamp burning 42 grammes of oil per hour. The distance of the lamp was varied in order that equality of illumination might be obtained on the screen, and the photometric values of the light pere determined from the distance of the lamp:Multiple wick lamp 1.00 . Incandescent gas burner No. 2, no reflector, 1.00. Acetylene, with no reflector: No. 1 'burner, 1.06 . No. 2 burner, 1•10; No. 3 burner, $3 \cdot 20$; No. 4 burner, 4-10; No. 5 burner, 4.50 . Limelight: alcohol and oxygen, 5\%80; oxy-hydrogen, 16.60 . Electric incsudescent lamp, 32 candle-power, 0 , 68 ; 50 candlepower vertical, 0.03 ; 50 candle-power, horizontal, 0.93 ; focus 100, $3: 82$. Arc lamps, 7 amperes ' $39 \cdot 03$; 10 amperes, $77^{\circ} 61$; 12 smpères, $86^{\circ} 50 ; 15$ amperes, $1177^{61} ; 20$ ampères, 16080. The csndle-powers of Welsbach iucandescent burners are given on \mathbf{p}. 297. It may be mentioned that a duplex oil-lsmp will give a light of from twenty-eight to thirty candles.
Winding Cotton on Reels.-The method adopted by thread manufacturers in winding cotton on ordinary reels is to use a spooling machine. Wield's spooling machine has been very successful, and winds a number of spools simultaneously. Each bobbin is fixed between two conical spindles that are driven by gearing. The cotton is guided by steel guides, threaded to correspond with the pitch of the ecrews formed by the thread on the apool. These guides have a reciprocal horizontal traverse equal to the length of the spool, and gradually increasing as the surface ppon which the thresd is wound increases; this increase arises from the bevel on the flanges of the spools. This movement is obtained from a fine-pitohed screw on a roller, with which two half nuts alternately engage, one on each side of its centre. As these are thrown into gear, they give a trayerse to the guide rail in each direction, and the period of engagement determines the length of the traverse. In winding, the reels fall into position from a trough or reservoir' on to a plate, which rises so as to bring the spool between the open spindles. These close, immediately begin to revolve, and the guide rail begins its horizontal motions. The thread is passed through a spring tension clin, which holde it tight. When the required length of thread is wound on, winding automatically ceases, and a knife, placed in an arm, descends and cuts a nick in one end of each spool; the thread is drawn into this nick and over another knife and cut. The spindies then open, and the spools fall down a shoot. Another set of spools is then fed as descrihed, and the ends of the thread are so held that, immediately the spindles begin to revolve, the ends are drawn on to the spools. Twenty-six gross of spools, each spool containing 200 yd of thread, can be wound by a machine in ten ing 200 yd of thre

Removing Nickel from Cycles.-Nickel may be removed from cycle parts by gteeping them for a short time in commercial sulphuric acid, to which ie added, from time to time, a small quantity of nitric acid. However, owing ta the corrosive nature and fumes of the acid, the nickel is generally removed with emery bobs, the work being polished ready for plating at the same time.।
Blackening Carrlage Ironwork.-For blackening carriage ironwork, japan of two kirds is employed; one kind is known as haking-japan, and is hardened by hest, whilst the other dries in the open air and at ordinary temperatures. Baking-japan is made by melting asphsltum, removing it from the fire, and stirring in oil of turpentine; its effects are permanent, and it does not need to be varnished; such a protection is necessary for ordinary air-drying japans. small work that has become dull by storing is dipped into the japan, the surplus is drained off, and the work put into an oven, where it is maintained at a temperature of several hundred degrees Fahrenheit for some hours. Fine work shonld have a coat of desd blsck colour first as the jspsn is transparent, and in this case may be applied with a brush. The air-drying japanis a jet black solution of asphaltum in turpentine; it is brushed on and dries quickly, but does not become so hard as the haked japan, but it may be recommended for parts which are not handled much. An alternative method of blackening iron is to employ ivory black ground in brown japan. This is made up to the consistency of butter and is thinned with turpentine, being applied then with a small camel-hair brush. It dries in a few minutes, and should then be varnished. When work is wanted in a hurry, quick-drying Freuch

Shellac varnish mas be used. For cheap work, lampblack and shellac varnish will do admirably, but asphaltum; of course, is to be preferred. Japan may be applied to smanl articles by means of 1 -in. flat badger bass brushes having tin ferrules. When working, it should be borne in mind that all japans are partly transparent, and that when one coat over a bright metallic surface does not cover satisfactorily, a second coating must be applied; care should be taken that the first coat of japan is quite dry before applying the next, or rough, dull work will result.

Destroying Worms in Furniture.-The furniture containing the worm or iusect holes must be removed into the open air, or into a well-ventilated room where there is neither fire nor artificial light. Dissolve 4 oz . of albo-carbon in 1 pt . of benzoline, and paint the furniture with the solution; or, if the furniture is full of small holes, inject the solution into the holes with a syringe. Insect life cannot survive a proper and thorough application of this solution. If the benzoline is of good quality, even such a delicate fabric as silk is not injured by it. Another method is to saturate the wood with ordinary petroleum; for very bad cases, powdored quicklime made into a paste with liquor ammonia can be used. Worms freely attack unsound timber, especially if such timberis used for inside fittings; and furniture kept or stored in damp rooms, or left in contact with other worm-eaten furniture or woodwork, is sooner or later sure to beattacked by worms. Preventive measures, therefors, are largely in the hsude of the manufacturer and the user of furniture. Periodical examination of suspected woodwork, and the timely application of the remedies given above, sre the best preventive measures that can be adopted.

Sharpening Wood-carving Tools. - Wood-carving tools differ from the ordinary carpenter's chisels and gouges by heing bevelled on both the inner and outer edge. The outside bevel of the curved tools is just sufficient to give a clean edge, and is produced by working the gouges backward and forward along the length of the oilstone, and at the same time giving a sweep of the wrist to bring the whole width of the tool in contact with the stone. This is continued until a regular burr or wire-edge is formed, and a polished band about 송in. Wide is seen following the edge of the tool. For producing the inside bevel, slips or stones exactly fitting the inner curve of each tool are required. These slips may be held in the hand, or fixed in a frame or vice. A backward and forward movement of the tool soon produces the desired bevel. When a regular burr is formed on the cutting edge, that is, when both bevels meet, the work of the slip is finished. A strop, covered with a mixture of grease and emery powder, is next used on both bevels in order to remove the burr and give a clean edge. A V - or wedge-shaped edge is produced, which facilitates the withdrawal of the tools from the wood after every blow. If the two bevels are not properly produced the tool will snap from impact with the wood at every attempt to withdraw it. This often results, too, if the v of the bevels is too slender or elongated.
Fixing Transfers on Metal and Wood.-The groundwork of wooden or metallic articles to be decorated with printed transfers must in all cases be first prepared. Thue, metals are generally japanned or varnished, woodwork being chiefly French polished. With a camel-hair brush, apply to the printed or face side of the design a thin even coat of copal or carriage varnish reduced with turpentine; set aside for ten minutes, or until the varnish becomes sticky or nearly dry, then place the picture, face downwards, on the article to be decorated. Press the transfer well down to drive out all air bubbles, starting at the centre and pressing towsrds the edges. It is essential that the transfer shall be in close contact with the surface at every part. A rubber roller (a squeegee, as used for mounting photographs) is very useful for large prints. Having pressed the transfer Well down, set it aside until the varnish is quite dry; the longer the time allowed for drying the better, especially on metals, though with careful handling the picture may be taken off in half an hour. With a opongo and slightly warm water, damp the paper and press it down \&gsin, then saturate more freely. Now lift up the transfer at one col'ner and carefully peel off; then wipe over the print with olean water. Soak up all moisture by gently dahbing with a clean damp chamois leather. When the design is quite dry, it may be varnished or polished. In transferring designs to glass or porcelain, best gelstine dissolved in hot water may be used as an adhesive; and for painted furniture, mail-carts, and perambulators, that are finished by two or more coats of parnish, the design may he transferred direct on the first coat of the varnish when this is tacky or nearly dry. In this case it is not necessary to coat the face of the design.

Polishing Ox Forns, - Here are iustruetions on polishing a pair of ox horus. Remove all roughness from the horns by means of a spokeshave or rasp, followed by a soraper, a knife, the side of a chisel, a wood scraper, etc. Then go over them with sandpaper or glasspaper, using coarse paper first, then finer, and the finest last. Pumice powder should next be used, followed by the dust removed from the horn; these can he applied on a rag dipped in oil. Then apply putty powder in the same way, followed by whiting moistened with vinegar. Now use dry cloths, commencing with a coarse one and flnishing with a soft one, or even tissue paper. Lastly, use the bare palm of the hand. In applying each of the, above-mentioned snbstances plenty of "elbow grease" must be used, and the work must he very carefully dusted between successive stages to remove any trace of coarse grit. The use of a lathe with calico mops, etc., if procurable, will save time aud labour and will give a better result.

Cleaning Acetylene Gas Bnrnerg - Acetyleno burners are most conveniently cleaned with a very fine needle fixed firmly in a handle; but a piece of very fine wire of a stiffness equal to a needle, if obtainable, will do just as well. As a rule, flne wires are soft, and a stiff wire of the required fineness could not be so easily obtained as a fine needle.

Cramping Picture Frames. - Of the dozens of methods of cramping picture frames the following has been recommended as being cheap and efficient. After shooting the joints, glue them, and place the frame on the bench. With a piece of cord bind the frame three times round the outside; then lift the cord from the

edge of the moulding, and between the cord and the edge of the frame insert eight wood blocke, $\frac{3}{a}$ in. or 1 in. square and 3 in. long : see Fig. 1. Now with thumb and finger press the mitres into position, so that the noger press the mitree into position, so that the towards the mitres, as in Fig. 2 ; this cramps the whole. When the frame is dry, remove the cramp, and carefully brad the mitres, boring the holes flrst with a bradawl, with the frame fiat on the bench.
Poising a Watch Balance.-To poise a watch balance, first remove the hairspring and brush the balance and pivots clean. Then place the balance on the parallel edges of a poising tool or in a pair of callipers and allow it to settle. It will alwaye rest with the heavy part downwards. Gentle tapping of the callipers assists it to settle. With a plain balance, lighten the heavy part by fling the innor under edge of the rim; with a balance having screws, reduce a screw lightly or add washers to the light ocrews.
Laying a Tiled Hearth.-A trowel, float, straightedge, and a pair of carpenter's pincers will be required. First mix cement and sand and make the bearth quite level and at a depth that will allow of the tiles, when laid, lining with the floor. This would make the cement hearth about in below the floor lovel, according to the thickness of the tlle. Lay the tiles while the cement hearth is still moist. Commence at the front edge and work back towards the grate, using the straightedge occasionally to see that all the tiles are quite level. See that the division lines between the tiles are kept straight and true, as tiles sometimes differ in size a trlfle. Try and slip the edges of the tiles under the grate; if this is not possible, and they must be cut, uee a pair of carpenter's pincers. Nip pieces off until the tile is the desired size and shape. With a chissl therc is danger of breaking the tiles and the cutting takes monch longer; however, tiles are chiselled as descrlbed on p. 244 . Previous to laying the tiles, they
should be well soaked in a pail of water placed at the oide of the tile layer, and taken from this direct to the hearth. Some lay the tiles without cement, and just float a little (as thin as milk) over afterwards to run in the joints. It ie better to have a little cement, an thick as cream, ou a board and just rub the bottom of the tile on this as it passes from the pail to the hearth. This applies to 4 -in. tiles and smaller. For 6 -in. tiles, a thin applies of the cement might be put on with a trowel. Cement should not be placed on the edges of the tiles; it
makes an ugly job. (See also p. 24.). makes an ugly job. (See also p. 24t.)
Re-varniehing a Jaunting Car-Here are instructions on treating a jaunting car the varnish of which is very much worn. Scrape off all the old varnish to the wood, then glasspaper down, working with the grain of the wood. The ironwork should be geraped with an old plane-iron or knife, and then glabspapered. To stain the body darker than the natnral wood, give a coat of burnt umber ground in turpe, working it well into the grain with a stiff brush, and wiping off the surplue on the face of the wood. When the stain is thoroughly dry, lightly glasspaper over with the grain of the wood, to remove any small parts that may have risen, and after dusting off, give a coat of pale gold eize to which about an eighth part of raw linseed oll has been added. This, when hard, is lightly glasspapered off, and another coat of size with rather less oil is given. This, when dry, is treated the same as the frrst coat, and a coat of varnish and gold size is applied. Before putting on the next coat, the one just given will require flatting. This is done with a pad of cloth and ground pumice-stone, using plenty of water to prevent scratching. When the surface has been goue over, well wash with water to remove every particle of dust from the quirks and corners, then give a coat of carriage varnish known as under-coating. Let this stand for a couple of days to get hard, then fiat down as before, and give a full coat of pale carriage varnish. This should be sufficient for an ordinary job, but for good work another coat should be given. The ironwork should have two coats of light lead colour and one coat much darker, with light glasspapering between the coats to remove nibs, etc. Then give a coat of dead black, one cont of shiny black, and one or two coats of black japan, the whole being got up with the body so as to be included in the varnishing when the body is done. The work should be done in a dry place, free from draughts, and kept at a temperature of about $75^{\circ} \mathrm{F}$.
Copying Printed Pictures by Photographie Transfer. -The process of transferring printed pictures photographically is ae follows. Place any printed picture, face downwards, on a sensitive photographic dry plate, expose freely to the light, and pass a warm iron over both plate and picture. The heat and the pressure will transfer, more or less successfully, the pressure will transier, more or less succesefully, the printed picture from the paper to the plate. solution of ferrous sulphate 1 part and a saturated solu. tion of potassium oxalate 3 par'ts. This bath will blackem all those parts of the plate that are not covered with the greasy printing ink. Rince the plate'in water; after which the plate must be rubbed over with a weak solution of ammonia and then placed in the flxing bath. From the negative thus obtained any number of copies may be made. Where only one copy is required the fixing is done first.
Covering Roofs with Oak Shingling.-Oak shingles as a roof covering have a grood appearanoe after they have become somowhat weathered. They are made from the ordinary rended oak pales, and must be riven out of as straight-grained oak as can be obtained in no case thickness, and have little or no sap, should be chosen. Pales 4 ft .6 in . or 6 ft . in length may be most economically cut up into shingles 18 in . long, which is the usmal length, their width being from 3 in, to 5 in . It is not advisable to give them a greater width than 5 in., or they will be likely to curl excessively. They are usually about lin. in thick to curs at one end, and taper off towards the other. The roof in preparation for the shingling must first be close-boarded. The shingling is then started with an eaves course of shingles from 10 in . to 12 in . long, and from thie the work proceeds in the same manner as that of ordinary roof slating, with a $6-\mathrm{in}$. lap. Eaoh shingle has two nails driven through it at, say 11 in, from the foot of the shingle, so that each shingle is eventually held by four nails, the nails helng machine wrought, aboutili in. long, and wlth rose heads. Boring is not required, for lf the shingles are wetted a little they will be easily pierced by the nails and there will be no danger of their splitting, At the hips, the shingles are mitred with a shingling, axe over a eecret gutter lined with lead. The cost of shingling is more than that of slating, but it is greatly superior in stabillty; and if the work is properly executed, repairs are almost wholly unnecessary. Winter-felled ehingles will last fifty years or more.

Partioulars of Asbestos.-Asbestos, a fibrous form of amphibols or hornblende, is composed principally of silica, magnesia, lime, and oxide of iron. Sometimes asbestos is a compact substance, the fibros beiug stiff and brittle, whilst in other samples the fibres are easily separable, being then elastic and flexible; the fibres mas be reduced to a powder which is soft to the touch. In colour, asbestos varies, and is found in whitish shadea of green and grey, passing into brown, red, or black. Asbestos is nearly incombustible, aud being a very low conductor of heat, finds its application in simost low conductor of heat, finds its application in simost every department of industi'y. It is mined in Siberia, many parts of Canada and the United States. On being detached from the surrounding rock by blasting, the blocks of asbestos are examined, pounded in such a manner as not to break the fibres, and these are then sorted into different lengths. The fibres, which in good specimens may be 20 in . long, are treated in good specimens may as are ordinary textile threads; asbestos cannot, however, he felted, sud the process of concentration through which, in consequence, the fibres must pass renders the manufacture of agbestos tissues very difficult. Rock-cork asbestos resembles vegetable cork, is soft and easily cut, and ls sufficiently light to fioat on water. Rock-leather or mountain-leather and rock-wood or mountain-wood resemble rock-cork, but are heavisr; rock-wood has somerhat the structure of wood. Other varieties are fossil-paper and fossil-fiax, which have respectively a paper-like and a fiax-liks texture. Amianthis asbestos is a very superior kind, and is capable of being woven into the finest of tissues. Blue asbestos is mors correctly termed crocidolite, which is a mineral composed of silica, iron, and sodium; it has a fibrous structurs and a delircate blue colour.

Dimensions of Fishing Rods.-For an 18 -ft. salmon rod, the top should be of lancewood, the second and third joints of greenheart, the butt of hickory, and the ferrules $\frac{3}{8}$ in., $\frac{y}{\frac{1}{3}}$ in., and $\frac{5}{8}$ in. For a 16 -ft, salmon fiy-rod, the top should be of greenheart or lancowood, the second joint of lancewood, the third joint and the butt of hickory, and the ferrules $\frac{1}{1}^{\frac{1}{1}}{ }^{1} n_{\text {., }} \frac{7}{7_{5}}$ in., and i^{R} in. For a sea-trout rod, make the top of lancewood, and the other parts of bamboo or red deal; the ferrules should
 fishing, the top should be half greenheart and half lancewood, the second joint lancewood, and the butt greenheart or hickory; or the rod may he made entirely of split cane; the ferrules should be $\frac{3}{z}$ in. and T_{n} in. A cycle rod may be made in fire parts, each part about 2 ft . 5 in . long; the top should be of split cane or lancewood, the second joint lancewood, the third and fourth joints greenheart, and the butt hickory ; the ferrules should be $\frac{s}{10}$ in., $\frac{i s}{10}$ in., $\frac{8}{8} \mathrm{in}$., and $\frac{1}{2}$ in., and the winch fittiugs $1 \frac{1}{3}$ in.
Enamelling Cycle.-Enamelling processes are of two kinds, either cold enamelling or stoving. If the enamel is not to be stoved, the metal must be smoothed as much as possible with the file and with a fine emery cloth. A very thin coat of enamel should then bs applied, and after it is dry it should be smoothed with the finest glasspaper ; two more coats may then be giveu, each coat being smoothed with glasspaper. Up to this stage the object has been to obtain a perfectly uniform surface and not to produce a glossy coat. The last coat may oonsist either of the best copal varnish or of the enamel paint, and it should dry with a lustre. If stoving is employed, a black stoving enamel must be used; the method of applying the enamel is practically the same in both caseg.
Making Cushions for Pony Cart. - For best work pony cart cushions should be covered with all-wool cloth; for bard wear, a French carpet or Oxford cord may be found suitable; whilst American cloth is ased for the cheaper kinds of cushions. An ordinary square cushion is made up of a top, bottom, two sides. and two ends, and is about 3 in. deep. In marking out the size, allowance must be made for the seams at the top and bottom corners. Before sewing the sides and top together, make some seaming lace, which is sold without the cord worked in ; the seaming cord is tacked into the lace, the tag of which is worked in when sewing the cushion together, so that the pipe formed by the cord covers the seam. The cushion Is made wrong side out, and is stitched round at the top and neanly round at the bottom edge, a space of about 6 in . being left undone for stuffing. Turn the cushion right sids out, and festen it, bottom downwards, on a bench with a tab and garaish awl or nail at each corner, and proceed with the stuffing. For best work, good white curled horsehair is used; and for inferior work, cotton waste or flock, alva, or cocoa fibre. Practice is required to get the stuffing fairly even and equal, for which purpose a stick, about $2 f t .6$ in. long by lin. wide
and in, thick, tapered off to $\frac{1}{8} i n$. thick at the tip, is used; a small noteh should be cut in the top of the stick with which to csrry along the hair. After the cushion is filled, sew up the space in the sides and set it all well down with the palm of the hand, striking the cushlon smartly all over. To put in the buttons or tufts, mark the position of eash button with a compass and piece of chalk on the top of the cushion: string sufficient buttons for the job, leaving the strings long enough to handle and tie up on the bottom; put the strings through the eys of a quilting needle, and push the latter through square from the top; maks a hole across some buttons on the inner or cloth side, lace the ends of the strings which came through the cushion through these buttons for the bottom, and tie down tight and close, so that the knot of the twine is bidden heneath the button. lu cutting off the ends, be careful not to cut the material or the twine bigher up. Treat the remaining buttons in a similar manner, taking care to tie them all down alike. The tools required are scisgors, needles for sewing, a quilting needle, a stuffing stick, a $3-f t$. rule or tape measure, and a knife. Cloth is supplied in $56-\mathrm{in}$. and 60 -in. widths, French carpets in 36 -in. widths.
Setting Out Rallway Wagon Brake Blocks.-Ths illustration shows the various radii employed in setting out a brake block for a standard railway wagon. The out a brake block for a standard raiway wagon. 1 of the wheel is 3 ft i in., and the radius for the sole of the brake block is half the diameter of the wheel-

Setting Out Rallway Wagon Brake Blocks.
that is, 1 ft . $6 \frac{1}{2} i n .$, as it is the rule to set out the blocks to the same radius as the wheels on the tread.
Mounting Large Photographs.-Methods of mounting photographic prints are explained on pp. 21 and 97, but the following refers to the mounting of large photographs measuring about 15 in . by 20 in, Having squared the print, turn it face downwards on a clean newspaper and pass a darmp sponge over the back; at this the photo will usually rise and roll up, only, however, to stretch out quite flat a fe minutes later on a second application of the sponge. The next thing is to cover the back evenly with strong starch paste, taking care that the edges are well coated. The end of the print nearest the operator is now raised by placing a table-knife under it, aud is removed with the finger and thumb of both hands to a large sheet of cardboard, where it is again placed face downwards in such a position as to leave the placed face downwards in muchin showing all round. A clean cardboard is now placed level with the far edge of that on which the picture is resting and allowed to drop gently into contact. Having rubbed well over the back of jt with both hands, the top card may be raised, when the photograph will be found to adhere; and if the rubbing has been thorough no air blisters will be visible, the margin will bs found correct, and nothing remains but to place the mounted picturs between boards to keep it straight during the drying. The mounting of photographic panoramic viows is different, as the gections must be pasted, placed in position, and rubbed down separately ; take care to put the joins exact, and to press down thoroughly where they meet or overlap as the case may be. The best and, in fact, only sure method is to keep the section well up off ths cardboard with the right hand until the left edge has been placed in position and made to intersect with the landscape; it may then be dropped and carefully rubbed down. This process is repeated until the picture is completo.

The Conversion of Thermometer Degrees.-In the Fanrenheit thermometer, the freezing point of water (actually the temperature of melting ice) is
thermometer owes its system of numeration to G. D. Fahrenheit, a German physicist living in Holland early in the eighteenth century, and elected a Fellow of the

TABLE FOR CONVERSION OF THERMOMETER DEGREES.

indicated by the number 32, and the boiling point by 212; in the Centigrade instrument, these respective temperatures are indicated by 0 and 100, and in the
Réaumur instrument, by 0 and 80 . The frost-named

Royal Society of London in 1724 ; the Fahrenheit thermo-
meter is used principally in Great Britain and Holland. The Centigrade thermometer, invented in 1742 by Anders

Investipations ; whilst the Reaumur thermometer, which is the invention of a Erenchman of that name contemporary with Celsius, is ueed in Germany and Russia, hut is heing superseded. On the Continent the Ceutigiade instrument, which is in popular use there, is known as the Celsius thermometer. To convert F. degrees to C., subtract 32 and multiply by $\frac{5}{9}$; for example, $77^{\circ} \mathrm{F} .=$ $\frac{(77-32) \times 5}{9}=25^{\circ} \mathrm{C}$. To convert F. degrees to R., suhtract 32 and multiply hy $\frac{4}{9}$; for example, 7° F. $=$ $\frac{(77-.32) \times 4}{9}=20^{\circ}$ R. To convert C. degrees to F., multiply by $\frac{9}{5}$ and add 32 ; for example, 25° C. $=\left(\frac{25 \times 9}{5}+32\right)=$ $7 T^{\circ}$ F.' To convert C. degrees to R., multiply by $\frac{4}{5}$; for example, $25^{\circ} \mathrm{C} .=\frac{25 \times 4}{5}=20^{\circ} \mathrm{R}$. To convert R. degrees to F., maltiply hy $\frac{9}{4}$ and add 32 ; for example, 20° R. $=$ $\left({ }_{4}^{20}{ }_{4}^{\times 9}+32\right)=77^{\circ} \mathrm{F}$. To convert R. degrees to C., multiply by $\frac{5}{4}$; for example, $20^{\circ} \mathrm{R} .=\frac{20 \times 5}{4}=25^{\circ} \mathrm{C}$. The tables on the previous page provide for the converaion of any degree between the ireezing and hoiling points of water in any one of the three systems ahove noted to either of the other byetems.

Sand in Mortar.-In making mortar, sand is mixed with lime with a twofold purpose. Lime without sand sets or hardens so slowly as to be almost useless as mortar ; but the addition of sand makes the mixture porous, and the carbonic acid in the atmosphere ohtaining access to the lime sets up chemical action and causes the mixture of lime and sand to set or barden. The actlon of setting causes pure lime to contract largely in bulk; the admixture of sand with the lime prevente such contraction. Sand is added to Portland cement for economical reasons. This cement ordinary purposes, thie strength is unnecessary, and when the addition of sand does not unduly reduce the strength of the mixture, cement and sand may be economically used together.

Preserving Cat Flowers.-Perhaps the easiest way of lengthening hy many months the life of cut flowers is to dip them immediately after gathering into weak gum water, and after allowing them to drain for a few minutes to arrange them in a vase. The gum forms a protective coat on the flowers, and preserves their shape and colour for months after they have become dry. To preserve flowers for merely two weeks or bo, keep their stalks in a weak solution of saltpetre or carhonate of soda in water. By standing a vase of cut flowers in the centre of a flat dish in which is a little water, and inverting a bell glass over the vase, the flowers will be surrounded with a moist atmosphere, and their life will he prolonged. Or, instead, when treating small and ahort-stemmed flowers, insert them in damp silver sand and invert a tumbler or a bell glass over them. The forms and colours of flowers can he preserved for a loug time by treating them as follows: Provide a cylinder having a removahle cover and hottom; stretch a piece of metallic gauze over the top, replace the cover, and invert the vebsel. Sift a quantity of sand, sufficient to fill the vessel, and gently heat over the fire ln an iron pot, well stirring in $\frac{1}{2} \mathrm{oz}$. of stearin for every 100 oz . of sand; a greater proportion of stearin slnks to the bottom and injures the flowers. Place the latter on the gauze in the inverted vessel and pour in the mixture of sand and stearin so gently that the leaves and flower petale are not cansed to touch one another. Replace the bottom of the vessel and keep in a hot place for eighteen hours; then remove the cover and the sand will run away through the gauze, leaving uninjured the flowers, which will be foumd to have retained their natural colours. Another method is to emhed the flowers in a mixture of equal parts of plaster-of-Paris and line, and gradually to heat them to a temperature of 100° F. ($38^{\circ} \mathrm{C}$.). On removal from the mixture the flowers look dusty, but if left for an hour, so as to absorh atmospheric moisture, the dust can he removed without injuring the flowers. Often a hoary appearance is left, even after dusting, and this is removed by coating once or twice with a varnieh made by dissolving 5 oz . of dammar in 16 oz of oil of turpentine, adding lo oz. of henzoline and straining through muslin. Another suitable varnish is made by dissolving 1 part of trangparent copal in 25 parts of ether, mixing in 1 part of sand and straining through musin. When using this latter varnish, immerse the

3
flowers for two minutes, dry for ten minutes, and repeat these operations fipe or six times. Also, the hoary appearance may be removed by immersion in a solution of 30 gr , of salicylic acid in 1 qt . of water. A method resemhling one previously descrihed is the following: Thoroughly dry and sift 1,000 parts of fine white sand and well mix with a solution of 3 parts of stearin, 3 parts of paraffin, and 3 parts of salicylic acid in 100 parts of alcohol. Spread out the sand, allow it to dry, and with it cover the hottom of a box and lay the cut, flowers on this bed of sand. Dust on the sand very cut flowers on this bed of sand. Dust on the sand very maintain it at a temperature of from 86° to $104^{\circ} \mathrm{F}$. (30° to $40^{\circ} \mathrm{C}$.) for two or three dars. Withered flowers should be freshened hefore heing treated as above hy being dipped into alcoholic solutions of suitable aniline colours.

Postage Stamp Photographs.-In a postage stamp camera a battery of small lenses is always employed, both for the sake of speed and for economy, and for both for the sake of speed and ior economy, annd aquare hellows is essential. Postage stamp photographs may, however, be produced as follows. Make (to serve as a copy) a negative, postage stamp size, on a $\frac{1}{4}$-plate or on a smaller plate, and fix this negative in the centre of a glass in a 12 -in' by $10-\mathrm{in}$. frame, placing between it and the glass a sheet of white, smooth card in which a hole the exact size of the small negative has heen cut. This card serves as a mask for the dry plate on which the negative is to he multifor the dry plate on which the negative is to he multi-
plied. A trial should he made on a small plate in order plied. A trial should he made on a small plate in order contrast and gradation in the finished negative-for it must be borne in mind that the plate exposed behind the

Postage Stamp Photographs.

negative will give a positive from which the final negative (that is, the negative from which the prints are to be obtained) must be made in a second exposure. The white card is then ruled into spaces as shown in the diagram, and the negative is placed for the first exposure as indicated hy the dotted lines. Now move the negative forward one square after each exposure till the end of the row is reached, when the operation is repeated along the remaining rows of squares. Of course, the exposures must all be made to the same light and at exactly the same distance from the light. This method of multiplying a negative is.. far simpler than at first sight appears, for, when properly understood, the whole series of exposires may be made in a surprisingly short time. From the positive so ohtained several negatives may be made from which thousande of photographs may be printed in a day.
Testing Crimson Lare.-A pure crimson lake contains the colouriug matter of the cochineal, known as carmine, precipitated on a hase of alumina, but scarlet lakes contain vermilion. A pure crimson lake should dissolve entirely in a solution of caustic soda, fielding a bluish-carmine solution, and it will precipitate out again by carefully neutralising with dilute acid. As a rule, pure crimson lake does not yield colour to alcohol, whereas the aniline so-called lake colours usually tint alcohol very strongly hecause the colours are but weakly held hy the base. The colour of cochineal lake becomes hluer with ammonia and rellower with au acid, but the behaviour of lakes conyellower with au acid, but will vary with the nature of the colour used. Crimson lake, when carefully heated in a porcelain dish, should burn away, leaving a small quantity of a light white ash; a large amount of residue, either white or coloured, shows evidence of adulteration with mineral matter. Crimson lake, being a bad drying with ment, should be ground with hoiled oil, if oil is used; but it would be better to apply the lake ground in turps and to varnish over it, or to grind it in a quick-drying varnish. In any case it is a fugitive colour, fading iu bright sunlight very rapidly

Cieaning Silk Papestry Covers.-Some furniture silks are heavily charged with filling or dressing, leaving very little body or strength to the rabric. It is mext to impossible to make such silks look presentable after being subjected to one of the wet cleaning processes which very often discharge the colours. All grease spots must first be removed. To do this, make up a solution consisting of $\& \mathrm{pt}$. of water, 4 pt . of benziue, 4 oz . of ammonia, and 4 oz . of a strong solution of sal-soda; mix in a bottle and well shake, then let it stand for Ω few hours. Make a soft rag pad or rubher, and slightly damp (not wet) it with the liquid, and with this ruh the spots gently until they disappear. Allow the surface to get thoroughly dry then sprinkle with dry oatmeal, which must be well rubbed in with a furniture hrush. As the oatmeal gets dirty, supply fresh, and finally brush it all out. In place of oatmeal, dry fuller'searth can he used.
Making Insect Cases.-The construction of a case to hold hutterflies, moths, etc., is very simple. Make an ordinary hox of the size required, and across the middle put a partition dividing the hox into two; hinge the lids as shown in Fig. 1, and fasten them with haspe, locks, or straps. Fig.' 2 shows the construction of another form of case. Assuming that the insects are to he "Get" in the field and pinned inside the box, the whole of the inside of the box may he covered with entomological cork, procured in sheets ahout $\frac{1}{b}$ in.
use these saws, drive the lathe at fall speed, apply the materlal to be rounded to the saw, and feed with the back-centre. Boring may bs done in a similar manner. To get a polish on ebonite or vulcanite, several grades of emery cloth may be used while the work is revolving in the lathe, finishing with putty powder sprinkled on an oily piece of hlanket or thick cloth, and, finally, with dry putty powder (oxide of tin) or whiting on a soft leather. A single piece of ebonits or vulcanite may also be partly turned, filed to-shape, and scraped and polished hy hand, using the materials ahove mentioned, but in the finishing of large quantitien time is saved and the work is done more effectually if polishing dollies are used.
Improving Thin Photographic Negative.-When it is desired to improve a very thin photographic negative so as to yield a fairly good picture first ascertain whether the negative is thoroughly free from hypo. This is essential, no matter what process of intensification is employed. The negative may he tested for hypo by mixiug with a weak golntion of iodide of starch some of the final drippings from the negative when it is removed from the washing water. If hypo is present in the film the colour of the starch will bs discharged. Or, as a precautionary meacure, the negative may be placed for a time in 9 2-per-cent. solution of anthion, which readily removes hypo from the film, and then well rinsed in water. To
 Insect Cases.
thick; though this would be very had policy, as the box will hold comparatively few. Collectors always place the captives in envelopes and "set" them at home. The usual method is as follows. On catching the insect, pinch it under the wings hetween the finger and thumh, when it will at once be killed, and its wings will he close together, thus preventing the "view side" from being rubbed. Now take a small square of paper, and crease it as shown by the dotted lines in Fig. 3. By folding lover 2 and 3 over I a triangular envelope is formed, into which the insect is dropped; fold 40 ver 3 , and the insect will be in the position shown by Fig. 4. Of course, the cork is not necessary in this case.

Turning and Polishing Ebonite and Vulcanite.Fo turn ehonite and valcanite, use tools of good steel, hut sharpened at about the same angles as for hardwood, ivory, and hrass. Rough ont with a roundnose tool, and flnish with a flat-faced brass-finishing tool or scraper. Run the lathe at a moderate speed, and take light cuts. To eave time and material, the ehonite and vulcanite slabs may be cut into square pieces with a fine circular saw provided with a shifting fence or guide. Next get several pieces of steel tubing of a length and diameter that will most nearly fit the shape of the required work. Soften the tuhes by placing in a moderate fire, and leave them there till the fire dies out. Then, with a saw-file, notch one end of the tuhe like a saw, and harden and temper to a straw colour. Now prepare a wood chuck, to hold this cylindrical saw, by boring a hole in the face right through the block and elightly smaller than the tube, so that it may be driven home truly. This is of importauce, as if the arrangement does not run dead true it will not act. Cylindrical saws on this principle may be used with success when hollow cylinders are to be cut out of the solid, as for ivory, though, in the latter case, the saws would he hetter held in a self-centring chuck. To
intensify a negative, a portion of the image consisting of metallic silver must first be converted into silver chloride, and to hring ahout this result the negative is placed in a solution (a saturated solution of mercuric chloride) from which chlorine can be absorbed. 'Is this solution the negative remains until it is bleached white. The degree of bleaching governs the degree of intensiThe degree of bleaching governs the degree of intensi-
fication, hut must not bs ovardone. Next wash the negafication, hut must not bs uverdone. Next wash the negative well for ten minutes to fres it from any excess of
mercuric chloride. The negative is then placed until it becomes black in a 10 -per-cent. solution of sulpbite of soda. During the immersion the dishes contalunig both solutions should be rocked, to avoid uneven markings. The deusity, particularly of the lights, will he found to be considerahly increased atter the blackening of the negative. There are other methods of intensification, and the most popular of them (prohably hecause a long range of effects is ohtainable with it) is to blacken with amnsonia, but the mercury and soda process descrihed above is the one more likely to he successful in the hands of a beginner, as there is with this process a greater freedom from stains than with mercury und ammonia. Intensification is uot necessarily permanent, therefore negatives that hare been so treated require careful preservation. The process may, of course, be carred out in full daylight. Contrasts may also be foroed up hy printiug from the negative on bromide paper.
Making Peroxide of Hydrogen.-Peroxide of hydrogen is made by suspending barlum peroxide in water and adding the requisite quantity of dilute sulphuric acid. Barium sulphate is precipitated and hydrogen peroxide romains in solution and is ooncentrated at ordinary temperature in a partial vacuum over sulphuric acid. Seventesn parts of barium peroxide will require 10 parts of strong sulphuric acid, previously diluted with 40 parts of water, for its decomposition.

Re-inktng Rypewritcr Ribbons.-lew quite sutisface tary methods of re-inking ty pewriter ribbons are known. By a simple method, the ribbon is stretched and drawn over a hottle, the ink being brushed on as the ribbou passes. Ise only a little ink and apply it to but oue side of the ribbon. Another method would be to pass the rihbon bstween swo pads, one or both of which could he inked. Or if man libbons were to be dealt with, a frame carrying two felt-covered rollers could bs constructed. One roller could be turned by a crank, the structsa. One ron being conveyed to the other roller hy friction. An arrangement could easily be made by means of which the rollers could be supplied with ink, and the ribbons could then be inked easily by merely passing them between the rollers.

Jewelling the Pallets of a Regulator Clook. - In jewelling a pair of dead-beat regulator pallets, the pallets must first be softened, then wide and deep slots must be filed out whers the teeth engage with them. Jewels (rubies, garnets, or agates) are then cut and polished to fit exactly the grooves and are cemented in with shellac. Their outside surfaces are then polished off flush with the steel on all faces. For rubies and garnets, the cutting and polishing is done on steel or iron laps with diamond dust. Agates, being eofter, can be cut by emery used in the same way.
Bath and Dipper for Ferrotype Photography.An upright bath (Fig. 1) is the more convenient form for use in the ferrotype process of photography. This bath is not very easy to make, and can be purchased very

Fig. 2
Fig. 1

Bath and Dipper for Ferrotype Photography.
chsaply. A flat porcelain dish may be used as a bath, but muet be kept well covered as it offers a large surface for the deposition of dust. For a dipper (Fig. 2), cut a piece of glass A and attach with good cement a strip at B. The plate then reste on B face up and may be lowered gently into the bath.
Making a Theatrical Bald Wig.-The foundation of a theatrical bald wig is made of stout brown calico, which is cut, sewn, and fitted to a barber's block, as is explained on p. 19. Prime the calico with size to which a little whiting has been added; allow this to dry, then remove the calico from the block. For the hair, stitch in whlte Berlin wool; or a piece of fur could be used. When this is done, place the calico again on the block, and paint the bald part with a mixture made as follows. Mix a little white lead with a touch of vermilion and Indian yellow to form a flesh tint, then add a few drops of linseed oil, turpe, and a little gold size. Allow it to dry, and then apply a second coat.
Producing Photographs in Relief. - To produce photographs in relief, noak some fairly stout sheet gelatine for half an hourin a 5 -per-cent. solution of potassium bichromate. This renders the gelatine sensitive to light on drying, which must take place slowly in a wellFentilated and dark room, It is advisable to squeeze the gelatine down on to plate glass (as in enamelling a print); the glass gives the gelatine a good smooth surface for rendering minute detail. When dry the gelatine is stripped from ite glass support and exposed beneath a negative. The bichromated gelatine when expos d to light becomes insoluble and incapable of absorhing moisture in proportion to the intensity of the light's action on it, If the gelatine be now placed in cold water those portions of gelatine unaffected by light will begin to swell. As this expansion or swelling will be in width as well as thickness, the gelatine should hs fixed with isinglass to an insoluble support; this compels the gelatine to swell upwarde. If a cast is taken of this picture in relief the modelling will be negative and reversed. Therefore, proceed as follows. A pooltive showing a good degree of contrast and

Hrachation, such as wuthld be batabio tor car'oon printing, must le first taken. This yoodtive should be thin and full of detail, with the lights and elader due as fill as possihle to form. To remedy the falso relice ane to colour, iutensify with uranimn mud remove the effect locally as desired with a weak solution of ammouilum hydrate. After printing thoroughly soak the selatino in a dish, then carefully removo and blot off all moisture, oil the gelatine mould and drain off the excess, and place the mould in a sort of triny made by bending up the edges of a piece of stiff paper. Mix up some fine plaster-of-Paris and pour it over the mould. Another method that may be used where only general effect is required is described below. A pad consisting of a board covered with velvet or plushette will be required, together with some modelliug tools and a board covered with carbon paper. A print is mounted with seccotine or other cement on a thin sheet of soft With seccotine or other cement on a thin sheet of soft Lay the mounted print, face up, on the carison paper and trace on the print all the parts of the picture that should stand in relief. Lay the print face down on the plush hlock, and, using the traced lines on the back of the print as guides, press out those parts that are to be in relief. Now turning the print over (that is, letting it lie face upwards) press back the shadows, putting in any sharp edges with the pointed end of the tool. As the print is fastened to the metal the shape of ths print will remain unaltered, and it may be mounted on a card with gelatine. Platinotypes give the most satisfactory results with this process, both on account of their colour and their malleability. The process is so simple that artistic ability and practice are all that are needed in order to obtain the best results.

Recipe for Harness Composition.-A recipe for a waterproof harness composition is: In a glazed vessel melt 2 oz . of black resin over a fire and add 3 oz . of beeswax. When thoroughly amalgamated, remove from the fire, and add $\frac{1}{2}$ oz. of fine lampblack and $\frac{1}{2} \mathrm{dr}$. of Prussian blue in powder. Stir well together, and add sufficient turpentine to form a thin paste. When cool, apply with a sponge and polish with a soft brush.

Moulds for Casting Brass.-For very delicate work, loam, which is a clayey sand mixed with ordinary sand, must be used. The monld can be made in the ordinary way, hut it must be well dried on both sides if double-faced work is to be dons ; for single-faced work only one side will need well drying. When the mould is thoroughly dry, its faces must be smoked by means of a torch made from pitch. This deposits over each part a surface of finely divided soot. The pattern must then be inserted and the two halves of the mould brought together and acrewed up, which will bring out the impression of the pattern sharp and clear. If loam is used for meking the moulds, it shonld be mixed with facing sand. For small castings, charcoal powder mixed with about one-eighth of its volume of fine sand may be used, or the mould may be dusted with pea-flour and finally with charcoal. In moulding the thin parts of a delicate pattern, the mould must not be rammed too hard, as the metal, on cooling, will contract; if the mould will not give way, the metal must do so, and consequently there will be flaws or cracks in the casting. This may be prevented by slightly damping the thin part of the mould with charcoal and water.

Magnetic North.-An ordinary pocket compass, or any instrument containing a magnetic needle, will give the direction of the magnetic north at the time and place where the compass is used. The direction of the magnetic north with regard to any given line of the survey can be ascertained by standing on the line and looking across the face of the compass, but it must be remembered that the direction of the magnetic nortn or, in other words, the magnetic meridian, is not constant. It is the direction of the mean resultant of the \cdot magnetic forces in the earth, and the virtual centre of the forces travels round the geographical north pole, so that in the neighbourhood of London the needle has a range of 30° east and west of the true north. The position of the needle was at the beginning of $190 n$ something less than $16 \frac{1}{2}^{\circ}$ west of the trie north, and this distance is being reduced at the rate of about 7^{\prime}.per annum.

Working Electro-gilding Solutions.-A very dark brown deposit of gold from an electro-gilding bath is generally caused by excess of current, bnt may also be due to excessive free cyanide aud to a deficiency of gold in the colution. The current may be reduced either by employing a resistance coil or by reducing the battery power. Excessive free eyauide may be reduced by dissolving more gold in the bath, or by adding cyanide of gold until the excess cyanide of potassium has been taken up.

Making Pleated Back Squab for Carriage.Below are instructions on making a pleated back squab or cushion for a carringe. To get the size of the equal, the part that has to be filled should be loosely fitted with canvas; carefully mark round it to get the exact ehape and size. This canvar ie then laid on the bench, and the positions of the tufte and pleats are set out. To get the fulness for the pleating and stuffing, make elevations of the finished squab. From this drawing measure wlth the tspe the amount of fulness required, and cut the material sccordingly. If cloth is used, the pleats, after being marked out frum the canvas, are ironed to give them form; if morocco is employed, the pleato are folded with the faces together and hammered on the lap or flat irou. When all the pleats are formed, the holee for the tufts are punched thlough the two thicknesses. Various methods sare employed in msking up the squabs. They are sometimes made on a frame; at others they are made on stout canvas and fixed to the bench; and sometimes the front is tacked to the back, and partly stuffed before the tufts are put in. Whichever method is adopted, be careful to keep a uniform fulness between the pleats and to get to keep a uniform rulness

Making Hand-guards for Singlesticks.-In making baskets or hand-guards for a psir of singlesticks, take about eight long thin osiers and with them form a slarth. As both butts and tops of these eight osiers are to form the border, they must be laid thus-a hutt, a top, a butt, and so on. Use two amall rode to tie the slsirth. Four of the eight ogiers will have to bs laid first, then the other four across them. When the tie-rods have been worked alternately twice round, the oeiers are opened in turn hy working the tie-rods between them, thus forming sixteen uprights to receive the weaving, or pairing. A smsil plece is scallomed st the butt of one tie-rod and lapped round the four under rods. To get the hand-guard to

Making Hand-guards for Singlesticke.
shipe, carefully gather the sixteen stakes and place them in a small hoop; peg the whole to the edge of the workboard with a small bodkin or wire nail passed through a leaden weight. Now form each stake hy gently pulling and hending. Take two small rods, place one top behind a stake, with the tip end in front of the stake before it, and the other rod behind the next stake to the right; then pair these two rods round one over the other in snd out of tha stskes. When they one over the other in snd out of the stskes. When they two other rods. Pair the work to the proper depth, which will be between 3 in. and 4 in., when the stakes cun be laid down to form the border, as in the above sketch. A, B, and C are first laid down, each etske passing behind two others, in front of the third and fourth, and finishing in tront of the sixth, as shown at F. The stakes D are to be laid down in turn. The tencing-stick, a etout ash stick, is passed through nesr the horder of one slde of the gurard, and out near the crown at the opposite eide. Small wood pegs are put in the sticks outside the baskets to keep them from sliding off the ends.

Painting a Farm Waggon, - Here are instructions on painting a fism waggon. The body is to be blue liued out with red and white, the undercarriage is to be hlood red picked out with black, and the lettering is to be in golden yellow. To prepare the body for the two coats of blue, three costs of dark lead colour should be given, any screw- or nail-holes being stopped up between the second and third costs. The blue generally used on thie kind of work can be obtained at most colour warehouses ready ground, and for uee requires thinning down only. The first cont of blue should be made to dry in about eight hours; the second cuat should have a good proportion of varnish added to give a better surface to line out upon. This second coat will require flatting. This will make the varnish adhere properly, and will remove any nibs on the surface. For iuing out, use vermilion mixed gtifi with carriage varnish aud thinned down with turpentine from the diyper when in use. These lines must be allowed to diy before putting on the rhite llnee, for which tuib white lead mixed with pale varnisb may be used. To prepare
the underworks, give two coats of colour msde of tub white lead, driers, linseed oil, and turpentine, with outficient red lead added to give tone. Blood-red paint may be obtained ready ground, and is known as ruddle should a brighter red be required, give two coats of Chinese red mixed with gold gize, turpentine, and varnish. For pickiug out the carriage, use drop black ground up with varnish, For the lettering, deep orange chrome toned down with white as desired should be used. For a lasting job the cart should be given a coat of undercosting varnish, followed by a coat of finisbing carriage vannish, care heing taken to flat down between successive coats and to waik off thoroughly, so as to remove any persticles of dirt, as should any get into the varnishing brush the whole job will be epoiled.
Sun-printing on Embossed Glass. - The methed employed in sun-printing for repeating designs on glass embossed work is as described below. To make the sensitive resiet, crush to a fine powder i cub. in. of pure asphaltum and dissolve it in 8 oz . of benzine. This operation must be carried out in a dark reom, or a room dimly lighted by gas, and grest care must be taken that the light does not strike the mixture, which muet be kept in a black hottle. To use the resist, cost the glaes to bs etched in the dark room. Place the negrative, which must be black and white, in \& photographic picture frame, and expose; one hour will bs sufficient in a strong sun, but in dull weather a whole dsy will be necesesry. Then wash over with parsfin; the part acted upon by the sun will adhere to the glsss and form the resist. Now etch in the ueual way.

Gauge for Inlaying Purfing on Violin. - The sccompanying sketch shows a useful form of purfling gsuge, easily made and very effective. A is a sliding har csrrying the cutter and wedge, B is the wedge for fixing the sliding bar, and O is a hardwood steck with

Gauge for Inlaying Purfing on Violin.
the bottom rounded on one side as at D. The method of using is to set the cutter, which must be well sharpened, to the required distance, and to go round the violin, being very careful not to cut too deep; then reduce the width by ${ }_{20}^{10} \mathrm{in}$. and cut the onter line. The wood between the lines can then be picked out with a bent purfing chisel, and the purfling fitted and glued. The mitres at the corners must be perfectly true; an examination of a good violin will show how this should be done.
Repaixing and Painting Wire Ganze Blinds.-To repair an ordinary wire gauzs blind, fix the frsme on a clesu, flat bench; lay the gauze on, and secure it slong the bottom with $4-\mathrm{in}$. blue tacks. The tension is obtained by compressing the stiles slightly together and tacking towsrds the angle of the rebate, beginning st the middle of each stile and top rail and finishing at the the middle of each stile and top rail and finsming at the corners. Bell staples are sometimes used to obtane more crooked. For a brass tubular top rail, the gauze mutt first be cut to the outline, and s atout wire sewn with wire to the folded shaped edge. The prepsred wire is then put in the top rail through the end, the gauze being passed through the cut in the tube; then spring in the tubnlar top rail, and proceed as described above. 't'o psint, lay the gauze on a flat, clean table, and with a paint, lay the gauze on a flat, clean tsibe, and suce the colour on sparingly, not with up and down strokes, which fill the meshes. The colour, which must be thin, is mixed with turps, dijers, and boiled oll; two costs ars required. To dry, suspeud the blind.
Black Bronze for Iron.-The article to be blacked must first he well cleansed from grease, and then dipped into a solution consisting of 1 part of bismuth chloride, 2 parts of mercury bichloride, 1 part of copper chloride, 6 parts of hydrochloric acid, 5 parts of slcohol, and 50 parts of water. When dry, place the article in boiling water for half in hour. If the black is not intense enough, repeat the dipping operation. The colour is fixed by placing the article for a lew moments in a bath of boiling oil, the article being aifterwards beated until all the oil is driven off. Thls treatment is eaid to give au intenee black flnish.

Making Pincushions from Cow'e Hoofs.-In making pincushions from a pair of cow's hoofs, scrape out the insides of the hoofs with a knife, and well wash with carbolic acid or sprinkle with alum. Then polish the outsides. To do this, flrst file off all rough. ness, afterwards using glasspaper, commencing with coarse and finishing with the finest. Then rub briskly with an oiled rag and putty powder, followed by whiting moistened with vinegar. Now well rub with some crumpled-up tissue paper, then with the palm of the hand with or without oil. The rubbing must be briskly done, and the work well dusted between every two operations. Now partly fill the imsides of the hoofs with a mixture of plaster-of-Paris and water and allow to dry mixture of plaster-of-Paris and water and anow to dry cover with velvet, fastening the edges with gluo or a few fine gimp pins. Just before putting in the last tack or gimp pin, ram more bran in so that the inside will be quite firm and the top nicely rounded. Then cover the junction of the velvet and horn with gold lsice, and the pincushion is complete.
Making Straw Bands or Ropes, - Where short lengths only are required, say up to 20 ft ., the straw hands or ropes are best twisted by hand. To do this, a simple twisting hook, as shown below, is needed. It consists of a piece of stout iron wire bent to form a handle, as in Fig. 1. Two pieces of ash, oak, or chestnut, 8 in . long, are cut from a dry taggot and bored to take the wire. One of these pieces is pushed on the shorter end of the wire, which is burred over a wasber, keeping the wooden \bar{t} andle in place. On the longer end put an old iron nut, a washer, and the other piecs of wood; then bend the end to form a hook, as shown in Fig. 2. A hook clamped in the jaws of a carpenter's brace would answer the same purpose. To make a band, the straw nust be well wetted and lightly tossed up in a heap; the operator, standing with the beap on his right, puts the bight of a standing with the beap on his right, puts the bight of a Wisp ovel the hook, which is to be turnsd by a boy. which passes through the left hand while the right keeps
stone is very soft when first quarried, but hardens on exposure to the air. It is necessary that this stons should, in a building, he placed on or parallel to its natural bed. The best known Bath stone quarries are Box Ground, Combe Down, Westwood Down, Corsham Down, Corsham Ridge, and Stoke Ground. Stone from different quarries, and from different beds in the same quarry, varies much in quality; some kinds of Bath stone weather very badly, and can only be used for internal work, whilst other kinds are fit for external work in ordinary atmospheres. Craigleith stone is a sandstone composed of quartz grains interspersed with small grains of mica, and united by a siliceous cement. Craiglelth stone contains 98 per cent. of silica, and only about 1 per cent. of carbonate of lime. The stone is found near Edinburgh; it is used extensively in that city, and is also expor'ted. It is perhaps the most durable sandstone in the United Kingdom. As regards durability when employed for facing the elevation of a building the stones may be placed in the following order (1) Craigleith; (2) York stone; (3) Bath stone. The atmosphere of all large towns contains a sensible proportion of acids (such as sulphuric acid, nitric acid, etc.) derived chiofly from smoke and from the exhalations of chemical works. These acids act destructively upon carbonate of lime, and the stone containing the largest proportion of lime, or in which the lime is more readily acted upon, disintegrates the most rapidly. Hence a sandstone is to be preferred for use in an acid-lader. atmosphere. Craigleith, being the less porous of the two sandstones, resists the action of frost better than York stone.

Repairing Oval and Square Baskets, Baskets should be repaired before they are too badly worn. As soon as the loot rim gets broken, well soak that part, draw out all foot stakes (with pincers, if necessary), and put on a new rim. If there is no foot rim, cut out the worn bottom with shears; or, if the bottom part is thoroughly soaked, the workman can push it inwards with his foot. If the bottom sdge of the body itself is worn, pull off a few rounds, push down

Repairing Oval and Square Baskets.
a stake wherever one may have worn or broken, anc work some upsetting to replace that which has beer removed. A new bottom must now be made to re place the old one. Of course, the stakes in the body must be cut quite level all round at the bend after the upsetting has been finished off. Occasionally gauge the bottom to the body so as to get a good fit; then cut off the ends of the bottom sticks, and tis in the bottom with osier bands. An oval basket will require about six bands, two at each side and one at each end. A large square basket may require eight or ten bands, three at each side and two at the ends. To keep the bottom in place while tying, push two or three bodkins through the upsetting and into the bottom down heside the bottom sticis. Next pick out and point six or eight band rods. Push one down the upsetting in the body, and commence twisting it rope fashion fiom the tip end to the bitt. The rod can now be drawn in and out exactly as can a piece of rope. With the bodkin, open the weaving in the bottom, about 4 in. from the edge, at the right-hand side of the nearest bottom stick; pull the band through from the inside, then out again at the other side of the same stick; twist it over the t-in. lap twice, pulling it very tight and even, then carry it for about $6 i n$, up the side of the basket, and push it through to the leit of a stake. Bring it out to the right aboutl in. nearer the bottom, and again twist it over itself three times along the bottom twisted part; return it through the first loop, still keeping an even twist, then pass it through the edge of the bottom, and upset, again forming a close and even twist up the side; finally, pass it through the side loop, pull very tightly, and cut off the waste piece neat and close. The accompanying illustration shows part of a tying-in band. A is passed through the side of the body and comes out again at the right-hand side of the stake, and is worked the whole length again, when it is turned in the loop in the bottom (outside), and finishes as at c, outside. The even twist is obtained by pulling tightly. When all the bands are finished, a foot rim can be woried on. Should any of the top border stakes be broken, pueh down others in their places, bend them down, draw them through from the front, and cram them. Some stakes will simply require pushing through the border from the front and cramming, the inside end being cut off close.

Lettering Shop Blinds.-Shellac dissolved in a aaturated solution of borax as a vehicle, chisfly for blaok, is sometimes used for lettering union blinds. So also are artists' tube-oil coloure mixed with varnish or gold size. As a slight cresping of oil is unavoldable, the colour must bs quick-drying. The lettering can be done with mize only as a preliminary, but no general treatment size onyy as a preliminar
A Model Pumping Windmill.-The little windmilh here described is easily made, and works well in quite a moderate wind. It may be made in any size, even with the wheel $\frac{1}{2}$ in. in diameter, but the one illustrated has a 4 -in. wheel, and the drawings are quarter full size. For larger or smalter mills, all the parts may be kept in about the same proportion. The wheel A (Fig. I) and rudder, B are best made of thin sheet brass, but tin-plate is found quite suitable if it is painted. For the wheel, strike a circle 4 in. in diameter, and a smaller ons $\frac{3}{\frac{3}{2}}$ in. in diameter, sud concentric. Then divide the disc into eight sections (ses Fig. 2), either by using set-squares, or by dividing the circle into two parts and stepping the compasses four times round
 each semicircie; a ${ }^{3}$ n-in. hole ia bored in the centre of it is then carefully cut out with a pair of circle, and it is then carefully cut out with a pair of down, as shown, to the thner circle; all sharp cornera are then snipped off and trimmed with a file. The rudder B (Fig. 1) is abont 3 in . long and $2 \frac{1}{2}$ in, and 2 in . wide at the large and small ends reapectively, and it should bs trued up at the edges with a file. The pump barrei C is a brass tube about $\frac{1}{2}$ in. in diameter and 3 in . long. With a file the ends ars trimmed squars to the length. Asmall hole is bored through the tubeat D about

A Model Pumping Windmill.
lin, from one end, and a little plug of iron or brass wire is soldered or forced in, leaving tin. protruding at each side, the ends being rounded. The gtand Eis either a heary sheet-iron plate 4 in, by 4 in. by fin., or a light metal one screwed to a wood base; on it, at the centre, the pump is soldered upright. The crank-shaft F is made from steel or iron wire abont ${ }^{7}{ }^{7} \mathrm{in}$. in diameter and $3 \frac{2}{2}$ in. long. The crank is made by heating the metal red hot and bending it with a pair of pliers or in a small vice; the throw of the crank should not be more than $\frac{1}{2}$ in. The pump rod G is made of thin biass or iron wire about 2 in . pump, and one end is bent over into a circte to fit loosely on the crank-ahaft. The frame is of brass 5 in in. by $\frac{5 i n g}{4 i n}$ on the crank-ahart. The riame is and is bent as shown at H. To bend brass or copper, it isannealed by heating it to red heatand cooling it suddenly in cold water, after which it bends easily and without breaking. A hole ia bored in the bottom to fit the tube c ; also one at each side at the top to take the crank-shaft. A second piecs of brass J is cut about it in, by sin, by $\frac{s}{1}$ in., and a central hole is bored in this to fit the pump barrel. The piece is now soldered about ${ }^{3}$ in. up the frame. The wheel A is soldered true to the shaft, and ahout in. out from the front bearing, the space being filfed with a washer made by coiling some No. $18 \mathrm{~S} . W . \mathrm{G} . \operatorname{copper}$ wire round the shaft, the ends being filed so as not to catch anywhere. The wheel and shatt are now put into the bearings, the latter being sprung il necessary. The protruding ends are sawn or filed off, snd a washer K , made of No. 16 S.W.G. copper is soldered on. The pump rod G is put in place, and two small copper wire washers sre soldered on the crank-pin to prevent the rod having too much oide play. The lower end of the pump rod suast be cut shorter if it does not allow the crank-shatt to rotate freely. The rudder is soldered to two brass wires L about 3 in. long, and these are soldered to the frame. Finally, each blade or section of the wheel is given a twist as in a acisw propeller or fan, and as indicated for' two sections. When the mill is running, the vane or rudder ahould keep it well into the
wind. All fron or tin parts should be painted, and the boarings oiled. The holes can be bored with commou bradawls sharpened like in ordinary metal drill, and the larger holes may be finighed with a round tile. All parta to be soldered should be very clean, zinc chloride being used as the flux.

Polishing Heads of Brass Screws. - Brass wocdacrews are usually polished in a shaking barrel about 18 in . in diameter by 2 ft .6 in . Iong; the barrel is actuated by stsam, or, if machine power is not available, by hand. The berrel is two-thirda filled with clean beech aawdust and the screws are put in. The friction caused by the screws coming in contact with each other and with the screws coming ill con
dust gives the polish.
Tempering steel,-Molten lead is a good heating agent for tempering steel articles of unequal thickness as these can be heated more uniformly by this method than by placing in an open fire or by aupporting on an iron plate over a flre. Lead melts uniformly at a temperature of 612° F., and by alloying the lead with tin in varying proporitons, as explained in the table below, an extensive runge of temperatures may be obtained: In using such baths, cover the surface with powdered cbarcosl to prevent the oxidation of the molten metal.

Colour.	Articles to be T'empered.	Composition of Bath.		
		Lead.	Tin.	
Yellowish tint	Lancets	7	4	420°
	Other surgical instruments \qquad	75	4	433*
	Razora, etc. $\ldots .$.	8	4	$44{ }^{\text {Ju' }}$
Pale yellow ...	Penknives, and some implements of sur-			
Straw yellow ...	gery \ldots... \ldots	81	4	4.00°
	Large penknives, scalpela, etc.	10	4	4700°
	Scissors, shears, garden hoes, cold chisela, etc.	14	4	490°
Brown yellow	Axes, tirmer chisels, plane irons, pocketknives, etc.	19	4	509^{*}
Light purple ...	Table - knives, large shears, etc.	30	4	$530{ }^{\circ}$
Clear blue	Swords, watch-			
	springs, etc.... \ldots	48	4	533°
	Large springs, dsggers, augers, fine saws, etc.	50	2	558°
Pale bhie ...	Pit sawa, hand sawb,	Boi	ling	
Greenish blue	and some springe ... Articles which re-	linse	ed oil	$60{ }^{\circ}$
	quire to be somewhat softer ...	$\underset{\mathrm{Mol}}{\mathrm{Me}}$	ten ad	612^{*}

Pregerving Plano and Organ Keyg.-The appearance of many a good piano and orgsin is spoiled by the diacoloration of the keys. Where children have plsyad upon them with sticky flngers, merety to wipe them with a elean duster will not alwsjs suffice; a moist washleather will be better. The Jetrowish giren colour of composition keys is mostly due to playing with damp, perspiring hands, this being most estrongly marked at about the centre of the keybosrd. Mach discoloration without corresponding signs of wear van generally be traced to absorption of moisture from the fall or lid; the instrument being kept closed for long intervals the keys are shut up in the dark. It is then advisable to leavs the keyboard portion open mors, sunlight being a splendid bleach. This applies with equal force to ivory or composition keys. The uss of powerful bleaching agents as nitric or sulphuraus acids, ol salts of lemon, is not advised; there is always a riak of allowing such solutions to flow between the keys on to the woodwork, thus causing the wood to swell and, in some cases, the keys to bind or atick together, Besides, most bleaches require several daya, sometimes weeks, to be effeotive. The most that oan be advised is to cleanse frequently with benzine or benzoline, which in many cases will reatore the colour. For anything beyond this the keys ahould be removed from the ingtrument so that the surface of the coverings may be levelled or the discoloration taken eut by the aid of a cabinet-maker's steel screper and glagspaper. The keys then require to be repolished in accord. ance with the instructions on polfshing ivory by the hand method given on p. 251 .

Preserving Planes.-To keep planes clean and smooth In appearance the grain must be filled. Clean off the surface with a joiner's scraper and fine glasspaper, rubhing along rather than across the grain. Rub with linseed oil sparingly on a clean rag. With a wadding or fannel rub with French polish, the rubber being or freely wetted at first, but moist only afterwards. The porous surface of the wood will soon become smooth, and moisture and dirt will he less likely to stick. Work nntilall the oil has been absorbed and a slight polish appears.

Brazing Keys.-Brazing is another name for hard soldering; the process differs from ordinary soft soldersoldering ; the principally in the fact that the uniting metal or ing principaly in thot applied with a hot bit. Greater heat is required to melt the spelter than is necessary for soft solder, it heing necessary to employ either a forge fire or a powerful blowpipe to make the hard spelter fiow into the joint. Brazing is used where greater strength is required than can be given by soft solder, or when an article has to stand a degree of heat that would an article has to stand a degree of heat that would

Fig. 1
length of a 1 -in. round rod, having at its other end an eye by which it may he hung when not in use. With this spatula, also, powdered spelter may be added to the joint if required. When the brass wire commences to run, assist the fiow by adding powdered horax, and when all the brass has ron into the joint, ruh off superfluous molten metal from underneath and allow the joint to cool gradually. When cold, file up and clean the stem of the key until only a thin hright line of hrass can be seen. Fig. 2 shows the finished key.
Making Glass Blowpipes for Blowing Birds' Eggs. -To make glass blowpipes for blowing birds' eggs, hoid in the gas a piece of glass tnbe and gently rotate it with the tingers. When the tuhe is hot, draw the two ends gently apart nntil they separate. Break off the sharp point of the glass to obtain two hlowpipes.
Flower Window-box.-Fig. 1 shows the construction of a flower window-box. The wood should be about $\frac{3}{4}$ in. or 1 in. thick, according to the size of the hox; the angles should be dovetailed and nailed together as shown. The bottom is simply nailed to the sides and ends. The appearance of the box is considerably improved by mitring and fixing a moulding round the front as shown;

Brazing Keys.
broken parts of a key stem, first it is necessary to file the fractured ends quite true ; this may entail the shortening of the key hy in. or in., and as another $\frac{1}{2}$ in. will be lost in making the joint, it may be advisable to use another key bow having a longer piece of stem than the one which was broken off. With a warding file cut a dovetail on each of the ends to be joined, as shown by Fig. 1. A small, half-round file will assist in making the edges true and square. The pieces must interlock perfectly, and when this is the case, very lightly hammer the joint, around which then hind seven or eight turns of brass wire to act as spelter. Wet the joint, sprinkle powdered horax on it (this is to serve as the finx), and, holding tine key in a pair of tongs, place it in a clear: part of a forge tire made with charccal, small coke, or coal cinders, and commence to blow steadily the forge bellows or blower. Failing a forge fire, use a blowpipe, the key being placed on a piece of charcoal or pumice-stone whilst the heat is heing applied. A hlowpipe for brazing requires a greater pressure of ain than can be given hy the mouth, so the blowpipe must he connected to a blower. The air pressure regulates the temperature of the flame, and to get a sharp, concentrated heat, an air pressure of from 1 lb . to $1 \frac{1}{2} 1 \mathrm{~h}$. oo the equare inch is required. Such a pressure is obtained easily from a foot, blower. If the forge fire is used it is as well to support the key on a guard of thick iron plate having a hole in Its centre over which is the joint to he hrazed. By this means the necessarylocal heating is ohtained, and much fabour in cleaning the key afterwards is avoided. On being heated, the borax swells and hoils up, and should be pressed down with a spatula, previously dipped in gold water to prevent the hot borax adhering to it; a suitable spatula is made by fiattening one end of a 1 .ft.

Flower Window-box.
and tiles can be fitted to the front with bolection mould. ing, which is rebated as in Fig. 3. Two or three wedgeshaped strips should be nailed on the bottom asshown at A (Fig. 2) ; they require cutting to the splay of the sill; this allows of the box standing level. It is a good plan to paint all the joints and parts of the box that will be in contact hefore fixing them together.
Cleaning Wash-leather Gloves.-One method of cleaning wash-leather gloves, if they are not much soiled, is to well rub them with bread crumbs. A nother method is to damp about 1 pt . of bran with water, and with this well rub the gloves whilst on the hands. When the Well rub the gloves whilst on the hands. When the
gloves are quite clean, get 1 pt, of hot, dry bran and work this upon them till they are quite dry. A third method is to syringe the gloves with benzoline and hang in the air to dry. A slight working, shaking, or stretching will remove any slight stiffness. Still another method is to put the gloves ou the hands and well wash methoa and warm water. When quite clean wipe with in soap and warm water. clean cloths (the gloves
Cleaning an Ormolu Clock-cage,-Presuming that it is desired to clean the gilt case of the clock, the movement must first he taken out. Unscrew the bell at the back, and take off the pendulum. Undo the two screws at the back rim that hold in the movement, and draw the clock ont from the front. The gilt case will be found to be made of many pieces held together by nuts and to be made of many pieces herd inside. Take it all apart and get every piece screws inside. Take it ail apart and ge every plece
separate. Then well wash with a plate-brush or goft tooth-brush, using hot soap and water to which sodhas been added. Rinse thoroughly in clean water, hot first, and then cold. Let the parts drain, and dry them thoronghly in warm, dry sawdust hefore a fire. Then dust off the sawdnst with a soft brush. In putting the parts together again, handle them with a clean duster or a leather.

Constructing a Small Counter,-Figs. 1 to 4 show the construction of a simple form of counter. The front and eads are made of $\frac{4}{4}-\mathrm{ln}$. narrow matehboards; these are fixed at the bottom to a 6-ln. by $\frac{3}{4}$-in. board, the latter being mitrod at the two outer corners. The top
cyande by means of current from a battery until a test sample receives a nice blush of gold in a lew moments exposure. The articles must be clean and well poliehed, lightly ecratch-brushed, strung on wires attached to the negative pole of the battery, and dipped for a fep

Fig. 1

Fig. 2

Constructing a Small Counter.
Fia, 3
ends of the boarde can be fixed round the inside to a 2-in. by l-in. fillet as at A (Fig. 4). The back of the counter can be prepared for drawers if desired, as shown at Figs, 3 and 4. This framing should be mortised and tenoned together, and the runners for the drawers fixed to the framing, and also to a fillet to the trout as thown at Fig. 4. 'the top can be secured by screwling into it through the fillets A. A piece of prepared monlding fixed round the top of the plinth and ander tue top, als shown at Figs. 1, 2, and 3, will greatly improve the appearance.

Cheap Electrogilding Solutions.-Several attempts have been made, but without success, to invent a cheap electro-gilding solution for metal jewellery. Much, however, may be done with copper anodes; these may be so worked in the ordinary gold cyanide solution as slightly to alloy the deposit of gold with copper, and thus give a pleaslag blush to a thin film of the precious metal. The cheapest method of preparlng these colutions is to dissolve pure sheet gold in a bolution of potaseium

moments in the gilding solution; then rinsed in clean hot water, and brushed with a scratch-brush of verz fine soft wire.

Black Varnish for Grates and Stoves.-In the pring, when flres are dispensed with, it is the custom to coat the grates, stoves, fenders, and other irowwork attached to fireplaces with Brunswick black in order to attac the tronble of constant blackleading. This gives a bright, glarirg appearance, and in some instances presents a surface that is difficult to blacklead again. This is more difficult if the blacklead is mixed with turpentine. A varnish free from both of the above objections may be made as follows. Dissolve 4 oz. of common shellac and $20 z$. of resin in lpt. of methylated spirit, and add $\frac{1}{2} \mathrm{oz}$. of black aniline dye, soluble in spirits, to give it a rich black colour. Should there be any difficulty in obtaining black colour. Should there be a yy dincur bas black may be used. This can be obtained by thedye, gas black may be used. This can be obtained yy boiling a pot or kettle over a gas burner, hanging it so Which forms at the bottom of the pot or kettle should be removed when cold, and mixed with the varnishsufficient to give it a good black colour. The above gives a fairly bright surface, which can be dulled by omitting, or reducing the quantity of, the resin. It should be applisd with a camel-hair brush.
Cause and Prevention of Halation in Negatives. -The word halation signifies a "halo" or mist of light that surrounds and confuses the outline of an object. Halation is caused when some of the light that enters the camera passes through the film on the plate and is reflected from the back surface of the glass. and is reflected from the tighta (Fig. 1), passing through Abney shows thata ray or pight (rig,), passing through an emulsion containing particles of silver bromide P^{1}, is the glass at an angle, is again' reflected to p^{3} as shown by the shaded portions in Fig. 1. Halation mas be prerented by coating the back of the plate with some
minutes. Work this, and all other iron solutious, with a weak current-a battery of Daniek cells will do-keep the anode clean, and add fiee ammonium carbonate as required. The voltage necessary to work any solution and give best results must be found by experience always bearing in mind that iron solutions yield their metal in best condition at a low voltage. Iron solutions are also liable to change from atmospheric influences, the iron in solntion being oxidised by contact with light and air. To minimise this trouble, keep the solutions covered. If a moderately thick coat of iron is desired the electrotype must be taken out overy four or five minutes, and the face scrubbed in clean water, then replaced in the bath. When the coat is thick enolngh it should be well washed in hot water and rapidly dried, then oiled and brushed over with benzine. If not used at once it must be protected from rust by coating with a film of wax. The above process is applicable to metal articles other than electrotypes.

A Simple Boot-rack.-To make an easily conetructed boot-rack, procure a piece of any kind of well-seasoned wood, rough or planed, 1 in . to $1 \frac{1}{4} \mathrm{in}$, thiek and of any hreadth fiom 5 in. upwards, the length varging with the number of pairs of boots to be held. Make a pencil line or gauge mark $\frac{t}{5}$ in. from the upper edge of the outside face of the board. The bottom edge can he beaded or chamfered. Next procure a strip of sheet-copper, brass, or tin of the r^{r} zquired length and 1 in. broad, having the upper edge slightly roughened or milled with a small three-cornerea file. Punch holes about 2 in, apart and $\frac{3}{3 /}$ in. or $\frac{8}{4}$ in. from

preparation capable of absorbing light. A good antihal. tion mixture is composed or caramel l part, burnt sienua 2 parts, gum I part, and alcohol 2 parts. This preparation is applied to the back of the plate with a brush. The plate may be conveniently held in a trame similar to that shown in Fig. 2, Cover the table with a sheet of clean blotting paper, and on this place the sheet of clean blotting paper, and on thich should be provided with carriers so that it may be used for any size of plate. Lay the plate, film side downwards, in the opening and rapidly brush over the back with the hacking mixture. The backing, if properly prepared, dries rapidly. The backed plates should not be placed in the slides until the backing is thoroughly dry, otherwise dust will afterwards be found in the slide. Before developing the plate the backing should be rubbed off with a damp sponge. Most brands of plates may now be obtained ready backed. In taking interiors, dark trees against the sky, and, in fact, whenever strong contrasts are shown, backed plates must be used.

Steal-facing Electrotypes.-A film of pure iron of such hardness as to resemble steel (hence the process is named "steel-facing") may be deposited on the face is named "steel-facing") may be deposited on the face as follows. Dissolvellb. of iron sulphate (green vitriol) in $\frac{1}{4}$ gal. of rain water, and add a solution of ammonium carbonate until all the iron has been precipitated. Wash the precipitate by pouring on water and allowing to settle, finally draining off all water possible. Then dissolve the wet precipitate in sulphuric ncid to make a solve the wet precipitate in sutiphuric sold solion, and use this as the depositing solution. As the solution has a tendency to become acid by working it, this must be corrected by using an anode plate of pure iron eight times larger than the electrotype to be faced, and placing a plate of platinum in the solution, attached to the iron anode, when the solution is not at work. Another solution, suitable for large operations, is made as follows. Dissolve 56 lb . of ammonium carbonate in 35 gal. of water. In this place a large anode of charcoal iron, and a small cathode of the same connected with a battery, and dissolve iron into the solution until a test strip of copper is nicely coated with iron in a few

A. Simple Boot-rack.
the lower edge, and sot this edge to the mark on ths board; $\frac{1}{2}$, ot the width of the strip will then project, Fasten it with copper tacks or small brass screws, as shown in the illustration. The rack must be permanently cocured in place, and can he painted, stained, or lelt rough. The boot hangs vertical, the heel catching in rough. The plate.
Colouring Portland Cements.-To make Portland cement red, mix with it mineral red oxide of iron in the proportion of 5 to 10 per cent. by weight. The best plan will be to mix a small quantity by way of experiment and increase or reduce the quantity as may be found desirahle. For a brown colour, cover the cement after it has set with a wash made as follows. cement after it has set with 1 part of sulphate of iron (green copperas) in 3 parts of water; this may be applied with a turk's-head or a flat whitewash brush; the concrete should then bie allowed to dry in the open air. lf, when the work is thoronghly dry, the colour is not dark enough, give a second coat. I' alum he added to the green copperas solution, the cement becomes of a pale yellow och:e solut. while if chrome alum be added to the copperas tint ition, the cement work will become green.
Box Gutters on Roofs.-The box gutter of a roof is parallel from end to end, and bas upright (instead of slopin ${ }^{\prime \prime}$) sides, the latter being formed by the pule plates on which tbe bottom ends of the common rafters rest. A box gutter may be between the pole plate and a parapet wall, or between two roofs sloping to a gutter parapet wall, or between two roors sloping to a gutzer of the gutter are housed into the pole plate for an inside gintter, and one end into the pole plate and the other resting or notched into a wail plate whon the gutter is next to a parapet wall. Such gutters should be not less than 1 ft . wide, so that a person can walk in them without stumbling or treading on the eases of the slates. The fall of the gutter should be ahout 2 in . in 10 ft ., and the drips should be not less than 2 in . deep

Making Cushion for Gig.-The bottom oanvas of a round-cornered cushion for aglg should becut out by the top pattern of the driving-box, sufficient being allowed for turnings, etc. To get the shape of the corner, bend a piece of stiff paper or floorcloth round the edge of the a piece of stifi paper or floorcloth round the edge of the
box from the centre of the seat at the baok to the sham door at the front, marking round both top and bottom edges, and cutting out the material to whatever depth of cushion is required. The side and front also are governed by the size and sail of the seat; the top is cut to the pattern of the bottom canvas, allowance being made for the sail out at back and side, and for the fulness for the pleats and seams. In making up the cushion, seaming cord is qsually worked iuto the seams, the cushion heiug made inside out, a space being left at the back bottom edge for stuffing. To do this, turn the cushion right side out, and fill it with whatever material is used, working it well to the frontand sides to preserve the shape. Then sew up the back and tuft it down equal, and tie the bottom buttons securely with a double slip knot to prevent them becoming loose.
Wheels for Bevelling and Pollshing Glass.-Fig. 1 shows the construction of a wheel used for bevelling and polishing glass: Fig. 2 shows the wooden wheel in its iron frame. The first wheel is of cast-iron, the second wheel is of clear stone, fres from anything that would scratch the glass, and the third wheel is of wood. All the wheels

Fig. :

Fig. 2
Wheels for Bevelling and Polishing Glass.
can be made to fix on the same spindle at A, which is upright: the wheels lift off and on, aud are fastened down ly a collar and a nut. On the iron wheel, which cuts the bevel to the size required, sand is used. The stone wheel is fed with water only, and the wooden wheel, which polishes and finishes the glass, is fed with putty powder. the tray B receives the water and sand which fall from the wheels. 'I he wooden wheel, which must be made of willow, is fitted in sections into an iron frame wheel, moulded to shape; the wood should be about 4 in . thick, and the sections will hold themselves in place.

Cleaning Oily Bottles.-Wash oily bottles in warm soapsuds in which some washing sode has been dissolved. should the oil still cling to the bottlea, shake into them, glons with the soap and water, a little fine shot. After wishing in clean water, rinse the bott.es with a little methylated spirit, pouring it from oue bottle to another; then put them on a sloping rack to drain, mouth downwards.

Black French Polish.-If ornamental articles are to be finished in black and gold, woods may be used that are devoid of figure nr fancy grain, such as canaly wood, light walnut, or mahogany. Other soft woods may be used; but spruce and common deal require a great used; but spruce and common deal require a great and a ridgy appearance. Articles likely to receive much liandling and wear should first be stained; the chemical spains sold at most druggists' or veneer stores are more cleauly in ure than the old-fashioned logwood stain. It will orken suffice to brush the articles with black ink or, better still, with a solution of black aniline dye in methylated spirit. Black polish is generally made by mixing a small quantity of spirlt aniline black dye in white, that is, transparent, polish. The work is bodied up with this, then finished with transparent polish, the proportions for which are white shellac, 6 oz.; methylated spirit, 1 pt .; and aniline black spirit dye, $\ddagger o z$. White shellac is not dissolved easily, and may be replaced wilh white shellac garnst shellac, a dark ruby or liver coloured variety. If skill in polishing is not possessed, use a black varnish made as follows. Garnet fossessed, use a black varnish made as follows Garnet Epirit, l pt.; and black dye, boz. Dissolve the mixture
by gentle heat and frequent agitatlon, strain it through flne muslin before use, and apply with a camel-hair brush. Before gildlng is attempted, the polishing should be complete; if it cau stand a couple of days, so much the better. The portion desired to be gilt should be carefully coated with japanners' gold size. The gold, procurable on transfer paper cut into convenient sizes to prevent waste, may be pressed into posltion when the gold size is tacky-that is, nearly dry, or after the lapse of about half an hour. Gold adhering where not desired may he removed by gently rubbing with a piece of cloth slightly moistened with turpentine. Ae a rule, gilded work is not polished.

Jobbing Bullder's Trestle.-The jobbing builder's trestle here illustrated is useful for odd jobs of repairs to eaves, gutters, windows, and other work. Two treetles, made as shown in Figs. 1 and 2, are placed in position leaning against the wall, and two or three planks are placed across so as to form a scaffolding. The trestles are

FIG $\overline{1}$
made from 16 ft . to 18 ft . in height, and if wanted higher ror any special job the legs are easily lengthened by fishing on extra lengths at the bottom. They are placed with the foot farther away from the wall than the head, so that the weight of the trestles keeps them in place.

Polishing and Frosting Aluminium. -The British Aluminium Co. recommend the following methods of treating aluminium. One method of polishing is to place in a bottle equal parts by weight of olive oil and rum, and shake until an emulsified mass results; this is used as an ordinary polishing paste. A second method is to mix together fine emery powder and tallow until a paste of suitable stiffness for use with a rag mop ie tormed; a final polish of great brilliancy is given by using rouge and turpe on the mop. A thild method is to using rouge and turpe on the mop. A thild methodis to wheel, and finish with rouge ; or to use a rag mop with very funely powdered Vienna chalk. For frosting, the dipping bath is prepared as follows. In an Irun vessel dissolve 1 part of caustic soda in 9 parte of cold water, and add about one-quarter of a part of common salt. This solution is then heated, but must not boll. The article is plunged for from fifteen to twenty seconds in the bath, so as to become nearly black on the eurface the bath, so as to become nearly black on the eurace in cold water, well serubbed with a fibre brush, again dipped and washed, then placed in a slate, aluminium, or earthen ware vessel containing concentrated nitric acid until the metal becomes quite white. Again rinse in cold water, and flaally dry in warm dry sawdust. Metal thus treated takes a very beautiful matt, which keeps for an indefinito period in the air and has a silky appearance, and the frosted aluminlum does not silacken the hands.

Removing Grease Stains from Black Cloth.-To remove grease stains from black cloth, mix together a small quantity of fresh ox-gall and a little carbonate of potash; spread the mixture over the stains and brush with a hard brush, then wash out with clsan water.
Distinguishing Woods.-To distinguish between spiuce (or whitewood) and yellow deal (or Baltic redwond), the difference in colour should be noted. In the redwood, the lines that constitute the flgure are a light tabac colour, or golden brown. If the wood is extra resinous, the lines are translucent. The intervening resinous, the lines are translucent. The intervening are much less distinct, though nearly similar in colour. But the colour is paler, and the lines are never translucent. The intervening layers are quite white, giving the wood an altogether whiter appearance than in the redwood. If the planks are weathered and discoloured, notice the knots. By reason of a difference in the branching habit of the two trees that furnish these woods, a great variation is noticeable in the dispositions of the knots as they appear in the planks. In the whitewood tree (the sprucs fir) the branches ars small, and strike out from the trunk approximately at right angles. This ceuses the knots in whitewood to appear as perfectly circular areas or else of an elliptical shaps, the long way or major axis of the allipse being at right angles to the grain of the wood (see A, B, C, Fig. 1). When freshly
impregnated with the wax; then iron the print flat between blotting-paper. The most satisfactory method, however, wheu a carbon enlargement is to be made (and the msthod employed by all professional workers), is as follows. From the small negative a carbon print is first made on special transparsncy tissue squeegeed down to a sheet of glass coated with insoluble gelatine and developed as usual. The glass is prepared by coating it with a 10 -per-cent. solution of gelatine, immersing in a 3-per-cent. solution of bichromate of potash, and exposing to the light. The carbon process gives excellent trausparencies capable of rendering the finest detail. Instead of using bromide paper, the transparency is enlarged in the usual way (except that the glass side of the transparency must face the enlarging surface) on to a wet collodion plate made as under. Prooure 10 oz . iodised collodion, 2 oz . nitrate of silver, 1 oz . ferrous sulphate, 2 oz . acetic acid, and 4 oz . alcohol. A new glass plate of the required size must be cleaned thoroughly by rubbing with alcohol, and then coated with collodion as in Farnishing a negative. Directly the collodion has set, the plate may be lowered into the silver bath, which should consist of 35 gT . of silver nitrate to sach 1 oz . of distilled water. If the dish containing the bath is flat and level, 25 oz . of solution can be made to suffice for a $20-\mathrm{in}$. by 15-in. plate. After exposure (care being taken to guard the wet film from dust and to keep the drained corner at the lower lever

Fig. I

planed, the knots ars a piuk fawn in colour. They are irregularly distributed through the wood. In the redwood tree (the Scotch fir), the branches shoot upwards more, and the knots are consequently inclined in the wood. Figs. I and 2 show the comparative difference. They ars, besides, more regularly disposed, and are mostly found in groups together, at distances of 1 ft . to 2 ft . apart, as shown at D, E, F (Fig. 2). This feature is prominent in the poorer grades of this wood. The knots are amber or deep brown. Archangel whitewood is obtained from the same kind of tree as Baltic whitewood. Thers sire therefore no structural or other differences between these two, except that of quality (and sizs), due to better selection, soil influences, and, perhaps, climatic conditions. The only guide in this case is an acquaintancs with the market forms, shipping marks, and brands, etc., that apply to each. Yellow pine is an American wood, usually bandled in larger and shorter* planks than each of the preceding. The wood is a light straw colour, and much finer in the grain than sither white or yellow deal. The "red" line in this wood is scarcely perceptible. The knots are few but large, and often loose and black. An expert will distinguish thess woods by their odour; sometimes the grain of a piece is so false that there is (except under the microscope) no other ready means of identifying it. Help will be afforded by noting the difference in weight. White deal weighs about 30 lb . a cubicfoot, yellow deal about 33 lb ., and yellow pine about 281 b .

Photographic Enlargement on Carbon Paper,Enlarged negatives may be made on bromide paper by giving a very full exposure and developing a deep mage. After drying, wax the back of the print well and heat it over a stove until the print is thoroughly
throughout), the atill wet plate is flowed over with the
developer until the image is well out, when the plate is developer until the image is well out, when the plate is consists of ferrous sulphate 40 gr ., acetic acid 20 minims to each ounce of distilled water, with sufficient alcohol to make it flow easily. Considerable practice is necessary before plates of this size can be worked successinilly. The development of a $20-\mathrm{in}$. by $15-\mathrm{in}$. plate is best carried out in a dish, instead of holding the plate in the hand as in small work. Porcelain dishes larger than the largest in small work. Porcelain dishes to be used must be provided, and the one containing the silver bath must be retained for that especial purpose. Collodion film, unlike gelatine, is extremely tender, and will not bear touching; even a strong flow of water is sufficient to disturb it. It is advisable, though not absolutely necessary, before collodionising, to coat the plate with a filtered mixture of the white of one egg, 4 drops of ammonia, and 1 qt . of water.

Staining Baskets.-Several kinds of stains and varnishes are used for baskets. Most stains are applied after the baskets are made. Brown japan thinned with turpentine will give a mahogany colour. See that the baskets are thoroughly dry, then give a coat of the baskets applied with a brush. When dry, give a second, but somewhat thicker, cont. Another'method of producing a mahogany colonr is to give the baskets a c jat of gum thus dissolved in water. When dry, brush over some bichromate of potash dissolved in hot water. Finally, give a coat of shellac varnish. Still another method is to boil some logwood chips, or extract, in water, then carefully add some sulphuric acid; this can water, then caretuly add some su on the baskets. When be either poured over or brushed on the baskets. When vernish as before.

Re-blackening Bent-wood Furniture.-In renovatang bent-wood furniture, flret remove grease, etc., by scrubbing with strong soda water. When dry, smooth down with No. 0 glasspaper, then apply with a camelhair brush several coats of combined black stain and varnish (see p. 195) or of black enamel having a spirit varnish basis. Allow at least an hour to elapse between the application of successive coats.
Construction of a Plle-driving Englne.-The accompanying illustrations show a pile-driving engine suitable for driving piles 14 ft . by 6 in, by 2 ill ,, with a 1 am of about li $\frac{1}{2}$ cwt., to be raised by manual power. The base frame shown in Fig. 3 is composed of four $6-\mathrm{in}$. by $4 \mathrm{a}-\mathrm{in}$. red deal sills, stub-mortised and tenoned together, and secured by two i -in. bolts that can be made to do duty for axles for the wheels, if wheels are used. The two guides for the ram are $4 \frac{1}{2}$ in. by $4 \frac{1}{2} i u$., and are tenoned

and pinned into the head and sill frames; the girders are kept parallel by a din. bolt just below the head. The front jaking braces B are of $4 \frac{2}{2}-\mathrm{in}$. by $4 \frac{1}{2}$-in. stuff, and are bridle-notched to the guides, aud secured with $\frac{1}{2}$-in. coach screws. The back braces D (4in. by 4 in.) are tenoned and pinned into an intermediate sill, framed between the main sills about $4 \mathrm{f}^{\prime}$. back, and when a platform is used an additional joist is framed in as shown to stiffen the floor (this floor is omitted in the illustration). The head frame is constructed as shown in Fig. 4 ; a 4-in. by 3-in. rail is framed in at the rear end, and collars are welded on the bolt E to keep the distance parallel. The gin or pulley runs in a casting bolted to the top of the frame. The ram, if made of greenheart of the given dimensions, will welgh $1 \frac{1}{2}$ cwt.; but if made of Tarrah another 9 in . in length will be required; the lower end of the ram is bound with a wrought-iron flange lin. by $\frac{1}{3}$ in. The trip, or monkey hook, shown in the illustration is one of the best of itt kind: several $\frac{1}{2}$-in. holes are bored in the guides before framing them in, and a which it is desired to drop the ram. As coon as the arm of the monkey reaches the bar, it is tripped out of the eye of the ram, which immediately falls; the counterweight on the front of the hock tilts it down again ready for entering the eye when it is lowered. ris a slider attached to the ram to prevent it jumping ais a slider attached to the ram to prevent it jumping
done with the englne $i t$ will be advisable to bolt $\frac{3}{8}-\mathrm{in}$. by $1 \frac{1}{2}-i n$. iron bars on the face of the guides to prevent wear. Figs. 1, 2, 3 are jeproduced to scale of 11 in. to $L 4 t$. Fig. 4 is to a scale of 2 in , to 1 ft . Another design ior a pile-driver is given on p. 165.

Bending Small Tuber.-To bend a number of pieces of, say, ${ }^{\text {-in. brass tube as A (Fig. 1), cut a piece of }}$ hardwood as oak or beech, 1 in. thick, to the curve required, and in it drill a small hole B. In this hole one end of the tube is inserted; the tube is then bent round the block. Before this, however, one end of the tube should be stopped, or it may be pinched in the vice. It should then be filled either with inelted resin and pitch or lead, the latter belng the better, as the tubs is less likely to buckle. Several lengths of tube may be bound together with wire aud annealed at the blowpipe or forge. The seam of the tube must be inside the bend. A bender which has a movable block E is shown in Fig. 2. The base F may be l-in. or $\frac{1}{2}-i n$. deal, hut the piece c ehould be of $\frac{3}{-i n}$. oak,

Bending Small Tubes.

beech, or similar hardwood flrmly screwed to the base. A strip of iron D, liz in. wide by $\frac{1}{3} \mathrm{in}$. thick, is screwed, and a hole drilled in it serves to hold the tube firmly while being bent. The piece E has two E_{B}-in. iron pins tightly driven in and projecting 4 in. as shown, holes being drilled for these in the baseboard. First insert an end of the tube in the iron strip and bend the tube round and nnderneath; then put the block E in place and bend the tube round it as indicated. A piece of wood 6 in. long, 3 in. wide, and 1 in . thick is ecrewed in the centre of the baseboard underneath and is pinchediu the vice; it holds the block firmly while being used, Brass wile may also be bent by the same means, but Brass wire may also be bent by the same means, but the blocks need not then be so strongly made. Brass rings can be made with a parallel iron mandrel; on this with a circular satw, and brazed or otherwise joined.
Preserving Tortolse Shell.-In preserving the shell of a tortoise, flrst it is necessary to remove the carcase from its shell. Cut the skin along the top and bottom of the front and rear parts. Then, with scissors or a of the front and rear parts, and neck as far iuside as possible. With a penknife and a piece of bent wire, remove all the flesh and internal organs; then wash the inside of the shell with a strong solution of carbolic acid or a saturated solution of aium. Now hang it up to dry. The outslde of the shell is given a good appearance by wasbing, and, when dry, either French-polishing or varnishing it, Files, glasspaper, etc., must not be used, or the shell will be syoilt.

Varnish on Door Turning White,-Door varnish which "blooms" or turns white in wet weather, probably was left uncorked for some time, or had been stored in a damp, cold place and become chilled before stored in a damp, cold place If the defective varnish on beiug applied to the door. If the defective varnish on that is, rubbed down to a dull level surface with second grade pumice-stone powder and water, using a pad of horsehair, hair aloth, or canvas. Swill off with plenty of clean water, then in warm dry weather apply a coat of varnish of a different brand from that previously used.

Cupboard for Carpenter's Tools.-The accompany. lug drawing shows a cupboard that will be suitable for holding carpenter's tools. A useful size would be about 2 ft .6 in . wide, 3 ft . high, and llin. deep; but the dimensions may bevsrisd according to requirements and number of tools to be stored. One-inch material will be suitable for the sides, bottom, and top, and also for the stiles and rails of the doors. The panels of the doors should be of $\frac{1}{\mathrm{~h}}$-in. stuff, and the back of $\frac{f}{8}$-in. thick
material that may be used is plasticine, which is an imitation of modelling wax, but is only made in one colour (a greenish grey) ; plasticine is quite as pleasant to handle, and retains its plasticity in the same manner as wax. The ordinary method of constructing a model is as follows. Surround the required surface area with a wooden frame, making the frame rather deeper than the probable thickness of the intended model. The frame will present the appearance of a shallow wooden box, for which a cover eitber of wood or glass, as may appaar most desirable, may be constructed. The bottom of the box must be of a substantial character, and shomld be stiffened with cross-pieces or battens; handles shonld aiso be provided and firmly connected with the bottom or foundation board. The sides of the box may be of $\frac{3}{3} \mathrm{in}$. stuff. In this box the clay is placed and worked roughly to shape, and is they trimmed carefully with spatulas and modelling tools. Grass may be indicated by powdered moss sprinkled. on a coating of glue, aud cinders, etc, by painting the plece with Indian iuk; railinge, bridges. buildings,

boarding, grooved and tongued; matchboarding wil answer ths purpose. The shelves and drawer fronts may be of s-in. stuff, and the sides, back, rnd bottom of the drawers of $\begin{aligned} & \text {-in. stuff ; these are finished sizes. Forms }\end{aligned}$ for racks are shown; these can be fixed where desired. The compartment on tha left is for planes, etc.

Modelling Materlals and Method of Construction. -In making a model of a small tract of country showing on a large scale, the intersection of road and railway modelling clay may be used if the model is to be somewhat rough in its nature, is required for a temporary purpose only, and is to be used within a short distance of the place where it is made. The drawbacks to the use of modelling clay are its want of permanency, the difficulty of moving the finished model, and the absence from it of the natural colours of the objects represented; the advantages are facility of execution and cheapness. If the model is to bs of a more or less permanent charucter, or if it has to be moved about from place to place, the strncture may be built up of wood and plaster-o -Paris; these materials can be painted to indicate the natural colours of the objects represented. If a cuantity of small detail hss to be clearly shown, modelling wax may be recommended. This wax is of a soft and plastic nature, and remains permanently so, thus forming an excellent substitute for wet clay; it must of course, be protected from rough nsage; modelling wax is supplied in various colour's. Another
and structures of that kind can be formed of timber stuck into the clay. When a model is made of plaster-of-Paris the elevated portions of the structure are usually filled with "hollows," which are rough boxes made of $\frac{1}{2}$-in. stuff sprigged together and fastened to the foundation board. On these hollows, which greatly lessen the weight of a model, the plaster is laid with a spatula or small trowel, and is worked as nearly as possible to the form required. Bridges should be fashioned sibla to the form required. Bridges should be inshioned done. Buildings may be cut out of wood and fastened down with wire nails, which should be long enough to reach the foundation board. The railway metals may be made of strips of wood. Plaster-of-Paris mixed with water sets in about nine or ten minutes; if that time is not long enough for shaping the contour of the model, the setting of the plaster may be retarded for a further ten minutes by mixing white of egg with the water (5 per cent. of white of egg to 95 per cent. of water). Errors in construction, however, are easily corrected after the plaster has set. Surplus material is readily removed with a joiner's chisel and a light mallet, and additions may be made by roughening the surface of the plaster, well wetting it, and adding as much fresh plaster as is necessary. The model may then be painted either in oil or in water colours. Railings, signal posts, etc., may be let into holes drilled in the plaster. For trees, those cupplied in a box of children's toys may be employed.

Preserving Lamb's Foot.-To preserve a lamb's foot for the purpose of making a whip stock, the whole of the inside of the foot rust be taken out. The shank bones should be removed without cutting the skin, but a cut above the hoofs at the back will be necessary in order to finish. If this cannot be followed, cut straight down the baok, and remove the bones, but he careful when the hoofs are reached. Knocking the outsides of the hoofs with something hard will Irequently release the bones. Now dress the insides with a solution of 4 parts of burnt alum to 1 part of saltpetre and neatly sew up; then fit in the stock and wrap some string round. When quite dry, remove the string and fix a ferrule. Very often the work is less thoroughly done. The shank bone is merely removed without cutting the skin, and the stock fitted in. The foot is then bent if desired to be curved, and the whole hung up to dry in a draughty place. The tendons and muscles are allowed to dry naturally, but tendons and muscles are antowed to dry naturaly, but eventually, especia

Making a Trotting Sulky. - The accompanying sketch shows a side elevation of a very light sulky suitable for a cob $14 \frac{1}{3}$ hands high. The oval iron stays a are made with a flap at the top end, to which the seat B is fixed; the front stays at the bottom are made of halfround iron, in the form of a bracket, being fixed to a light landing board 0 which extends upwards to take the footboard D. The hind stays at the bottom E may be fixed on top of the shafts, and have an ell flap to go on a bar framed across between the back ond of the shafts. On the front edge of this bar a light iron stay should be fixed, sweeping round to get a fixing on the inside of the shaft, just behind the spring bearing. The seat B is 1 ft . 5 in . wide by 1 ft . 10 in . long, and has light iron rails fixed at the ends as F. The back-rests G should be made of steel, with a loop at the top to take a broad leather strap. The shafts fr may be of hickory or lancewood, 10 ft .9 in . long over all, 2 ln . wide by liv. thick, with a side cant of 4 in. The springs I are of the elbow pattern, with a slight return sweep at the front end,
liable to injure the surface of the ivory balls, which then would have to be re-turned in the lathe. The ivory is removed from the stailu from time to time until the required tint is obtained; times of immersion cannot be stated with exactuess, as some ivorlos take the stain more readily than others. On removal from the stain, well rinse in clean cold water, even though the ball has yet to pass through a bath of a different colour. Always transfer balls from the stain to clean water. When dry, polish the balls by rubbing with a clean soft rag on which have been sprinkled a few drops of oil ; finlsh with a dry clean rag, removing all the oil. Filter or strain all the stains given below before use. The stains may be made as follows. Black: (l) Make a strong solution of silver nitrate. After an immersion of several hours on balls are removed and exposed to a strong light. (2) Boil at handful of logwood chips in 1 p pt . of water until the
 after staining, place the balls for five minutes in a solution of loz. of sulphate of iron in 1 qt. of water. (3) Make a decoction with water and 11 b . of galls and 21 lb , of logwood. The balls require a long immersion in this, and afterwards an immersion of a few hours in acetate of iron. Blue: (l) Make a dilute solution of indigo sulphate containing potash or tartaric acid. (2) Dissolve verdigris and sal-ammoniac in dilute nitric acid; after wards dip in a strong solution of pearlash and water.

Brown : Five minutes in logwood water stain gives warm brown; half an hour, a deep chocolate brown; a teu minutes' immersion, washing, dipping in pearlash solution for one or two seconds, and again washing, a deep red brown; by substituting a minute immersion in an alum solution for the pearlash a deep purple brown is obtained. Green : Saffron or fustic stain, followed by an indigo one; fustic is more permanent than saffiron. Red: (1) Infuse cochineal in liquor ammonia. (2) A solution of nitro-muriate of tin, followed by a hot decoction of 1 oz . of logwood in 1 pt . of water. (3) A decoction of brazil for fifteon minutes, followed by a solution of nitro-muriate of tin, or by a solution of pearlash for a few minutes. (4) Boil a piece of shredded red cloth about 1 ft . square together with 10 gr , of pearlash in $\frac{1}{3}$ pt. of water for fle or six hours. The pearlash may be left out, and afterwards 1 part of sulphuric acid may be added for every 65 parts of stain. An immersion may be added for every 65 parts of stain, an immersionsion of two or three hours a crimson red colour. Yellow; (1) Boil 60 gr . of saffrou for some hours in $\frac{1}{2} \mathrm{pt}$. of water; this is a fugitive stain, (2) A more permanent one is made by boiling 4 oz. of fustio dust and chips in 1 qt. of water. The yellow colour can be given an orange tint by immersing the stained balls in a brazil water stain, and the orange oolour may be deepened to a redder tone by passing the balls through a solution of nitrotone by passin.

Making Cheap Bicarbonate of Soda.-Bicarbonate of soda is made by pas ing carbonle acid over carbonate of soda until the material is saturated. It oan be home-manuíactured as cheaply as it can be bought.

Cleaning Oil Lamp Burnor.-In cleaning an oil lamp nurner all gauze or perforated parts should be well orushed. These parts cannot he thoroughly cleaned by boiling, and it is often impossible to brush them in the ordinary way. In such a case a pointed piece of wood. with the end broken and made like a brush, could be nsed, though this process is rather tedions. The perforated parts of the burner may look clean, but if not forated parefully done there may be left a matting of fine hair or fibre material, which will prevent the air passing through freely. If insufficient air passes through, combustion becomes imperfect; the burner also becomes dangerously hot. Dirty burners cause lamps to smoke.

Grocer's Hoist.-Figs. 1 and 2 show a side and end elevation, respectively, of a goods hoist suitable for a elevation, respectively, or a good is an endless band of any desired length, and works a 3-ft. flywheel with a V-lim that actuates the winding drum, the ratio being 1 to 7 , so that a man can easily raise 6 cwt. A selfsustaining hoist should be used; this will suspend the load at any point, and allows one man to do both the

Grocer's Hoist.
bauling and the landing. The cat-bead projects ahout 2 ft . from the wall, and should rest on a mood or iron template about. 2 ft . 6 in . long, to distribute the pressure. The inner end may be brought in any convenient distance for mounting the hearings of the łoist, and should be framed into a post by mortise-and-tenon joint. If a beam in the root is convenient, a stud may be fixed near the end as shown, or the cathead may be secured to the post by an iron strap holted to the sides. The post should be notched and bolted to the side of a floor joist. A similar beam and post of lighter scantling is required to carry the bearings of the opposite end of the hoist, as shown in Fig. 2. The outer end of this beam may rest in a chase about $2 \frac{1}{2}$ in. deep cut in the wall.

Blocking Ont on Glass Positive.-In blocking out some figures trom a glass with oil or water colour, ins positive should be mounted with its glass side outwards, otherpise the image would be leversed. If the positive is so mounted, there will be no danger in painting over it with oil or water colour. The tigure may, of course, be painted ont on the film side of the positive; but in such a case, care must be taken in cleaning off, as a collodion film is exceedingly tender, and a good plan would be to soak the positive in turps, and then stroke the paint gently with a tuft of cotton-
wool. Another plan for getting rid of a figure is to cnt for it a mask in tissue or tracing paper; or the blocking out may be done on a glass cover placed over the positive. In each of these methods the work is out of focus, and a hard, sharp blocking-out line around the figure is avoided; but if the outline is very intricate, and the tone of the background differs considerably from that of the figure, the painting-out method is best. Figures are sometimes blocked out with a No. 1 retouchlug pencil after rubbing over the glass with retouching medium in the usual way. Fancy backgrounds, etc., then can be introduced.
A Small Blowing-fan for a Forge.-For a blowingfan to be used with a small forge the base may be of $\frac{1}{b}$-in. deal to the shape and dimensions shown by Fig. 1. The two deal sides (Fig. 2) form a gradually increasing spacs for the air inside the fan. The vanes at A almost touch the tin covering, but from that point the space gradually increases until B is reached, where it is 4 in. Wide. Screw the sides to the base at its narrowest part with a distance of $3 \frac{1}{2}$ in. hetween them. Each side has two clicular holes 4 in. to 5 in . in diameter; across these, pieces of sheet-iron 7 in . by $\frac{3}{4}$ in. are screwed, each iron having a hole in the centre to take a bushing of brass tube in which the spindle runs. A disc of wood 2 in, in diameter bas a central hole bored to fit the spindle, and four $\frac{1}{2}$-in. boles are drilled at equal distances on the periphery of the disc. Four pieces of wood,

FIG. 1

Fig. 2

A Small Blowing-fan for a Forge.

$\frac{3}{2}$ in. square and about 4 in . long, are tapered on the euds to fit these holes; each carries a vane of stout tin about $3 \frac{1}{2}$ in. square. The fan can now be mounted on the spindle, the vanes being trimmed to fit as close as possible to the sides of the case without touching. To prevent side-shake,solder two brass collars on the spindle. Enclose the fan by tacking a sheet of tin $4 \frac{1}{2} i \mu$. wide completely round the case from 0 to B (Fig. 2), and make a
 tin nozzle tapering to about lsin. gquare and attach it to mount an iron pulley about 15 in. in diameter; by this a belt drives a pulley lin. in diameter placed on the end of the fan spindle. The fan should now be painted and finished.

Polishing Granite. - Granite is polished in mauy different ways the method employed depending upou the nature and quality of the granite, the varieties of which are very numerous. The following method is the one generally adopted. The surface left by the axe presents a succession of ridges and furrows; these ridges must be rubbed down with iron rubhers and sharp coarst and and water. When all the tool marks are removed, and an face bas been produced, the rubbing is con and an even race timued with emery powder of varying degrees of fineness, the same iron ruhbers being used, Lastly, the stone is rubbed with a woollen or linen boss on which fine flour emery is sprinkled and moistened with water, the final polish being given with putty powder (oxide of tin) and polish block. A good polish, which can be obtained only by persistent rubbing, will keep its lustre undimmed for half a century at least. For the sake of speed and cheapness, hydrochloric acid (spirits of salts), oxalic acid, sud imilar acids are sometimes used for polishing; but the polish soon disappears, and the.face of the granite is to some extent destroyed.

Making Resin Paste.-Resin must bo dissolved be. fore it can be added to flour pasta. Dissolve llb. of wathing soda in 1 gal. of water, then add 21 b . of resin in powder and boil until the latter ls dissolved. This solution may be used in place of part of the water required for making the pasta. Should this not be satisfactory, dissolve the resin in turpentine and stir it into the warm paste.

Construction of a Goods Lelf.-The accompanying illustrations are intended to explain the constjuction of a goods lift, to be worked by hand, and fitted with balance weights. The extreme dimensions of the lift are 4 ft . wide, 3 ft . deep, 6 ft . 6 in . high; this is the largest size usually made to work by hand, and it is caphble of carrying safely 10 cwt . If the lift is to be used by passengers, safety catches and another guide should be added. The construction is simple, and consists of a skeleton frame of $2-\mathrm{in}$. by $2-\mathrm{in}$, stuff, filled

a goods lift that is in constant use, it is advisable to make the frame and guides of oak or teak. Fig. l shows a half vertical section and half front elevation; Fig. \boldsymbol{z} a half plan and half horizontal section; Fig. 3, an en. larged section through the top corner of frams; Fig. 4, an onlarged section through the bottom corner of the frams. Fig, 5 shows the joints at the corner of the frame, and Fig. 6 the mathod of tenoning the posts.
Stripping Silver from Copper,-If the copper article is small the silver may be stripped by immersion in hot concentrated sulphuric acid, to which nitrate of potash crystals must be added in small quantities as the work proceeds. The acid must be kept hot in a porcelain or vitrified stoneware vessel. The article to be stripped must be dry and fres from grease, lacquer, or varnish. It must be gently moved whilst in tha acid and closely watched, and must be taken out and rinsed in clean water when the silver has been removed; the acid will then not deeply corrode the copper, which may then be polished in the usual manner. If the articles are too large to be thus treated the silver must be rubbed off in the process of polishing. Silver may be stripped from other metals by electrolytic action in a bath of potassium cyanide, with the articls connected to the positive pole of a battery or dynamo, and a small silver plate connected to the negative pole. The artiole must be removed as soon as all the silver is dissolved.

Garden Wicket Gates.-Garden wicket gates are made in many kinds of timber, but chiefly in oak and pine; this must be dry and well-seasoned, or the gates will soon warp and wedge. A good width is 3 ft .6 in. A piecs 9 ft . long by 3 in . by 2 in . is sawn in two for the sides, marked C in the illustration. The palings D are $\frac{1}{2}$ in. by

Garden Wicket Gate.

Construction of a Goods Lift.
lin with panels of $\frac{5}{5}-\mathrm{in}$. matchlining. The top and under frames are dovetailed together at the corners as shown in Fig. 5, the pins being on the front and back rails in order to prevent the cage spreading in this direction; order to prevent the cage spreading in this direction; tion. The corner studs are stab-tenoned and tableliannched into the frames, and kept in position by four b_{b}-in. prought-iron bolts B running from top to bottom of the cage. The matchlining is fitted into $\frac{\text { I in. grooves }}{}$ in the frame, on three sides and the top; the floor is formed of lin. boards, nailed on the under frame, and running in a direction transverse to the top; a rall $4 \frac{1}{2} \mathrm{in}$. by 1 in. runs across the back to strengthen the matchlining. The cage is hung to a wrought-iron rail Ein. by 3 in., spread at the ends, and drilled to receive a bolt that ruus through to the bottom, whers it beds on an Iron plate 0 (Figs. 2 and 4). The end of this rail may be forked over the guide post G, Fig. 1, to form a runner. F F are the balance frams guides. \mathbb{F} is the frame, which is flled in with cast-iron weights. H H are pieces of liz-in. by $\frac{3}{4}-\mathrm{in}$. oak, fixed to the side of the cage to form runners; or if preferred, iron bracket pieces, as at K , may be used. T T show the trimmer joists around the openings. These cages are usually made of good sound yellow deal, palnted or stalned, and varnlshed; but for

3 in., nailed to cross bars I; both the long bars B are mortised into the sides C, and ars glued and painted in putting together. The posts A are of oak, 5 in. square, the ends E being left rough as shown. Before being put in the ground they are given two coats of red lead, All the woodwork is given two coats of red lead and painted afterwards.

Deoxidising Tin.-To deoxidise tin, stir into it whlle in the molten condition plenty of sal-ammoniae or resin, and continue adding either of these substances untll the tin appears in its usual state; then siklm the dross from the surface, and cast the metal in sticks or ingots of the required size.
Forming Grooves in Cement Floor. - A grooved cement floor, say, for a stable, is lald in sections, and cemen in the wet cement the rounded portion between the in the wet cemont, grooves belng obtalned by cutting of wes at the edges before withdrawing the laths, the arrises at the edges of the grooves. After the cutting is done and the laths are withdrawn, the concrete is carefully smoothed with properly shaped moulds. For the proper performance of the work conslderable dexterity and skill are required, as the whole operation mint be completed befors the cement has begun to set.

Beam Compasses.-A beam compass is used for the purpose of drawing circles or arcs of longer radius than can be taken iu hy the ordinary bow compass. A beam compass usually consists of a fiat wooden A fitted with two movable trammel heads buch as are illustrated by Fig. 1. As is shown in the illustrations, these trammel heads carry interchangeable pen and pencil points, and dividers or needle points, and are secured to the beam by large clamping screws The beam Itself is usually a flat lath of hard wood, and when this lath is very long considerable inaccuracy may be caused by its deflection sideways. To prevent such deflection, the beam should be made of T section In using the beam 'compass, the heads are adjusted approximately to the requircd distance, and are clamped in that position by the screws mentioned above; the exaor distance is then adjusted by means of the fine adjusting screw-lettered a in the illustration. Fig. hows a beam compass, with a graduated beam, as used in the Ordnance Survey Department. To the fine adjustment is fitted a vernier scale, by which it is claimed that the distance between the heads can be regulated to the hundredth part of an inch. In Fig. 3 is shown a telescopic beam compass having several tubular parts gliding one within the other, and clamping screws to fix them at the desired position. A very neat and useful beam compass is that shown in Fig. 4, in which the beam is about $\frac{3}{8}$ in. square. One of the hads is clamped to the
filters should consist of a coarse filter and one or (preferably) two fine filters. A site should be chosen that will allow of the efflucnts being discharged from the bottom of the first filter on to the top of the second, and from the hottom of the second filter on to the top of the third. The materials generally used for filliug the tanks are-for the coarse filters on to which the sewage is first diecharged, coke or clinkers of, say, 2 -in. gauge ; and for the fine filters, coke-breeze or screened cinders, of not larger gauge than $\frac{3}{2 n}$. and not finer than $\frac{8}{4} i n$. Coal slack, burnt clay ballast, and other materials have been used with success for the body of the filter. It must not be forgotten that the tanks, when supplied with filtering material, will only hold ahont 40 per cent. of their original capacity. The raw sewage, before it is turned on to the filters, should be passed through a screen of some kind, otherwise rags, corks, cotton-waste, and other matters that are not properly sewage, and therefore not amenable to treatment, will be deposited on, and clog ap, the surface of the filters. It is a great advantage to have a large tank, of a capacity sufficient to hold, say, half a day's sewage, in which a preliminary sedimentation and putrefaction may take place; the effluent from such a tank is in a much better condition for filter treatment than fresh sewage. It is a usual though not an invariable practice to lay at the bottom of the filter-beds a central line of drain-pipes with open joints, and radiating lines of smaller pipes, also

beam, and serves to carry the pencil point, at the other end of which is the pen. The other head is held in position by the pressure of a strong spring, which presses a fiuted roller against the top of the beam. A milled head at the side enables the draughtsman to rotate the fluted roller and so traverse the head along the beam to the desired position. A makeshift beam compass may be made out of a blind lath and two good-sized corks, such as are used in pickle bottles. Holes are burnt and cut for the reception of the lath and drawing pen as shown in Fig. 5, and also for the pricker or needle stuck into a penholder. The cork takes a good grip of the lath, and the instrument is quite steady and pleasant to work with.

Bacterlal Treatment of Sewage.-No hard-and-fast rules can be laid down for the conetruction of hac terial filters, this method of treating sewage being of comparatively recent date. Any bind of tank that will hold water may be used. In some towns shallow pits with eloping sides have been excavated in the earth, the bottom and sides of the pits being lined with clay puddle. But such an arrangement can only he considered as a temporary makeshift; for permanent work the tanks are generally lined with concrete or blue bricks. Many bacterial filters have been made by utilising existing precipitating tanks at sewage treat ment works. Experience tends to show that the depth ment works. Experience tends to show that the depth filters should be so proportioned to the amount of sewage to be treated that not more than 200 gal. or 250 gal . per square yard of filter are dealt with; and atleast three sets of filters should be available, in order that each filter may be worked in an eight-hour cyclethat is to say, approximately, three hours for filling, two hours for standing quiescent while the bacteria are doing their work, one hour for drawing off the sffluent, and two hours standing empty for airation. Each set of
open-jointed, arranged herringbone fashion. Various contrivances are used for keeping the bottoms of the filters as open and accessible to air as possible. One device is to have the bottoms lined with two courses of bricks, the lower courses having open spaces of about 2 in. around each brick, and the upper courss being close-jointed to keep the filtering material from being washed out. Unless a free supply of air can be made to circulate through the whole body of the filter after each emptying, there is not a chance of success.
Whitening Stone Stairs.-For whitening Portland or Painswick stone, pipeclay should answer well, but should be sparingly used-that is, just a smear ruhbed on evenly with a wet rag. Or a piece of soft Bath stone (Corsham or Farleigh Down for preference) might be used; it should be ruhbed on with a little water and finished with a wet rag. Ordinary hearth stone (Godstone), sold and used for the special purpose of whiteuing stone, might be tried. Either of the substances mentioned above ought to answer the purpose. The mistake that is generally made is to put on too much of the whitening material, hence it fiakes off in places and has generally a rough appearance whereas if a little of it were carefully and thoroughly rubbed into the stone the result would be satisfactory.
Making Caulked Joints.-The method of making a caulked joint in a cast hot-water pipe is first to caulk the space about one-third full of hemp, then put about half an inch of putty, theu a ring of hemp, then anothel ring of putty, and so on until full, finishing off with the putty. It must theu be allowed sufficient time to harden before letting the water in, or the swelling of the first hemp will squeeze the lead back. Ordinary putty should not he mixed with white and red lead; the two latter ingredients only are used. Badly made snd leaky joints cannot be remedied; they must be picked out and re-made as described above.

Making a Hand Camexa.-In constructing a hand camera, first lix up a suitable lens of about 5 -in. focus in a box, ascertain exterty the principal focus, and see, also, whethar the lens covere a $\frac{1}{2}$-plate satisfactorily; that is to say, with a stop baving a diameter equal to one-eighth the focus (or about $\frac{1}{1}$ in.) the lens should give a sharp image right to the extreme corners of the plate. The principal focus, plus the distance from the stop B (Fig. 1) to the edge of the hood C, and the width of the slide D , $\frac{1}{4} \mathrm{in}$. for springs, together with an allowance of 1 in . focal adjustment, should constitute the inside length of the camera. Haviug constructed the framowork, fix the lens board F at the required distance, which is found by focussing a very distant object on a piece of ground glass placed exactly 4 in. from the Dack. Next fit a l'rame at H, and remove a portion of the top of the framework at M (see Fig. 2) to allow of the insertion of the slide. Oonstruct the frame L (Fig. 3) with springs N to force the frame in to accurate register and fit the door I, throngh which the image may be focussed on a celluloid focuseing screen. This screen consists of a light frame to carry a sbeet of celluloid the screen sinking into a lebate gauged to match that of the slide. The front door is next fitted, and carries two finders, a pattern for which appears in Fig. 4. The lenses are let into the front hy sinking a bole of the
to be bronght ont through the side of the camera, and fitted with a pointer, against which a scale of distances may be fixed. A covered nut may be let into the side and one intc the bottom of the camera, so that a stand may be used when required. A time and instantaneous shutter is shown at X (Fig. 1); the principle of such a shutter is explained on p. 157 . The dark slides as made above are so light that several of them, each holding two plates, may be carried in the pockete.

Electro-plating Lead wich Copper.-To plate ehest lead with a thin film of copper first prepare the following solution. Dissolve 1 lh . of copper sulphate in tal. of rainwater, then stir in enough liquor ammonia to throw down the copper in the form of a green precipitate, and dissolve this to make a blue liquid. Dilute this with an equal bulk of rain-water, then add sufficient potassium cyanide to destroy the blue tint and produce the colour of old ale. Filter the whole through calico and expose to the action of air for twenty-four hours, when it should. be ready for use. Work it cold or hot with a etrong current at a pressure of from 6 to 8 volte, using an anode plate of pure copper. The lead plates must be scoured clean with sand and water, then briskly rinsed in a solution of pearlash (1 ib . to the gallon), and transferred from this direct to the copper-plating solution without

Making a Hand Camera.

handling or previous rinsing in water. tf the first deposit is coarse and loose, remove the plates and well brush them in water with a hard fibre brush, again rinse in the potash or pearlash solution, and return to the copper-plating bath, using a reduced anode surface, or copper-plating bath, using a reduced anode surrace, or keep the plates moviug whilst being plated. In this way a bright facing of copper may be obtained, which must Electro-deposited copper rapidly tarnishes in air wheu damp.
Repairing Marble Clock-cases.-When the corners of a marble clock-case are broken off, the disfigurement may often be remedied by reducing the case, after which the polish may be restored. The procedure is as follows. File off from the damaged part as much as may be necessary, taking care, however, not to alter the original shape of the case. Then grind off the marks of the file with a suitable piece of pumice-stons with water, and then with a water-stone, giving special attention to the colners and contours. Moisten a hard ball of linen and sprinkle over it either tripoli r fine emery, and with this rub up a lustre; then rub ith a linen ball using with it finely washed emery ith a ard rouge; when dry, finish the polisking with a max are be of beaswax and oil of turpentine. This method may of used for all sorts of marble. When the piece broken of above plan to be adopted couveniently, the damaged parts may be made no with \& cement prepared by nixing finely powdered marble with a little water glass. This is applied in the form of a thick paste, and, when dry, oas ps shape corrected by fling a polish being obtained ts shape conded above Parts broken off a coloured as recommended above. Par in place arain by wetting marble case may be cemented in place again ay potash, the pieces with an aqueous solution of silleate of potash, putting them into position, and allowing forty-eight hours for the cemeut to dry. For whits marble, egg albumen with a little Vienna lime forme the cement.
Waterproofing Small Shed.-As a waterproof coating a small shed tar, perhaps, is the most suitable. Paint or varuish may be used, but they are not so purnble tar and much more expensive. A paint that durable as tar, and may be suitable can be made by melting togetcer the parts of pitch and resin and, after removing from the fire, thinning with petroleum ether or paraffiu oil. This paint is applied with a brush.

Photographic Studio Blinds.-The method of fixing and the manner of controlling the blinds in the roof of a photographic studio depend upon the position of the studio and on the quality of the light. The blinds should be of two kinds; those next the glass should bs of thin calico, the outer ones of green sateen or glazed lining. spring rollers, provided they are properly fixed and used, give the most satisfactory method of control. Used, give the most satisfactory method of contricl. and the blinds are testooned between them, but such an arrangement is rery objectionable; the blinds collect dust, cannot easily bs shifted, and look very untidy. A good and cheap method is to fix the blind on a roller with a pulley and cord at one end, and a cord from the centre of the bottom, Pulling down the blind winds up the cord, and pulling down the cord winds up the blind.
Reservoir for Parafin Blowpipe.-There are two ways in which oil can be supplied from a reservoir to the burner of a paraffin blowpipe in sufficient quantity to keep up a stoady fiame. Ons method is 6hown by Fig. 1, the other by Fig. 2. In the latter method it would be necessary to maks the reservoir rather strong, as it would have to stand a slight pressure. A little oil must first bs run into the outer tube and burnt; this will warm the top of the reservoir and.force the oil up the tube and through the small jet. The oil will vaporise in the hot tube and burn there, while a littlo escaping through the small holes in the inner tube into the outer tube will also burn there, thus tending to keep the pressure up. In

Reservoir for Paraffin Blowpipe.
the method shown by Fig. 1 the flow of oil is regulated by a tap; the oil fiows through the holes in the inver tube (the top of the inner tube being closed) into the outer tube, where it burns.

Cutting Letters on Polishod Granite,-Letter cutting on polished granite headstones is executed in the following manner. Set out the letters on tracing-paper (care ing manner. Set out the letters on tracing-paper (care the paper on the stone, keeping the letters in line with a straightedge. When the paste is dry, nick in all the letters with a sharp chisel and remove the paper, if necessary; it is, however, sometimes advantageous to keep the paper on till the work is finished, ss the paper saves the surface polish from being scratched. Another Wey is to cut a slice off a raw potato, make a few cuts on the flat side of the slice, and rub it on the polished surface of the stone; the potato juice dries quickly, furnishes a medium that can be pencilled on, and is easily rubbed off with a piece of damp paper. White of egg, or a very thin smear or coating of size and whiting, can be used for the same purpose. The letters are cut with small cup-headed chisels of various sizes, termed aplitters; they are similar to the tools employed for cutting marble, and are used with an iron hammer. The beet chisels for this class of work are made from old finely cut gulleting saw files, which are manufactured from the very best steel; these old files may be bought at a very cheap rate per hundredweight, and are easily made up by any toolsmith. The chisels should be tsmpered to s dark straw colour, and kept pertectly sharp; a better edge will be preserved if, after every iew blows of the hammer, the chisels are dipped into turpentine; turpentine should also berubbed on the whetstone. The edge of each letter should be fept perfectly clean and correct-in outline, and the internal mitre or depth should form a light angle; the letters need not be cleaned out or finished at the bottom if they are to be leaded. For the lead or imperishable
filling, cut holes in an oblique direction on the sloping side of the letters, one hole at each end and two in the centre of each member (or more, it thought desirable); use a small drill, and cut the holes sutticiently deep to key in the lead. The lead for filling in should be new sheet, as it is softer than old lead melted up; it should also be a little thicker than the depth of the letter, and should be cut into strips or cut out ronghly to the shape of the lotter. Lay the lead on the cut letter, and beat in with a boxwood mallet untilevery portion of the letter is filled and the lead well fastened, then cut off the superfluous lead with a carpenter's chisel until the outline of the letter is found; beat gently home, and bring the lotters to an even surface by gritting with purnice-stone, finally finishing off with snake stone (water-of-Ayr) and plenty of water, which gives the lettars a dark appearance, When the surface of the stone is polished, a brass drag with fine teeth is sometimes used to remove the superfluous lead; the drag is traversed backwards and torwards, and svoids all scratching of the polish. For gilding the cut letters, apply a couple of coats of gold size, the first coat mixed with a little yellow ochre to give a body and fill up the pores. When the sscond coat gets tacky, English gold poaf is applied with a small badger-hair brush and well worked into the mitres, and then cleaned off. The process of gilding, although apparently simple, requires great care and experience.

Development of Spiral Flute on a Column.-If a piece of paper be cut to the shape of a right-angled triangle and wound round a cylinder, the top edge forms a helix or spiral line, as in the accompanying

Wevelopment of Spiral Flute

on a Column.

illustration. The larger the angle A, the stesper the pitch of the spiral. The simplest method of developing a spiral flute would be to first dress the shaft of the column to a cylindrical surface, then mark off the base of each flute at the lower end, cut a piece of brown paper to triangular shape to give the required pitch, wind it round the column and pencil the outline formed by the top edge. The pitch is found by making the length of the edge. height of the triangle equal to the height the spiral is required to rise in one revolution.

Making Amber Varnish.-In making amber varnish, place 141 b . of rock salt dissolved in spring water and 7lb. of ordinary amber in a crucible over a fire till the amber is perfectly whits. The bleached amber is then heated in an iron pot till entirely dissolved. When cool, the amber is taken out and well washed in spring water to eliminate the salt. It is then placed in the pot again and heated till dissolved, then poured out and spread over a clean marble slab to dry, any humidity that may remain being removed by gentle heat or sunshine. The amber is then powdered and again heated, with frequent otirring, till it is of the desired fiuidity. When cool, purest turpentine in a warm state is added till the composition is of the required warm state is added tilu also readily dissolves in pure chloroform, or in a mixture of spirits of turpentine and alcohol, the whole being heated for several hours in a closed vessel. It also yields to the action of sulphuric acid. The manofacture of amber varnish on a small scale without the aid of special plant is not recommended.

Restoring Polish of White Marble.-In order to impart a high lustre to white marble which has become dim, cover it with a solution of pure beeswax in oil of turpentine, and then rub dry with a linen or cotton cloth. The hard rubbing generally produces a good polish.

Photographio Lenses of Different Angles. - The angle of a lens relers to the amount of subject it includes in the picture, and therefore depends upon the size of the plate it is used to cover. The term is only comparative. If, for example, a wide-angle lens of 8 -in. focus, intended for a $10-\mathrm{in}$. by 8 -in. plate, is used to take a picture on a half-plate, the lens ceases for that specific purpose to be a wide-angle lens. When the focus of a lens is less than the diagonal of the plats for which it is used, the lens is termed a sinort-focus or wide-angle lens. If the focus is considerably greater than the diagonal of the plate, the lens is called a long-focus or narrow. angle leus. In Fig. 1 the courses of rays proceeding from six points and passing through a lens are traced. Those rays issuing from A and A^{\prime} and focussing at Y and Y^{\prime} are assumed to make an angle of 90° with X. So that if these cays were used the lens would be a wide angle. Similarly, if the rays B and B^{\prime} only are included, a ninimum angle of 53° would be obtained, whilst the rays C and C^{\prime} give an angle of 23°. The angle of a lens must, therefore, be angle of 28 . The angle of a lens must, therefore, be measured as shown in Fig. 2. Draw eq line A B equal to pendicular the length of the focus. Connecting the three outside points gives the angle. It happens, however, that if so great an angle as shown between A and A^{\prime} (Fig. 1) is used, curvature of field will prevent the rays being focussed on a flat surface unless the lens is specially constructed for such a purpose. Short-focus lenses must be of small

Photographic Lenses of Different Angles.
diameter. The shortor the focus the sharper the curve, and the sharper the curve the smaller the circle, of which the surface of the lens is a segment. It must even be proportionately smaller, and work with a small stop, to cause the centre of the picture to be formed by the centre of the lens (and vice versâ) and prevent spherical aberration.
Setting Out Gradlent of Watercourse,-Below are given instructions on setting out with an ordinary spirit level a now watercourse. Make a straightedge of wood, say 9 ft . or 10 ft . long, 6 in . hroad, and 1 in . thick (see 4 , Fig. 1), and true up one edge accurately. Some kind of supports will be required to carry the Some kind of supports winl be required to carry the straightedge at a convenient height for sighting
along; for this purpose, a couple of roughly made light trestles (see B, Fig. 1) will do. Cleats nailed on top of each trestle make a slot into which the straightedge may be placed with its true edge upwards. Wedges are placed under one end until the spirit level, when placed in the middle of the length of the straightedge, indicates that it is level, and by looking along its top edge a horizontal line may be sighted with a fair degree of accuracy. Fig, 1 shops the arrangement. The total fall in the full length of the proposed watercourse should be ascertained in the following manner. Set up the levelled straightedge at the top of the course, as at A (Fig. 2), directing it along the intended course. Send a man along as far as can be conveniently seen, say to the point B, and let him hold up a stafr perpendicularly, and in front of it a pioce of white paper, such as an envelope. The man at the level, by signalling, directs the man at the staft to raise or lower the paper until the top of it is exactily in a line with the edge of the straightedge. If
the staff is n oi graduated in feet and inches, a pencil mark may he made and the height of the mark from the ground measured. Supposing the height of the straightedge from ths ground at A (rig. 2) is 3 'tt., and the height sighted on the staff at B is 4 ft . 9 in., there is a fall of 1 ft .9 in . in the surface between these two points. The straightedge is now shifted to B, and a further sight taken towards 0 in the same manner, and so on until the whole course has been traversed. The sum of the whole of the falls, less any rises there may be, will give the total fall available. Suppose the fall to be 2 ft . 3 in. in a total length of 900 ft ; this is equivalent to 1 ft . of fall in 400 ft ., or 1 in . of fall in 400 in ., or 33 ft . 4 in . To set out this gradient on the ground, so as to cut the new watercourse to an even fall, it is advisable to have sight rails put up at distances of 100 yd . or 150 yd . apart. Sight rails are an arrangement of two uprights and a horizontal cross-piece spanning the line of the excavation in the manner shown in Fig. 3, and they are used in conjuuction with a loose staff, called a honing rod Which has a small cross-head at the top. Supposing the depth of the excavation to he, for the most part, about 3 ft ., a convenient length for the honing rod will be 6 ft . so that the sight rails will be approximately 3 ft . above the level of the grouud. The first sight rail will be fixed at the height of the boning rod, i.e. 6 ft , over the starting

Setting Out Gradient of Watercaurse.
polnt of the watercourse. Now, with a gradient of 1 in 400, if the second sight rail be fixed 100 Jd. along the line, it will require to be 9 in , lower than the first one; for 100 yd . equals 300 ft ., and if the fall in 400 ft . is 1 ft ., the fall iu 300 ft . will be9 in. To get the correct height for the second sight rail, fix up the levelled straightedge the second sight rail, ith up the first sight rail, measuring with a rule how much it is below the top edge of the sight rail. Suppose the measurement is l4in. Let the man with the staff mark the height of the horizontal sight line as kefore, and it is evident that the height so marked will be 14 in. below the first sight rail; and as the second sight rail has to be 9 in . lower than the first, theu 5 in. above the point marked on the staff will be the right height at which to fix the rail. When the sight rails have been put in in this way, the boning rod is rails have been put in in the level of the bottom of the cutting, as shown in Fig. 3. If the cutting is at the right depth, the tops of the sight rails and of the boning rod will be all in one line.

Grain Fillers for Tcak and Oals.-The following will be found a useful filler for most kinds of coarse-grained woods. Take 3 parts of fingly crushed dry whiting. 1 part finest prade pumice powder, and tint with browu of finest grade pumice powner, and inix to the consisteney of thick paint with turumher ; inix to the consistency of thick paint wis varied pentine. The pigment used fortinting purposes is varied as required. This filler will do for oak and teak, if not tinted too strongly. As both oak and teak may bs termed hungry woods, the chief thing to aim at is to set the filling instead of swilling it out. Allow the goolis, after flling in, to stand overnight, then start ta dry the with the rubber not too wet, and was
first two or three rubbers of polish.

Cement for Repairing Plastering. -A quick-drying plaster for repairing and patching may be made with Parian cement. It does not need time to dry, and the sooner it ls palnted (if in a painted wall) the better. There are two qualities, the superfine and the coarse.
Cutting a Wooden Ball inside another. - For cutting balls one inside another, sycamore, about 3 in. in diameter, is most suitable. Determine the top and bottom of the ball, and bore there holes $\frac{z}{2}$ in. deep with a fin. Jennlngs' auger-bit. Then bore eight similar equidistant holes around the middle, eight on each side of the middle series, and four around the top and bottom holes, al ways directing the point of the bit towards the centre. Fig. 1 shows how to distribute the holes. With a sharp gimlet, bore from hole to hole in all directions about $\frac{1}{4}$ in. below the surface ; then cut all ways with a fretsaw or keybhole blade (see Fig. 3) until ways with a iretsaw or keyble bade (see Fig. 3) until
the interior ie dieconnected, taking care not to roughen
branches with small leaves attached, traversing the surface at every available blank. Applicstion of colour makes the pattern more conspicuous. A number of variously coloured dots differing in size and shape represents a mottled surface. Hollow balls are obtained by boring holes as for the perforated inner ball, and then removing all the interior with the knife and rimfer. Use sycarnore abont 2 in. in diameter; bore $\frac{6}{8}$ in. holes at the top and bottom, and three series either of four or six holes instead of the series suggested at first.
Re-palnting and Re-varnishing a Mail Cart.-If a. mail cart is to be re-varnished ouly, provided it is in good condition, and is not cracked on the surface, a flatting with purnice powder and water should suffice previoue to the varnish being applied; and if a second coat is given, the first coat should stand two or three days to get hard, and be only lightly flatted down to remove any nibs that there may be on the surface.

the edges of the holes too much. Now cut downwards (ses the thick lines, Fig. 4) from the gimlet boles to the depth of the $\frac{5}{-}$-in, holes with a wood-carving knife having a blade similar to Fig. 5, and remove the splinters, leaving a solid ball enclosed by a thin coveriug. Then trim the inner ball and all the holes in the outer shell with a riffler resembling Fig. 6. To obtain a bollow perforated ball somewhat larger than the solid one, bore holes in the same positions but right through to the centre, so that opposite holes meet; thus the interior of the ball is gradually hollowed. Use the gimlet and saw as before; then carefully work over the surface and interior of the inner perforated ball with the riffler and the kuife passed through the holes. When the two balls are quite independeat. remove the sa, marks from the inside of the outer ball. The different size, and shape of the holes can be varied in different specimens. Fig. 2 illustrates one style of finish, but to avoid complications the inner ball is not shown. Scatter numerous sraall holes (as around the centre) over the ball, giring it the appearance of network. Intermix stars, crescents, etc., and square off some of the holes, or imitate roughly the outline of a leaf. Instead of cutting holes, indent continuous

If the cart has to be painted, Fell glasspaper all over, and give two coats of lead colour, stopping up any holes, etc., between the first and second coats. The ground colour should then be put on, giving two or three coats as required. The first coat should be made to dry fairly sharp, the second coat medium, the third coat being made as a glaze, by adding about half of varnish to some of the colour. This coat will require flatting as previously described, after which the lining outis done and the whole thoroughly washed off and given a full coat of var'nish. To make a good job, pale carriage varnish should be used, as oak varnish turns the colour.

Soldering Jewelled Ring.-In order to prevent the bursting of the jewels of a ring whilst the latter is being soldered, cut a juicy potato into halves and make a hollow in both portions, in which the part of the ring having jewels may fit exactly. Wrap the jewelled portion in soft paper, place it in the hollow, and bind up the closed potato with binding wire. Now solder with easy-flowing gold solder, the potato being held in the hand. Another method is to fill a small crucible with wet sand, bury the jewelled portion in the sand, and solder in the neual way.

Window Board for Flower Pots.-Fig. 1 is a section lhrough a window board for flower pots showing how it 13 fixed wlth brackets and screws to the sash fiame.

$F_{10} 1$

and the end shaped as shown at A; this will improve the appearance. The board should be about 1 in . thick, and may be of any width from 6 in . to 11 in . It should be cut round to fit the brickwork and just overhang the stone sill, as shown at Fig. 2; the bracket pieces should be nailed to the bosid underneath. A strip of moulding nailed round the edge, so as to project as shown, will prevent the flower pots slipping off.
Annealing Malleable Iron Castings.--Malleable iron oastings are produced by heating castings made of white or mottled charcoal iron, smelted from hematite ores. The patterns should be made with a double allowance for contraction, and in the foundry the "gates" should be wide and thin. The thickness of the metal should be unifor' m, and no greater than is necessary. When ready for annealing, the castings should be brushed and packed in iron boxes, each casting balng surrounded by s mixture of fresh hemstite (red iron ore), hematite already used in the annealing process, sud iron scale from the rolling-mills. The box is covered up, placed in an annealing oven, and fired at s bright red hest for from thres to seven days. After withdrawing from the furnace, the boxes are allowed to cool, and the castings are clesnsed from the adhering ore. The castings will now be tough, strong, flexible, and much soiter, gnd may be forged. If the process has not been carried far enough, there will remain a core of unconverted iron. Gast-iron contains a high percentage of carbon, whilst the converting materisl is rich in oxygen. It is generally considered thst the change which takes plsce is due to the oxidation of the carbon contained in the iron. Bends, tees, crosses, stc. for steam-pipe connections, also smsll brackets for brake levers on omnibuses, are often made of malleable cast-iron for the sake of lightness and strength. Sometimes flexibility is sought, as in ornamental castings for umbrells stands, etc., which msy be cast flet, leaves, teudrils, evc., heing afterwards bent and twisted to the desired shape.

Plumber's Glossy Black.-A little brown sugar, or a little stout, added to plumbers soil or smudge will maks it more tenacious, and cause it to dry with a slightly glossy surface. Some plumbers soil their joiuts, after they are made, with black japan or thinned Bruns-

Window Board for Flower Pots.

The board can be kept level with two or three pleces of 14 -in. or 2 -in. wood cut wedge-ghape to the splay of the sill, and the outer end cau be fitted over the sill
wick bleck. But it is dountful whether the effect is so good as when a "dead" black, such as given by ordiuary soil, is used.

Rectilinear and Periscopic Lenses for Photographie Use.-The term periscopic is applied to lenses Intended for spectacles, which are uncorrected for colour or non-achromatic. For nse in a camera they are, of course, much cheaper than the proper achromatic combination, but will never give a sharp image. The reason for this is as follows. When a ray of light is refrected or bent (as happens wheu it passes through a prism; see Fig. 1), this ray is split up into its component parts, that is, into rays of different colour. (It is, of course, well known that the impression produced by a ray of white light is the combination of the sensations produced by ench of the different coloured rays.) The violet rays are bent most, and the red rays are bent least: that is to say, the violet rays cross each other or come to a foous nearest the lens (see Fig. 2), and the red rays cross or come to in fous at a point farthest from the lens, blue and yellow being focussed at dilierent points between the violet and the red. Now. if two prisms are putbase to hase a diagrammatic or crude kind of lens is formed; and if the caurses of two rays r are treced (see Fig. 2), the explanation given above will he intelligigle. Thus the planation given above will rays which crossed at, vill have spread out again sufficiently at the point R, at which the red rays are focussed, to form a halo or confused dise around each point of violet light, and the red rays form a similar halo at V. The principal rays used in ordinary vision are nearer the red end of the spectrum or colour scale, whilst the rays that are most active, chemically, are at the violet end of the scale, hence the terms visual and chemical foci. In using a periscopic lens, therefore, it is necessary after focussing to rack in the
and smaller quantities from other soulces. Unpolluted waters from any of the above named sources will vary in composition according to the nature of the soil or rock on which the water is collected, or over which it flows, or through which it percolates; but the figures given in the following tabular statement may be taken as examples of the average composition of water from the five sources of supply referred to above. The figures are compiled from the sixth report of the Rivers Pollution Commission, 1874, and from other sources.

Parts per $100,000$.

Par'ts per 100,000.					
Total Solids	$9 \cdot 67$	28.20	43.78	16.80	20.21
Organic Carbon	$\cdot 322$. 056	${ }^{\cdot} 061$	$\cdot 048$	-341
Organic Nitrocen	-032	'013	-018	'007	034
Free Ammonia		$\cdot 001$	$\cdot 012$	0	-001
Nitrogen as	-009	-383	-495	'033	-266
Chlorine	I-13	$2 \cdot 49$	$5 \cdot 11$	$2 \cdot 85$	1.9
Hardness	$5 \cdot 4$	18.5	$25^{\prime} 0$	93	14.0

 Oxygen $\quad 33,327 \cdot 81233,316 \cdot 78533,308 \cdot 50833,323 \cdot 65433,321 \cdot 082$
The organic carbon and nitrogen in upland surface water, and in river water of very excellent quality, would not he more than ' 250 and '025 part respectively. Waters highly polluted with sewage contain more than 3 of organic carbon, '03 of organic nitrogen, and 02 of free NH_{3}; nitrogen as nitrates and nitrites may be very low or very high according to the amount of aération the water has received, from none to more than 5 ; chloriue 5 parts per 100,000 . No amount of filtration would reader

Rectilinear and Perlscopic Lenses.
screen usually about one-sixteenth of the focus. Spectacle lenses may be purchased for threepence each, and if used on suitable subjects will yield very satisfactory results. The defects of these lenses are greatly reduced by using a small stop. An achromatic lens consists of two lenses, one of flint (lead) glass and one of crown (soda) glass, cemented together. It is found that although both lenses may disperse the colours equally, yet they have different refractive indices, or bend the rays to a dif ferent extent; In Figs. 1 and 3, although the angles of incidence A and the angles of dispersion A^{\prime} are equal each to each, the angle B is greater than B^{\prime}. If, therefore, the prisms be placed in opposite positions, the dispersion of one prism will he neutralised by the dispersion of the other, hut the ray will proceed as shown in Fig. 4. In all the diagrams, n indicates red rays, and \checkmark violet rays.
Cement Wash.-For a cement wash to go over old cement stucco, plice a few handfuls of cement in a bucket, and add water until the cement is of the conbistency of thin cream. The wash should be mixed in small quantities as required, and shonld be kept constantly stirred while heing used. The old work must be well cleaned down, and rubhed with a stiff wire or bristle brush to remove all dust. If the cleaning down is properly done, the cement wash should adhere withont rubbing off. Try first l sq. yd. of surface, and wait until it is dry. If the wash rubs off, a little size may be mixed with it; but this admixture of size is not to be recommended, and should be avoided if possible.
Composition of water,-In judging the quality of water that is to be used for drinking purposes, it is necessary to take into account the source from which the water is procured, because the surromndings of the gathering ground have great influence upon the composition of the water obtained therefrom. Drinking water is obtained (I) from npland surfaces and collected in reservoirs; (2) from springs; (3) from deep wells (4) from shallow wells; (5) from rivers and streams;
fit for drinking purposes water that is polluted by sewage. In such cases the polluting matter is, to a large extent, held in solution, and cannot therefore be filtered out. A filter deals ouly with matter held in suspension, and possesses no other protective power. Water that is polluted by matters lield in solution can be prisified only by chemical action artificially induced and promoted, or by such natural chemical agencies as are supplied by air and sunlight and friendly bacteria.

Stove for Vapour Bath.-The stove for a vapour bath really consists of a little lamp containiag methylated spirit, with a saucer above, in which is placed about $\frac{1}{2} \mathrm{pt}$. of water (plain or medicated). For a hot-air bath, he saucer of water is omitted. In either case the stove is placed beneath a chair which has a solid seat, not perforated, and the hather sits on the chair. The stove or lamp can be in any simple form. A shallow tin canister with three or four wick tubes through the lid wonld do. The wicks should be of loose cotton wicking, and they can be adjusted with a needle or piece of wire, a pinion wheel for the wicks is not needed.- Metbylated spirit in moderate quantity can be burned without a wick if desired. Make a tin saucer with taper sides, so that the diameter at the top is about $1 \frac{1}{2}$ in. and at the bottom 21 in .; the depth should be about lin. This will prohably hold enough spirit to give one hath. It is, however, safest to have a stove with wicks. The saucer for the water may he as pide as possible, say 6 in., and should be of very thin metal so that the water will boil quickly.

Chlorate of Potassium,-Chlorate of potassium (KClO_{3}) may be made thus. Pass chloriue gas through a warm and fairly strong solution of caustic potasb or carhonate of potash motil the alliali is quite neutralised; boil for a few minutes, and evaporate until a scum forms on the surface, and then set aside to cool. The chlorate crystals which form as the solntion cools are collected washed in cold water and vurified, and again dissolved and crostallised. Chlorate of potassium crystallises in four-sided and six-sided pearly scales.

Imitation Granite Flooring.-A very good imitation of granite flooring may be made by using granite chippings small enongh to pase through inin, mesh, if parts; granite dast to pass through s-in. mesh, 1 parts; and Portland cement, 1 part. This flooring may be laid ly in. thick on a bed 5 in, thick composed of 5 or 6 parts of broken stone to 1 part of cement.

Hipped End of a King-post Truss.-Fig. l shows part plan of trusses, ridge, and hips of a king-post roof, part plan of tiusses, ridge, and hips of a king-post roof, with necessary straps and bolts; also the connection of
becoming rancid or deteriorating in any way. Besides linseed oil, cottonseed and earthnut oil are much used in soft soap manufacture, and for the cheapest and most filled kind - oil sediments full of stearine are often employed. These answer in the aummer, but are apt to. cause trouble by. efforescing in cold weather. Linseed-oil soft soaps ars principally used for house. hold purposes, and are of many varieties. Unflled natural-grain soft soap is the best, and is prepared from two parts of pyle linseed oil and one part of good tallow. If the svaporation is carried on till nearly all the froth has disappeared, the soap will he more durable, and

Fig. 2

Bipped End of a Kıng-post Truss.
king posts and straps and bolts at head and at C. Fig. 3 is part elevation of main truss, showing king post and section of tie heam of half truss. Fig. 4 is an isometric fiew of the lower ends of king posts and portions of tie heam.
The Manufacture of Sof Soap.-According to the Soapmaker and Perfumer, the chief fat used in the manulacture of either smoothed or grained solt soap is linseed oil, and thie, if pure and good, gives a lasting, finetransparent soap, and allows more filling than any other fat, Properly made, linseed-oil soaps stand cold the lest of any, and even if they have become somewhat turbid during exceptionally sharp weather, they recover their appearance as soon as it geta warmer. The seed yields from 26 to 30 per cent, of the oil by pressure, and tho oil will keep a long time without

faster grainiug than if the action is pushed farther, for technical purposes oleine gives better results than lin. seed oil, and produces more soap, weight for weight, but the oleine must not have undergone decomposition. Distilled oleine is often found to have been partially decomposed in the distillation. For some purposes, too, tallow-oleine grain soap is not soluble enough. In washing fleeces, for instance, the hard grain soap oftsu lodges undissolved in the wool, especially ir old soap has been used. This is a waste of soap, and hinders the subsequent dyeing operations. For such use, the soap is best made from oleine alone; or a hard potash soap with plenty of carhonate in it may be used. Good somps for the purpose can aleo be got from mixtures of oleine with its own weight of paln oil, hut if these soape are kept too long in stock they lose in solubility. A good recipe for a natural-grain textile soap is oleine, 5 lb .;
cottonseed oil, 43 llo ; hard fat, 6 lb .; bleached paim oil, 41 lb .; and rav palm oil, 2lb. A few pounds of tallow not containing too much stearine can also be worked in, and the hard fat mentioned can be replaced by hleached palm oll. Good Lagos oil gives a fine round grain. Such soaps can be filled easily to some round grain. in winter best with 15° B. potash, in summer with $13^{\circ} \mathrm{B}$. potassium chloride. It is most summer with ato
important to potassicm chiolide. it is most using 50° B. potash lye, it should, in the colder season of the year, be mixed with a quarter of its weight of 97 to 98 per cent. carbonate of potash in solution, so as to make a 20° B. lye. As with all natural-grain soaps, these solt soaps must be got as nearly neutral as possible. If this and the evaporation are properly seen to, the soap will dissolve easily and the grain will not be too solid The washing power of a soap depends upon its solubility and lathering power. As potash soaps containing resin are the most soluble, the latter substance in creases the cleansing power. Most soft soaps, too, coutain an excess of alkali, especially those filled with men, and this alkali still further increases the washing cipabilities of the soap. linseed-oil soft soaps are made ciphainities unflled, or containing a high percentage of filling. To get the soap as transparent and as light in colour as possible, even the palest oil sometimes is bleached, and in summer cottonseed oil is used with it. The hleaching is usually done with a $30^{\circ} \mathrm{B}$. potash lye not too caustic. When a strong lye is used, the dark precipitate which contains the colouring matter, and also the product of the saponification of the free fatty acid originally present, can be utilised in- manufacturing low-grade soaps. One hundred pounds of linseed oil can he hleached with 61 b . to 7 lb . of the above lye, the lye being run whilst warm into the oil in a thin stream, and heing well crutched iuto it for half an hour. By crutching is meant the stirring together of the ingredients hy means of a perforated piece of wood or iron attached to a pole. 1 the oil is very pale, 5 lb . of lye will suffice for the bleaching; but in any case bleached oil wants a stronger lye for saponification than unbleached. With the latter the lye ghould not contain much carbonate, and should not exceed $18^{\circ} \mathrm{B}$. in strength. Later, stronger lye is added to prevent the soap getting too thick. For the saponification of 100 lb . 01 oils, 150 lb . of $2 a^{-4}$ B. potash lye are used generally. To 100 lb . of oil in a pan, 25 lb . of \sim_{0} B. lye and 10 lb . of water are added. To ensure quicker union, about 5 lb . of resin should also be added. Heat all upand crutch repeatedly; When an emulsion is formed, boil it in the pan. Now gradually add the rest of the lye, boiling up after each addition. Finally, evaporate over not too strong a fire. In winter it is better not to use soda lye, hut in summer soda to the amount of 30 per cent. of the fat can replace part of the potash. The soda is put in all together, after about one-thind of the potash lye is in the par. The resin is often added at the end, and if the soap is rather alkaline, usually makes it about right. A well-finished soap must he thick in the sample glass, should show a good fiower, and be quite clear when cold. When goda is used, less evaporation is needed. Summer soft soaps must not show so much fiower as a winter-made soap, and should keep better. There may be rather more carbonate in the lye if the soap is not to be filled, and carbonate of potash can be added. The above process gives a very pale amher soap. For filling, the best sub stance is $13^{\circ} \mathrm{B}$. solution of potassium chloride, which is crutched in when the finished soap has partly cooled. In adjusting or fitting a soft soap, the use of carhonated alkali is essential. All soft soaps boil tough before they are properly adjusted. When right they break off rather short from the spatula. A piece, as big as a hall-crown sbould be set at the edges, but should yield liquid soap onl pressure with the finger in the middle. Snbsequent filling will not do away with the had results of careless fitting, and in any case the soap will turn rancid, if deficient in alkall, and brittle and unsatisfactory if there is too much. The following is a good recipe for a wellfilled soap. Linseed oil, 100 lb .; resin, 20 lb . ; meal, 52 lh. ; potash ($15^{\circ} \mathrm{B}$.), 58 lb. ; potassinm chloride ($23^{\circ} \mathrm{B}$.), 20 lb ; ; and waterglass, 15 lh . Besides this, the addition of from 56 lh . to 581 b . of fitting lye of $30^{\circ} \mathrm{B}$. will be made necessary by the filling. It is often asserted that more filling is wanted in summer than in winter. This is ouly correct when soda lye is not used. With filled soaps, excess of lye is to be particulaply avoided. If the soap is to be made grain, very fine indigo is ground to the finest possible powder, boiled in weaik lye, and added to the pan at the wery last, when the soap is just going off the boil. The colour is better and more uniform if the indigo is ground up with its own weight of fumiug sulphuric acid, and then left to stand for several days in a warm place. The solution is then stirred up with soda crystals until fairly neutralised. In this way the colour is made very soluble in the soap, and is crutched into it very easily, giving an evencoloured product. About loz. of iudigo is used for every coloured product. About 1 oz. of iudigo is used for every
b3lb. of soap. Formerly hemp oil was used always for
green soft sonps. This oil resembles linseed iu its properties, but has a fine green colour. 1t gives a good leafgreen soap, but the high price of hemp oil precludes its extensive employment.

Framework for Punch and Judy Show.-For a Punch and Judy show, 2 -in. square quartering should be used for making the frame, which should be about 3 ft . square and 9 ft . high. The four uprights should be in $10-\mathrm{ft}$. lengths, halved in the centre so as to work telescope fashion in clamps, and put together with 3-in. carriaga bolts, so that the frame map not only be portable, but will allow of being reduced in height if desired. The side pieces of the framework may have iron ancle flanges, one-half of the angle being 6 in. long, and the other half 2 in. long. Screw the longer hall 4in. on to the batten; this will leave a square of 2 in., which goes round the uprights and is fixed to them by a 3 -in. cnuriage bolt. Twelve short lengths will be required for the sides of the framework. Upon the four hottom pieces, about 1ft. from the ground, boards are placed as a platfirm for the operator; a shelf about $61 u$. wide is also fixed on which the figures are worked. Above the shelf is the proscenium, which is about 2 ft . 6 in . high. Make a green baize covering in two parts, so that the top half may diop over the bottom half.
Aërated Water Machine. - In an aërated water nachine, the carbonic acid may be generated in a small cylindrical gas vessel A. (see illustration) made of stout sheet copper lined with sheet lead. The charge of hicarbonate of soda may he put in by unscrewing the cap B and dropping the soda down

Aërated Water Machine.
the wide tube 0 ; the cap should then he screwed on again. The diluted sulphuric acid must be poured through the cap D, and remains in the cistern E until required, when the tap F is opened and it is run into the solid charge in G. The carbonic acid passes by the pipe H, which is bent to prevent spurting of the contents into it. It passes into the charging vessel J, also of stout sheet copper, but plated with pure tin. The aërated water is run off by turning the valve on the counter. Sulphuric acid and bicarbonate of soda are used in preference to the seltzogene charges on account of heing much cheaper. A gauge may be put on J, if desired, to show how much aerrated water has been drawn off.

Renovating Faded Crocodile Leather.-Faded crocodile-leather coverings of furniture are restored to their original dark-green colour in the following way. Remove all grease and dirt from the leather by washing with warm water and soda with a large spoonful of ammonia added. Now take 1 oz . of powdered borax and 2 oz . of bleached shellac, add this to 1 pt . of hot and 2 oz. oisteached shellac, add it stand in a warm place until the gum dissolves. This will take about twenty-four hours. Then strain through a piece of cotton. Now place in the warm solution a packet of olive-green diamond dye; mix thoroughly together, and add a teaspoonful of glycerine. Apply this to the leather with a swab of soft rags or a sponge, rubbing well into the faded portions. When dry, wipe with skim milk.
Preparation of Whiting.-Whiting, Paris white, or Spanish white is mere prepared chalk. To make oruinary whiting, mix ground chalk with water, and allow the sand contained in the chalk to settle in wooden troughs; then transfer the liquid to other vessels where the whiting itself will fall as the sediment. This is dried by the aid of heat. A similar procedure is followed in making Spanish or Paris white, but the chall is more thoroughly washed and a better and harder quality of chalk-cliff stone-is used.

Renovating Copper and Iron Lamp.-Below are instructions on repoli6hing and lacquering an iron and copper standard lamp. Take the lamp bracket to pieges, and remove from the copper parts all the old lacquer by hoiling in a potash solution; then swill in several changes of clean water, and dry in warm eawdust. The parts must then be polished, and afterwards lacquered either hot or cold, usiug a very pale lacquer. The iron parts must be smoothed down, and may then be painted with cycle enamel if a poliched surliace is required. If a dull black finish is desired, after removing thoroughly all grease and dirt, the ironwork may be painted with, all grease and dirt, the ironwork may be painted with, or dipped into, a colution consisting of 1 part bismuth chloride, 6 parts mercury bichloride, 1 part copper i) parts water, well stirred together. When dry, place in boiling water, and keep hoiling for half an hour. Should the colour not be dark or black enough, repeat the operation. The black is fixed by coating with boiling oil and heating till all oil is driven off.

Putting Spring Seat in Armchair.-Here are instructions on replacing with a spring seat the wooden structions on replacing with a spring seat the wooden three battens across, 3 in . wide by $\frac{\text { go in. thick, to act as }}{}$ spring rails. If the seat rails are 2 in, deep, nail on the top all round pieces of stuff, Is in. thick, for stuffing rails (see sketch). These rails should form a rebate, as shown, Six 8-in. upholsterers' springs will be required. These are secured to the spring rails with ${ }^{8}-\mathrm{in}$. staples placed round the bottom coil and driven into the wood. A cover of coarse canvasis put on the top, and tacked fast at the front; then pull the cover down at the back until at the front; then pull the cover down at the back until
the oprings are compressed by about one-third of their

Putting Spring Seat in Armehair.
length, and tack them fast in this position. The springs are securely stitched by the top coil to the cover with strong twine. Loop the edges with twine and fill them hard with well-pulled fibre or rag-flock, cover with scrym, and blind-stiteb, and fasten with not less than three rows of stitching. Fill up with flock or bair, well picked on, and cover with sheet wadding, cased in with unbleached calico. Any staining, polishing, etc., shonld unbleached calico. Any staining, polishing, etc., shonld covering be of leather or leather-cloth, finish the edges with leather banding secured with brass or leatherheaded studs; if covered with soft material, such as velfet, reppe, etc., run a narrow scroll gimp round.

Making Scheel Slates.-Most of the school slates nsed in Great Britain come from Bangor, in North Wales, and are cut and faced by machinery. To make a single slate, get a Welsh rooting slate, and mark off with chalk to the size wanted. With any sharp point prick a number of holes about 1 in. from the chalk mark, and hreak off the useless portion. Lay the slate flat on a board and make the chalk mark coincide with the edge of the board. The slate may be cut to size with the edge of a half-round file, a heavy knife, a trowel, or with a joiner's temon saw. 'op put a writing face on the slate it is polished in the following way. Select a slate as smooth as possible, fix it on a beuch, and rub with a piece of solt sandstone, using sharp sand and water. Finish with a block of wood and finer sand, moving the rubbers with a circular motion. Or, instead, the face of the slate may be smoothed on a grindstone.

Adjusting Surveyor's Level,-In adjusting a surveyor's level, see that the two plates are parallel. With the screw points touching the lower plate. Open the legs to an angle of, say, 30 . stand between two of the legs and grasp the head of the jege with the left hand. With the right hand place the telebcope at right angles to the direction of the leg on your right and move the leg to or from you to bring the bubble central. Then, still grasping the hetd of the legs with the left hand, with the right hand place the telescope at right angles to its formel position - that is, in line with the leg on the right. Move the leg in or out to bring the bubble central in this direction. Then press the legs down flrmly and remove the left hand. Now place the telescope over two diagonally opposite screws; turn both at the
sasoe time, moving the thumbs inwird to bring the bubble to the right, or moving them outward to bring the bubble to the left, and leave it central. Then place the telescope over the other two screws, and bring the bubble central in the eame way, The bubble should now remain central in any position of the telescope. Turn the eyepiece clockwise while drawing it in or out until the cross wires can be distiuctiy seen, then direct the telescope to the staff and focus the object glass by the milled head at the side of the telescope to ghow the figures clearly. The reading is now taken by the apparent position of the horizontal wire. The two vertical wires enable the surveyor to see when the staff is upright in the direction of the line of vision. The staff is kept in such a position by the skill of the staffholder, or is slowly waved to or from the surveyor so that he may take the lowest reading at the time the staff will be upright. Two additional horizontal wires may be so placed that they will show, $\begin{gathered}\text { say, I ft. on the }\end{gathered}$ staff at a distance of 100 ft ; ; the difference of reading at the upper and lower wires will then be the approximate distance. For example, $3 \cdot 47-2 \cdot 15=$ a distance of 132 ft .
Circular Saw Attachment for Cutting Floor BIocks.-For cutting floor blocks to various lengths the accompanying illustration shows a simple wooden arrungement that cau be used with a circular saw bench. A piece of wide board B is fixed with screws to two sliding pieces A, which must fit close to the edges of the table as shown. The fence pleces C should be firmly fixed to B with a few screws. The lengtis of the of the table as shown, The fence pieces C should be
\qquad -

Apparatus for Cutting Floor Blocks.

pieces of wood to he sawn can be varied by the gauge block D, which is frastened to o by a bolt and wing nut. lt will he seen that a slot is formed in 0 for the bolt to be moved backwards or forwards, as shown at \mathbf{E}. When Get, the stuff can be placed against 0 (as indicated by the dotted lines) and the apparatus pushed forward so that the 6aw just cuts through the stuff; it can then be drawn back and the timber adjusted for cutting another block.
Transfer Paper for Carbon Process.-Any paper having a grain or texture suitable to the subject under treatment may be used as transfer paper in the carbon process of photography. The paper is coated with a solution of gelatine containing chrone alum, which forms an insolingle surface to which the tissue may be folins an insoluble suriace to Which the tissue may be developed on waxed opal and transferred by squeegeeing a sticky surface to it) is coated with soluble gelatine, which, placed in warm water, readily attaches itself to the insoluble tissue, and, on drying, adheres so firmly that the latter will spontaneously leave its wased eupport. The paper is coated by drawing it over melted gelatine contained in a trough, the gelatine being kept liquid by an outer water jacket. These transfer papers cannot be well made in small quantities as cheaply as they can be purchased.
Palishing Lead Pcncils. - Lead pelıcil cases are polished by hand with lae solutions as used by French polishers. The rounded stops are 2\% in. Ion'r, the leugth of three ordinary pencils. Their handling in large quantities greatly fiacilitates the polishing operation. The colouring matter may be gamboge for yellow, Bismarek for red, and French black or ebony stain for black. The stainiug is usually done first, the lac solutions being used clear in order to grin a glaze-hike or enamel finish. Staining and polishing the pencils at one operation by dipping would give them a very common appearance.

Waterproofing Underground Water-tank. - To make an old underground tank water-tight from the outside without entirely reconstructing it is a difficult matter. Any solution or composition applied to the inner facs of the walls would bs forced off by the outside hydraulio presenre. But a lining of asphalt outside hydraulio presenre. But a lining of asphalt may be put on, and then, if the tank is rery deep, an the asphalt in order to resist the outaide pressure of the ground water when the tank is empty. Another remedy that would doubtlees be effectual is to excavate the ground for a width of 12 in . to 18 in . outside the walls, and fill the space with puddled clay well consolidated by ramming. If the water comes through the bottom of ths tank, lay down a now floor of good Portland cement concrete about 10 in . to 15 in . thick, well consolidated, and with the surface trowelled smooth. If such a floor is laid, the ground water must be kept down by pumping for about thirty-six or forty-eight hours, or until the cement has had time to set properly.

Making a Garden Pump.-A common form of garden pump used for spraying flowers and fruit is shown in the accompanying illustration. It is simply a brass tube with three rings soldered, or rather sweated, on the outside to stiffen the tube. This forms the barrel; a fine thread is maually chased on the bottom to screw into a shorter piece of tube that forms the valve box. To this is soldersd a very much 6 maller piece of tube to connect with the top valve and air vessel. The air connect with the top valve and air vessel.
vessel consists of two tubes; the outside piece is of the

Cutting Out Stepped Flashings for Roofs.-1n marking off, cutting ont, and fixing lead step flashinge proceed as follows. The lead shonid be cut out 13 in . Wide, 6 in . of it to lie on the roof and 7 in . to stand against the wall. The folding line and water line should be marked with chalk, and the lead folded at right angies on the folding line. As roofs vary in their pitch or angle of slope, and as the joints of the brickwork are not always at exactly the same distance apart, the lead, after folding, should be laid in the position it is to occnpy, and, with the help of awooden straightedge, the bottom edge of the joint in each course should be marked with a pointed pigce of chalk as far as the water line, as shown at A A in the accompanying illustration. The lead shonld then bs laid on a board on the wail side, and the lines B B markod, one end of this ling being lin, from the edge of the lead, and the other end cutting the joint line on the water line. Ontside the lines AA, mark those shown at C Clin. distant. These lines indicate ths place of folding for tarning into the brickwork. The folding is done with a step turner, which is an iron tool like a double-bladed chipping knife. A temporary tool can be made out of a piece of $1 \frac{1}{4}$-in. hardwood, with one end cut to a bevel, and having a saw-cut equal to the thickness of the lead on one edge. In the illnstration, which is drawn for a roof having a clope of 45°, the shaded parts are those which are to be cut away.

Fanging Hall-rack.-The hall-rack described below is intended for the accommodation of clothes, with convenience for hats, clothes brush, etc. A mirror

Making a Garden Pump.

Cutting Out Stepped Flashings for Roofs.

Hanging Hall-rack.
gams bore as the barrel, and is strengthened in the sams way. A disc-like piece is fastened to the top, through the centre of which a much smaller pipe runs. Ths space batween the two pipes forms the air veasel, a large one. These pumps ars mads with brass valves, but leather ones are better. The plunger is an ordinary cup leather. Sometimes two pumpe are put back to back. Usually two $30-f t$. Iengths of hose pipe ars attached to thess pumps.

Preparation of Chalk.-Chalk (carbonate of lime) is a soft white rock in a pulverent or only alightly consolid. ated stave, being composed of minnte fragments of shella, sponge spicules, etc., as may be seen on examination with a microscope. As far as is known, chalk in large quantities is to be obtained only in the South of Fingland and in the North of France. Precipitated chalk is prepared thus. Add a solution of carbonate of soda to a solution of chloride of calcium until a precipitate ceases to fall; well wash the precipitate with pure water. To make prepared chalk, iub up pure chalk with snfficient Water to form a smooth cream ; stir into a large quantity of water, allow the coarser particles to settle, and decant the milky fluid; the prepared chalk will fall as a sediment in this, and must then be dried. To prepare camphorated chalk, reduce $\frac{1}{2} \mathrm{~h}$, of camphor to a fine powder by triturating it in a mortar with a little alcohol; mix thoroughly with llb, of precipitated carbonate of lime (chalk) and $3 \frac{1}{2}$ lb. of powdered orris root, and sift through finest bolting cloth. Another procese of preparing camphorated chalk is to mix together 1 oz . of camphor and 15 oz . either of precipitated or prepared chaik; the ingredients must be in the finest powder.
might be added in ths centre, and a shelf or box for gloves might be fixed. The centre panel may be round, diamond shape, square, or oblong, and may be of japan lacquer work. The outer rim can be readily removed, or an otherwise plain panel might bs made decorative by the aid of transfers, painting, or carving. The size may be snch as space will permit; 4 ft . long by 14 in . Wide, ontside measuremente, will be found nsefnl. There can then be four hat hooks and four coat hooks. The rack would look well if made of hard woods, as oak, walnut, or mahogany; it could be made of clean pine, stained light walnut, the chamfer edges being picked out in black. The wood should be at least $2 \frac{1}{2}$ in. wide and $\frac{3}{4}$ in. thick, the corners being halved and glaed together-not mitred. A hook planted on each corner will thns give greater A hook planted on each corner if the screws are sufficiently long. The centre panel, if intended to be merely decorative, should be rebated in, thus bringing it forward; to form the background of a cupboard, box, or shelf this will not be necessary. Hooks may be fixed to this panel if reqnired The chamfer edges should be cut after the rack is iramed up, the outer chamfer being carried right round and the unner ones being stopped at equal distances from the corners and centre panel as is shown in the illustration. Two stout screw-eyes or brass plates, by which to hang the rack, will be snfficient.

Washers for Callipers.-Washers for callipere ars best made of mild or spring steel. The hole is drilled, and then the material is made round with a file or emery wheel, put on a mandrel, and turned exactiy to size. Wheel, put on a mandrel, and thrned exactiy not stand the rivet.

Fitting New Barrel Arbor to Watch.-In fitting a new barrel arbor to a watch, first centre a rough barrel arbor by tiliug a centre on each end. Aftix a gerew ferrule to one oud and turn the central portion to a diameter equal to one-third that of the interual

The pine hoarding is then covered with eanvas, which is well glued down; and over the canvas is glued a covering oit stout brown paper or Willesden paper. The au!race of the paper is then covered with a strong solution of glue and litharge and sprinkled over with sharp polisher.

diameter of the barrel. Then turn one pivot to nearly fit the barrel bottom, and a second pivot to fit the plate. Reverse the ferrule and turn the other pivots. Then drill the hole for the mainspring hook. Harden it, and temper to a blue colour. Now place it in the turns again and finish all the pivots to fit their holes, and polish them first with oilstone dnst and oil on a fiat steel polisher, and finally with crocus and oil on the same

Ingle Nook with Sanded Roof.-The ingle nook with a shingle roof shown in the illustrations is intended for a dining-room. The pillars are 3 in. thick, part square and part turned, and have caps as shown; these pillar's support the roof at each corner. Artistic effect will be obtained by introducing the two semi-arches at the side and the elliptical contre arch shown in Fig. l. These arches are surmounted by a frieze and cornice; the Irieze may be fiuted or decorated with carton pierre or Lincrusta decoration. The lower framings are 21 in . thick, flush on the inside. Wach end of the lower framing on the ontside is ornamented as shown in Fig. 2; and the front, formiag the end of the seat, is c'amped. These framings have a substantial capping over them. If desired, the capping may be continued horizontally and finished without the ramps, and the pillar at the angle repeated. The roof is formed of concave ribe (see Fig. d) and horizontal ceiling joists. The ribs are covered with thin pine hoarding free from knots and firmly fixed.

building sand slfted through a ${ }^{3}$-in. mesh sieve. The so called shingle roof is uow complete. Fig. 1 shows a front view of ingle aook, Fig. 2 is the end view, Fig. 3 a sectional plan, and Fig. 4 a section through one end of the ingle nook.

Making a Hand-cart.-The hand-cart shown in Figs. 1 and 2 is very shallow and light in construction. Thesizes of, the various parts are shown in the illustrations, but space does not permit full instructions on dressing up the matarial and the method of framing it together. The fottom framing should be of English oak. The bottom-sides A (Fig. 1) are $2 \frac{1}{3}$ in. Wide by $1 \frac{5}{8}$ in. thiok, the ear-bed B (Figs. 1 and 2) is $2 \frac{1 n}{2}$. deep by $1 \frac{1}{2}$ in. thick, and the front capping-bar 0 (Fig. 1) 2 in . wide by lizin. deep; two centre summers, $1 \frac{5}{8}$ in. deep by $l_{\frac{1}{2}}$ in, wide, are framed in
end; When fixed in place, the springs should measure 2 ft .10 in . outsids. The axle is secured on each side by two $\frac{5}{1}$-in. bolts 7 (Flg. 1), and if cycle-pattern wheels are used there should be a clear space of $3 \frac{1}{2}$ in. between the spring bearing and the collar of the axle. The wheels are 3 ft . high. The bottom boards, of $\frac{1}{4}$-in. red deal, are run crossways of the body, flush with the top of the ear-bed.
Recipes for Paste Blacking.-Recipes for paste blackings are the following. (1) Mix together 8

Fig. 2
Making a Hand-cart. The legs N (Fig. 1) are made of $\frac{2}{1}$-in. round iron, but the bottom parts are rather stouter ; they are fixed underneath the han- dies at the front part, and beneath the bottom side at the back end. In the centre alight ronnd iron stay 0 (Fig. 1) is secured by a bolt end through the boss at the lower part of the side leg, the stay being swept up so as to fix underneath the centre of the capping-bar C (Fig. 1). The swinging leg P (Figs. 1 and 2) at the back is also of $\frac{1}{2}-1 n$. round iron, and is attached to the body by two staples R (Fig. 2) fixed into the bottom of the ear-bed. To the leg is attached a ligit iron rod s (Fig. 1), which fastens on a hook at the front end, and when not in use the leg is drawn up, as indicated hy the dotted lines in Fig. 1. The springs are 3 ft . loug to the centre of the eyes, and the compass from the centre of the eyes to over the last plate T (Fig. 1) is 4 in . There are four plates $1 \frac{1}{4} \mathrm{in}$. wide. The scroll irons U (Figs. I and 2) are $2 \frac{1}{2}$ in. deep at the front part and 312 in . deep at the back, and are attached to the springs by bare $\frac{3}{6}-i n$. bolts, with shackles at the back
parts (by weight) of ivory black, 4 parts of treacle, and 1 part of sweet oil, afterwards adding 2 parts of oil of yituiol dilnted with 4 parts of water. Moisten to the required consistency with water or stale beer. (2) Superior blacking. Mix together 31 b . to 4 lb . of lampblack, $\frac{16}{2}$. of animal charcoal, moisten with glycerine, and add 5 lb . of molasses. Fuse 21 oz. oi pure guttapercha in an iron vessel over a fire, and stir in first $\frac{1}{2}$ pt. of olive oil and then 1 oz . of stearin. Add the warm mass to the former mixture, and then add a solution of 5 oz . of gum senegal in $1^{\frac{1}{2}}$ pt. of water, and 1 dr . each of rosemary and lavender oils. (3) Rnb together 1 lb . of molasses, $1 \frac{1}{4} \mathrm{lb}$. of ivory black, and 2 oz . of sweet oil, and add a little lemon juice or strong vinegrar. (4) Rub together 7 lb . of ivory black, $5 \frac{1}{2} \mathrm{lb}$. of molasses, $\frac{1}{2} \mathrm{pt}$. of common oil, 12 oz . of oil of vitriol, and sufficient water.

Development of Photographic Plates.-The formula for developers supplied by the makers of the plates used cannot be improved, and in nearly all cases these developers consist of pyrogallic acid and soda. The pyrosoda developer, as it is called, is admittediy the best all-round developer, and can be used for almost every kiud of clry plate that is made. Pyro begins to deteriorate, however, directly it is mixed with water, and cannot therefore be kept in solution for any great length of time so as to be reliable always for occasional use. But if the pyro is used dry-that is, if sufficient for the plates to be developed is weighed out as required-the drawback to its use as an occasional developer is overcome. The right moment at which to stop development can only be learnt by experience. as a general rule, if when viewed by transmitted light the shadows are beginning to veil over, the plate should be removed from ginning to ver ovel, the plate should be removed inom a little difficult to a beginner, as the unaltered silver in a little difficult to a beginner, as the maltered silver in The growing picture must be carefully watched, and when it contains all the detail that is desired development may be stopped; the flnal print will show whether development was carried too far or stopped too soon, and it is in this way that knowledge is gained by experience. The time that elapses between the application
so that its pin will come well in the lever notch. Dris it with a small drill and broach it out until a pin fitted in it just enters the lever notch freely. Then file the passing hollow for the guard pin to pass at each beat. Try the action in the watch, and, if correct, harden the roller and temper to a red colour. Polish the roller on the face, and especially on the edge, with crocus and oil on a steel polioher.

Imitating Dove Maxble.-For an imitation of dove marble, the ground colour must be a bluish-grey, and must be worked on while it is wet, in the following manner. Provide a little dark blue-grey paint, a little black paint, a little white paint, and a pot containing turpentine. Dip a feather into the turpentine, then into the dark blue-grey, and occasionally into the black. Streak the ground work with the feather, running always in one direction. Use the white paint in the same way. in one direction. Use the white paint in the same way, should be softened at the edges. When dry, scumble the surface with thin white paint.

Rack for holding Greenetuff Food.-The illustrations show the construction of a rack for holding the greenstuff with which poultry are fed. The wood for the middle and side frames should be about 2 in . by $1 \frac{1}{2} \mathrm{in}$.;

Rack for holding Greenstuff Food.

of the developer and the first appearance of the half tones will in the case of development with a normal developer, if multiplied by 3 , give the additional time in which development is complete. Thus, if thirty seconds which development is complete. Thus, if thirty seconds elapse between the application of the developer and be complete in ninety seconds more. The appearance of the back is important with any thinly coated plate. When the bigh lights show at the back of the plate. these lights can become no denser; further development can only allow the half tones to catch up, and the operator must decide how far this is desirable, and act accordingly. A good dark-room lamp with a steady flame is of vital importance, especially to a beginner, and it is sound economy to pay a fairly good price for a lamp. The nsual anatenr eandle lamp makes the proper judging of a plate almost impossible, and much is left to chance.

Grease-proofing Wooden Pill Boxes. - A reliable method of making wooden pill boxes grease-proof is to dip them into moderately strong warm glue size. The dipping sbould he so arranged that both interiors and exteriors may be coated. Or, if desired, the insides of the boxes may be coated with the glue size, applied with a brush.
Fitting New Roller in Lever Watch.-In fitting a new roller and pin in a lever watch, first procure a soft rough roller and broach out the contre hole to go on the balance-staff to the correct height. Plage it on an arbor and iu the turus wr watch lathe, turn the pipe to the andiut diameter and length, turn both sides of the roller right diameter and length, turn both sides of the roler
flat, aud reduce its diameter until, when on the halancestaff and in the watch, the lever has just a little shake at cuch side when the guard pin rests against the, roller ndge. Then measure the position of the ruby piu-hole
the joints should be halved together. The bars may be of $\frac{3}{8}-\mathrm{in}$. round galvanised iron.

Oll of Amber.-Amber oil is a product of the dry distillation of amber, and consists, in its crude state, of a mixture of water, succinic acid, and oil of amber. on mixture of water, succinic acid, and oil of amber, on sisting of water, the next coutaining the bulk of the succinic acid, while the top layer contains the oil of amber. This oil, when drawn off, is found to be a dirty brown Huorescent liquid, possessing a nauseating odour, It is insolnble in water, but is soluble in alcohol, ether, benzene, and many other solvents. The oil is scarcely acted ppon by dilute mineral acids, but concentrated sulphuric and nitric acids yeact violently with it. By the action of nitric acid much succinic acid is produced, and an orange-coloured resin possessing a strong odour of musk is produced; this is used as an artificial musk. Keducing agents do not affect amber oil, and treatment with animal charcoal and other decolorising agents does not in the least improve its colour. In distilling oil of amber, first water is obtained, then a yellow oil, followed by a green oil, and lastly a dark green oil. The temperature during distillation ranges between 15° and $360^{\circ} \mathrm{C}$. A tarry matter remaing behind amounting to about 15 per cent. of the crude oil used. The distillates obtained still possese the repugnant odour of the original oil. By carrying out the distillation, however, in a current of steam, almost odourless distillates are obtained. These distillates can be bleached by adding to them about 8 per cent. of permanganats of potash or bichromate of potash, together with the required quantity of dilute sulphuric acid. The oil is thon left to separate from the water, the latter drawn off, the oll completely debydrated by the addition of common sult or plaster-of-Paris, and then fltered. In the bleaching from 7 to 9 per cent. of the oil is lost.

Removing Weather Stains from White Marble. Weather discoloured marhle may be bleached with a golution of soap lyes and whiting. Mix the soap lyee and whiting to the consistency of paste, and apply a good coating with an old brush. Let the paste remain on the marble for a couple of days, then wash off with cleas water-rainwater for preference-repeating the procese two or thre times until the stains are removed. To make the lyes, olotain, aay, 7lb. of American potash and discolve in a pailful of rainwater. The lye is of such a caustic nature that it is dangerous to fingers and nails. a caustic nature therefore, any of the liquid gets on the hands, they ghould be at once well washed in water containing a few drops of vinegar or acid.
Constructing a Cesspool-Assuming that the quantity of sewage amounts to 300 gal . per day, and that the cesspool could be emptied every three months, a - cesspool should have a capacity of about $4,300 \mathrm{cub}$. it. If the pool is 10 ft deep (measured below the inlet drain), it must be uot less than 203 ft . square, or of an equivalent area if of any other shape. If the pool is to be
of a reddish colour owing to the presence of oxide of mangauese ; blende or "black jack," a sulphide which is a black or yellowish-black ore, with sometimes a reddish tingo imparted by galena; calamine, a carbonate; and electric calamine, a silicate. Zinc is very volatile, and thus has to be extracted from its ores by distillation. In reducing blende, it is first oxidised and then treated with carhon and carbonic oxide, or by hydrogen and hydrocarbons. The powdered blende is roasted in a reverberatory furnace until most of the sulphar has disappeared, and the zinc oxide remaining is heated in fireclay retorts to a temperature of about $1832^{\circ} \mathrm{F}$. ($1003^{\circ} \mathrm{C}$.), and the vapours are condensed.

Making Divan Settee.-Wig. 1 is a front view of half the framework, Fig. 2 is a ride view, and Fig. 3 a section of a divan settee showiug the position of the springs, etc. The extra length of the settee will necessitate it being supported in the centre with a pair of additional legs. The thiee back legs are 3 ft . long by $1 \frac{1}{2}$ in. thick, with a sweep of 3 in. The three stump feet are turued trom 3 -in. by $6-i n$. blocks. The seat rails and back rails

Fig. I

Making Divan Settee.

emptied every six weeks, half the area given above would suffice. The method of construction is as follows. After marking out and excavating to the required dimensions (the pool being either circular, or rectangular with internal buttress walls), the bottom of the pool should be covered with concrete from 6 in . to 12 in . thick, according to the nature of the soil. The walls should be of brick in cement; and if the pool is xectangular in shape, the bays between the buttresses should he curved outwards to resiat the thrust of the earth when the cesspool is empty. If the surrounding soil holds much water, the wails of the pool should be puddled outside with elay, otherwise the cesspool will quickly fill up with water that has drained in from the adjacent land. Brick archee, or H-iron joists with concrete filling, can be used for covering the cesspool, a manhole with cover being constructed to afford access to the pool when required. The best way to empty a cesspool is to raise the sewage into a night-soil cait by means of a chain pump. Cesspoo!s are generally unsatisfactory, and are being superseded by gystems of bacterial tanks which dispose of the sewage daily without offence.
Zinc.-Zine (Zn), a bluish-white and highly crystalline metal, is very malleable when pure, but impure commercial zinc is inclined to be brittle. It melts at $773^{\circ} \mathrm{F}$. and has a specilis gravity varying from 6.86 in the cast state to $7 \cdots 1$ when rolled or forged. Cast zinc is named apelter, only the rolled metal being known as zinc, as a rule. Zinc oxidises at a red heat, but the rolled metal will form a film of grey suboxide at an ordinary temperature if in a damp situation. Zinc is hardened by rolling, and is annealed at a low heat to make it malleable again. Pure zine is dissolved by nitric acid and alkalies, but not by hydrochloric or sulphuric acid, although the commercial metal is readily dissolved by either of these latter acids. "Zinc is much used as a pure metal, and also iu alloys. "Galvauised iron" is sheetsteel coated with zinc. The chief ores of zinc are zincite (red oxide of zinc), a white ore when pure, but usually

Fig. 2

FIG. 3.
are 2 in. square, and the stuffing raile $2 \frac{1}{2}$ in. bs 1 in . Mortise joints can be used in preference to dowels. For the seat, eighteen 8 -in. springs, placed in six rows ot three each, will he required, and for the back, twelve 6-in. springs put iu zigzag form; if spring bolster arms are placed on, put three $4-i n$. springs to each arm. For the covering will be required four 22 -in. bags, two for the seat and two for the back; and two 18 -in. bags for the bolster arms. About 6 yd. of Utrecht velvet will be wanted for the surrounds, and 4 yd. of $6-1 n$. fringe for the trimming. The settee will fill a recess 7 ft , by 2 ft . 3 in .

Malslng Incenbe.-To obtain a slow-burning incense, add cedar-wood powder or wood charcoal aud nitre to gum olibauum, gum benzoin, snd gum galbanum; the gums in this mixture are volatilised without burning, and disseminate their odour through the air. The following is given as a recipe for incense. Sandal-wood powder, 1 lh, ; cascarilla bark powder, $\frac{1}{2}$ lh.; benzoin powder, 交lb.; myrrh, 2 oz.; nitre, 2 oz.; and grain musk, f dr. A portion of the benzoin mlght he replaced by olibanum and galbanum, hut this will not alter the odour very much. Storax can be added to anch a mixodour vely minch. and would be absorbed by the sandal-wood powder; it may also be absorbed in charcoal.
Connecting Musical Rox to Striking Clock. Properly to rrrange a musical box to work in connection with a striking clock to play one tune at each hour, a warning and letting-off mechanism, similar to that in the train of a striking clock, must be added to the musical-box train. But possibly a quick rehounding blow upon the starting lever is sufficient to start the tune. If so, the clock could be arranged to lift a spring hammer as each houl' spprosched, and to let it fall at the hour, thus striking the musical-box starting lever, The hammer should be arranged so as to be just free of the starting lever when at rest. Its spring allows it to hit the lever in falling.
A Bamboo Camera Stand.-To make a small bamboo stand for supporting a hand camera, piepare a cylindrical block of hard wood like a (Fig. 1), boring it through the centre and making cuts \mathbf{B}_{3}

Fig. 2

Bamboo Camera Stand.
C, and D. Into these fit flrmly the hinges or upper parts E of the caps (Fig. 2), passing a pin or rivet through each on which the caps turn (see dotted lines F and G). Through the central hole H pass a brass rod Labout lft. long with a screw thread cut on it, to go into the camera base. At K ingert a coarse-thread nut to take a thumbscrew M, which bites against L, for fixing it at any serew M, which bites against L, fit each of three small bamboo canes with ferrules and insert tightly in the metal caps, and the stand is conmplete.
Determining Height above Sea Level.-The mode of ascertaining the height above sea level of a hill depends on circumstances. The term "sea level" indicates the mean hall-tide level of the sea, and if the distance is short and the height limited, the height of a hill may he most accurately taken by using an ordinary dumpy level and staff. If the distance and height are more extended, a stafi. If the distance and height are more extended, a actuated by the pressure of the atmosphere, may he used. A good instrument is divideú to show heights varying by $20 \mathrm{ft} .$, but may he read by estimation to 5 ft . intervals. It is sdjusted to zero at the lower level and then carried to the top of the hill and read off, but if it is important to ensure accuracy, and the distance to be covered or the time occupied be great, it is advisable to have a recond instrument left with an observer at the first station, and the indications recorded every halp. hour, so that a correction of the observed heights may be made for the natural fluctuations of atmospheric pressure, the time of each observation being duly entered. When the helght of a mountain is to be determined, a mercurial mountain barometer made on Fortin's plan may be used. This construction permits the mercury cistern to be closed entirely secure
from leakags of mercury in whatever position the barometer may be placed. The rule for height in using a mercurial barometer is as follows. Read the barometer to the nearest hundredth of an inch; subtract the upper reading from the lower, leaving out the decimal point; and then multiply the difference by 9 , which gives the elevation in feet. Thus: Lower station $29 \cdot 25$ in. uppel station $28^{\circ} 0:$ in. ; difference, leaving out the decimal point $=123$; this multiplied hy $9=1,107$ It. elevation. There are small corrections to be made for capillarity, temperature, cravity, etc. The height of a mountain hae peraspa been more often determined by ohserving the boiling point of water than by any other means. It is fould that with the harometer at 30 in., which may be taken as mean pressure at sea level, pure water boils at 212° F., and at a lower temperature as the atmospheric pressure decreases. The self-evident reasou of this is that the steam can escape more easily from the water when there is less pressure on the surface. There is a simple rule for height of mountain from hoiling point which may be geen more clearly from the following: 212° boiling point = datum level; $211^{\circ}=511 \mathrm{ft}$. elevation ; $210^{\circ}=511+513 \mathrm{ft}$. elevation ; and $209^{\circ}=511+513+515 \mathrm{ft}$. elevation, and so on, increasing the added flgures by two each time.
Photographing with Tolescope.-A telescope or an opera glass may be used as a telephoto lens (that is, a lens for obtaining larger images of distant objects with less extension of camera) in the following way. Support the telescope with clamps at the necessary angle, the object-glass facing the object. is front fitting the eyepiece must he made to slide into the front grooves of the camera. For the hest resulta it is essential that the focus of the eyepiece should be either one-half or one-fourth the focus of the objectglass, and the distance of separation must always be greater thau the difference between their two foci. I't may therefore be necessary to substitute a new eyepiece.

Photography with Telescope.

Find the principal focus of the object-glass and, suppooing this to be 36 in ., then a concave lens of 18 in . or of 9 in. bhould be fitted, at a distance of, say, 19 in. or of 28 in. respectively, giving an equivalent focus of 648 in . or of 324 in. With such a lens the magnification for any given extenaion of the camera may he found by dividing the distance between the negative lens and the ground glass hy the focue of the negative lens and adding l; thus, $\frac{18}{9}+1=3$. The illustration shows the course of rays A through the object-glase B received $b y$ the negative lens C and widened out until they reach the plate D. Thus the magnification (that is, the number of times larger the image will he at D thanat C) will depend firatly on the dispersive power of C (that is, the focus), and secondly on the extension of the camera or the distance between C and D. Unless both lenses are corrected for chromatic aberration, sharp definition must not be expected. The equivalent focus shows the focus necessary for a single lens when an image of the same size is required under eimilar conditions.

Boring Gun-barrels.-Gun barrels are bored with square bits of suitable size; as soon as one bit is used, another is put through the harrel, until the desired diameter is obtained. The harrel is secured on \& carriage, the latter being at liberty to traverse the whole length of the bench.
Preparation of Benzene.- Benzene is a hydrocarbon $\mathrm{O}_{8} \mathrm{H}_{8}$ formed during the dry distllation of organic sub etances. It is contained in coal tar, which, on being distilled, yields a light oil that ls washed with sulphurio acld and with a sclution of soda and again carefully distilled; the portion passing over between 80° and $90^{\circ} \mathrm{O}$. is separately collected and forms henzene. Benzene is a light volatile liquid, very refractive, and has a peculiar gra-like odour. It readily mixes with oils, etc., but uot with water, and is a powerful solvent for fats and india rubber. It is used largely in the manufacture of aniline dyes, for cloth cleaning, and in rubher working. It is very inflammable, burning with a bright, smoky tlame.

Priming for Woodwork.-A priming for outdoor modwork, which is to be painted white, is made by mixing together white lead, 16 oz.; red lead, 1 oz.; and driers, 1 oz.; thin with halif raw oil and turps. No hard and fast rule can be laid down, however, as some white lead will carry double as much thinners as others, according to the quality and age of the lead and whether it is ground stiff or not. For the following coats put less turps in each time-for the first coat, say, one-third turps, for the second coat, oue-sixth turpe, and for the third coat, no turps. The paint should be of about the consistency of cream.
Wall Rack for Drying Clothes.-Fig. 1 shows a wall rack for use with a gas stove or oven in drying clothes. The rack has a base 2 ft . 6 in. by 8 in. by lin., with five rods 3 ft , by lin. by 点in. These are mortised in, and glued and wedged. Fig. 2 shows a method of cutting out the rods with economy, As this contrivance may have to support considerable weight, it will be necessary to plug the wall from which it is suspended. Therefore mark off on the wall over the gas stove the positions of the screws, cut the paper in the form of the letter H, and gently raise the two fisps. With a cold chisel, chop out two holes of e rectangular shspe about lin. by lin., and flt in each hole two taper plugs with the broad ends inside; then, after glueing the centre wedge, drive it in, and when set, cutit off flush to the wall. The paper may now be pasted back in place and the screws inserted, as in Fig. 3. Cut the holes and slots in the base as in Fig, 4, and place the base, etc., in position; the appliance will be perfectly secure but
the thumb and finger, the knife edge resting on the lap at something less than a right angle, so that the knife meets the lap edge foremost when the lap is revolved. The knife is held vary slenderly so that it is caused to jump and vibrate and thus make s series of slight grooves or furrows in which the finely powdered rottenstone can lodge. The wheel, afterwards, is revolved in the opposite direction and cross grooves are cut. If the stones have a diameter less than $\frac{1}{8}$ in., and if they are rather hard, pewter polishing-lsps are used; copper laps ars employed for the smallest and the hardest stones. ars employed for the smallest and the hardest stones, fed with powdered rottenstone and water. Rounded or convex stones may be worked with emery on a wood mill. then with pumice powder on a list mill and finally with pntty powder on a leather lap. These laps have greater elasticity than the metal ones, and are morg suited to the globular forms of stones. To cut facets, a lead wheel with emery, and then a pewter wheel with lottenstone, are employed; for harder stones, a copper lap replsces the pewter one. Small stones, which cannot be held in the fingers, are cemeuted centrally in the ond of a wooden stick. By holding the stick vertically over the lap, the "table" or central facet of the stone is cut; the stick is inclined to certain angles for the eight, twelve, or more facets contiguous angles for the eight, twelve, or more facets contiguous to the table. Two, three, or four series of these tacets
generally are required at different inclinations. The generaily are required at diferent inclinations. Ihe or central band around the exterior edge of the stone. The correct inclinstions of the stick are found by placing its upper end into one of several holes in a vertical post fixed alongside the lap.

Fig. 2

Fig. 3

Fig 4

Wall Rack for Drying Clothes.
easily removed when not wanted for use. Whenever the gas is lit, the surplus beat ascends and is utilised.
Cutting and Polishing Carnellians.-The following inctructions on cutting and polishing carnelians, or cornelians, are equally applicable to other stones of a medium degree of hardness, such 6s agate, amethyst, aquamarine, beryl, bloodstone, Brszilian topaz, carbuncle, cat's-eFe, chalcedony, chrysolite, chirysoprase, crystal, elvans, emerald, felspar, tint, fluorspar, garnet, heliotrope, jade, jaspar, lapie lazuli, mina nova, onyx, opal, paete gems, peridot, plasma, porphyry, quartz, sard, sardonyx, serpentine, and topaz. First, the rough carnelian is alit on the alitting mill, which is a tbin iron plate revolving at a moderste speed round a vertical spindle, the edge of the glicer being charged with diamond dust and plenty of the lubricant-oil of brick. The carnelian is lightly pressed against the edge of the slicer. The second operation is rough-grinding on a laad mill which resembles the slitting mill, except that the revolving table is of lead. The carnelian is moved to and from the centre of the rapidly revolving lap, which is fed with coarse emery and water, until the marks made by the slitting mill ¿se removed. The coarse emery marks are removed on the lead mill with flour emery, and then, in the case of stones not smaller than $\frac{1}{3}$ in. in diameter, the polishing is commenced on a hacked or jarred lead lap, the shrasive material being rottenstone moistened with water; rottenstone would not adhere sufficiently to a smooth polishing-lap. Tha lap is hacked or jarred by tolding an old table-knife blade near the middle between

Mnsio Shelf for Plano.-The shelf illustrated here is intended to be fixed on a piano fitted with a hali lid; this extends only half-way back, with a long hinge running from end to end. These pianos Hre usually fitted with a turnover, or overhanging music desk, which, When wanted for use, necessitates the uplifting of the front portion of the lid and consequent upsetting of any articles or music placed thereon. The shelf illustrated will obviate this annoyance, and will at lesst minimiee the jarring noigee which generally result from utilising the top of the inetrument for the display of ornamente, etc.; it will, moreover, tor the display of ornamente, etc.; it will, moreover, due to the storage of articles on the top of the piano. The shelf should be the same size as the topA, with a^{\prime} moulded edge corresponding to that on the lid; $\begin{gathered}\text { in } \\ \text { in }\end{gathered}$ lin. ie the usual thickness. It may be fixed about 9 in . above the top by cast-irou or wood brackete as shown in the illustration, or by the nee of ornamental shelf brackets euch ae can be obtained at most ironmongers'. A top-heavy appearance must be avoided, and an spindle gallery, 2 in . high, will add to the effectiveness; instead, iretwork panels might be used. Whether the piano is furniehed with a canvas or gauze backing, it should be an easy matter to locate the bracinge, which may consist of five or seven uprights forming the framework. The two strips to support the ehelf brackets should be speurely screwed to those that are 9 in. from the sidee, a

Mubic Shelf for Piano.
mixture boiled gently until reduced to ahout 3 pt . Strain off the liquid, add 1 lh . of brown sugar and 5 pt . of water, and when it is sufficlently cooled, etir in a cupful of yeast. After fermenting for twelve hours, the beer may be again strained and pun into stoneware jare, the corke of which ehould be tied down. The beer will be ready in two or three daye. Herh beer may be kept on draught by etoring it in a stoneware jar having a tap at the slde. Bottlee containing fermented drinks should he kept in a werm place for the firet two or three days, and aiterwards removed to a cool place to prevent the fermentation proceeding too rapidly. If a cold drink is required, the bottles may be placed in a box and packed with içe and sawduet ehortly before being used; or they may be put into a shallow dish of water and wrapped round with a piece of damp muslin kept constantly wet and cool by contact with the water. The evaporation of the water from the muslin cauees a considerable fall of temperature. "Still" drinks, that is, those having but little effervescence, such as lemonade and lime juice, may be cooled in a similar way.
Swing Back Camera in Portraiture-The purpose for which the swing back is employed in portraiture is just the opposite to that for which it is used in architectural work. In the former it is need to accommodate the focue to a figure that does not present a plane suriface to the camera. The result is a certain amount of dietortion in the sigure, but the defect is scarcely apparent unless overdone, and is compen eated for by ehortening the time of exposure and

Use of Swing Back in Portraiture.
strip of woollen cloth being placed between the iron and the wood to prevent jarring ehould the screws work looee. To apply this shelf to a piano fitted with a whole lid, a modified eyetem of fixing will be required. The lid, a modified syetem of fixing will be required. The strips at the back to support the shelf brackets must be
hollowed out if of wood, or bent if of iron, to allow the lld to open easily when required for tuning purposes, etc. The ironwork ohould be enamelled to accord, with the wood.

Ginger and Herb Beers.-Ginger beer may be made in either of the following ways. (1) Boil 2 oz . of hruised (not powdered) ginger with 2 gal. of water for half an hour, add 21 b . of white augar and 1 oz. of lemon juice, or one eliced lemon, and etrain the liquid, which may be allowed to remain in an open bowl for four daye and should then be bottled, the corks being wired iu. Place the bottles on their side and leave the beer to ferment. It will be briek in about three weeke. (2) Over llb. of lump sugar, I oz. of ginger, \ddagger oz. of cream of tartar, and two or three sliced lemone, contained in a large bowl, pour 1 gal. of boiling water, and when cold, stir in a teacupful of brewers' yeast, and cover the bowl with a cloth. Allow the fermentation to go on for twelve or lourteen hours, strain off the yeast, and again strain, this time throngh two or thues thicknesses of fine muslin; bottle it, and wire down the corks. The ginger beer is ready in two or three daye. Herb beers are made from herbs possessing medicinal properties; among these are dandelion, nettle, and sargaparilla, which may be used alone, mixed, or with other herbs; porter, spanlsh juice, or liquorice may be added to give the dark colour. The herb may be extracted by filling a large pan clther with freshly gathered dandelion or nettle plants, or with the dried sariaparilla; in place of the latter loz. or : oz . of sarsaparilla extract may be used; 5 pt . of water should then be poured over the herbs and the
improved definition. Cameras for portraiture and for architectural work should have swing backg capable of an outward and an inward swing. For this reason the reversing frame must swing from the centre, or the side staje muet be specially constructed to lift the travelling frame out of the way of the base. Most field cameras are made to swing forward only. When photographing a sitting flgure (represented by the hatched lines in the illuctration), it will be eeen that the knees are much nearer the camera than the head; therefore, either a much smaller stop must be used, thue greatly increasing the time of exposure, or the swing back of the camera must be altered es shown in the illustration, so that the plate may repeat the plane of focus as indicated by the dotted lines $A B$.

Cleaning White Leghorn Hats. - To renovate white Leghorm straw hate that have become slightly soiled, wash in hot soap and water (white curd or castile soap for preference), then in clean water, and carefully brush with a stiff nail-brugh to remove dust and dirt. Then dip them in a, thin size made from parchment cuttings or white gelatine. Shake off the excess and haug up to dry. If the hats have become yellow they will probably need bleaching. Thie ie done by exposing them to the yapour of burning sulphux while they are wet. White Leghorn hate may be cleaned as follows also. Well brush them to remove dust, and wash them with salts of lemon (binoxalate of potash), using a hard nail-brush or tooth-hrush. Then rinse the hate in cold water to remove any traces of the acid, and stiffen as described above. The hate, if properly cleaned, will not require bleaching. Should ploperly cleaned, will not require bleaching. any of the salts of lemon stain the operator's clotnes, with strong liquor ammouia.

Ftehing in Gold on Glass.-Below is described how to etch in gold on glass a dull letter with s hurnished edge. The glass must flrst be well cleaned and polished with an old newspaper. A sketch of the letter having been placed on the glass, all those parts of the derign that are not to show a dull or matt suriace must he carefully covered with asphaltum or emhossing hlack. The glase plate is then surrounded with a raised horder composed of wax and Burgundy pitch, and when the protecting asphaltum is dry the plate is flooded with the etching acid. When the glass has heen stched to the required depth, the acid is poured off and the plate well washed in cold water and dried and polished. The plate is then sized for gilding, the size being made of a little isinglass boiled in distilled water or filtered rain-water. Apply when cold with a flat camel-hair brush. The gold leaf is then laid on, and when dry is well rubbed with cotton-wool until all the marks are removed. The letter is then backed with red lead ground in quick-drying hard varnish, thinned with benzoline. When the backing is dry, wash off the surplus gold.
Fowls' Eouse with Span Roof,-The accompanying drawings show a fowle' house 6 ft . long, 5 ft . wide, and 6 ft . high to ridge; it has a span roof. The run may hs of any length desired. A is a half-longitudinal sectlon showing the nests, etc., B is a half outside elevation,
mixture of hydrocarbons and succinic acid. Sometimes amher encloses crustaca, centipedes, and insects belonging to species which do not exist now; amber has been found snclosing leaves. The most valuable amher le of an opaque lemon colour, and is known as fat amber. An efficient solvent for amher is not known. Amber may be worked in the lathe, the rough amber first being sawn to shape with a how saw having a fine wire for the hlade, tripoli or emery powder heing used with it. Whilst the amber runs in the lathe, it may be heated from beneath by a small lamp or a pan of charcoal, as then it softens and is more easily worked; worked cold, it is liable to chip out. On the same principle, when drilling or tapping amber, warm the tool first, and allow it to remain in the amber whilst the latter hardens again ; if the tools are made too hot, the amher will he spoilt. By a simple procesg of polishing amber, it is smoothed with whetstone and water, and then is rubbed with whiting and water, followed by oil applied on a piece of flannel. When the friction heats and electrifies the amher, lay it aside to cool or it may fly to pieces. Perhaps the more general method of polishing amber is the following. First it is filed to a fairly smooth surface, which is improved by rubbing with Trent sand and water or with scraped Flanders brick and water applied wlth a flannel. Rottenstone and oil are then rubbed on with a flannel, followed by dry rottenstone applied with

Fowls' House with Span Roof.

Cis a half elevation of the end facing the run, and D is a half cross section showing the nests, etc. The posts and rails should be of about 3 -in. hy $3-i n$. stuff, and the rafters of 3 -in. by 2-in. stuff. The boarding should he about $\frac{3}{5}$ in. thick, grooved and tongned; matchlining will be suitable. The roof should he covered with felt. Perches should be fixed where most convenient.
Amber,-Amber (known in mineralogy as succinite) is the mineralised or fossil resin of an extinct pine-tree (probahly Pinites succinifer), and though its colour is a transparent pale zellow usually, of ten it is reddish or hrownish, and somet/mes tinged with green, blue, or violet; some varieties of amher are almost opaque. It occurs in heds of lignite and in alluvial soils, hut it is found in greatest ahondance on the shores of the Baltic, hetween Königeberg and Memel, where it is thrown up hy the sea; its form may be round irregular lumps, grains, or drops. It is hard, rather brittle, and has a perfectly conchoidal fracture, that is, the surface of the fracture has convex elevations and concave depressions. Amher becomes negatively electric hy friction, and the power of electrified amber to attract light bodies was known as early as 600 B.c. Its specific gravity varies from $1 \cdot 05$ to $l^{\prime} 07$, sometimes reaching $l^{\prime} 1$. It is without taste or smell, but when heated by friction or otherwise emits an agreeable odour ; it burns with a clear flame sind a pleasant smell, leaving about 1 per cent. of ash; it melts at $536^{\circ} \mathrm{F}$. It contains from 3 to 8 per cent. of auccinic acid; also, it contains two resins-one melting at 295° F. and soluble in ether, but not in alcohol; and another resin melting at $221^{\circ} \mathrm{F}$. and soluble in alcohol and other bodies. When its soluble constituents have been dissolved out hy means of ether, amher has a similar composition to camphor- $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$. On distillation, amber yields an empyreumatic oil which is a
the palm of the hand. Amher turned in the lathe is 6moothed with glasspaper, and polished with rottenstone and oil. The lapidary polishes amher first on an iron lap with diamond dust and oil of brick; then on a lead lap with coarse emery and water, followed hy fine emery and water; then with flour emery and water on a mahogany lap then on a list mill with pumice powder $^{\text {m }}$ and water ; and finally on a leather lap or piece of buff leather with fine putty powder and water. Sometimes moist putty powder applied hy the palm of the hand follows the leather lap. Amber that is to lo polished with facets is treated on pewter laps with crocus. Except that the amber is held in the unaided flngers, the process resembles the cutting and polishing of gems. Amber may be tested hy ($)$ Farming it glightly; artificial amber will then sucll of camphor. (2) Holding a small chip in a flame, when amber melts and burns slowly, whilst most artificial amber burns vigorously. (3) By weighing. The real is not so heavy as the artificial suhstance. To distinguish amher from fossil copal, heat a particle and hold a piece of moistened lead acetate test paper in the fumes. If it is amber, the paper will be hlackened; if copal, the paper will not he discoloured.
Setting Steel Plates.-Steel plates, say of No. 14 gauge, are straightened or set by nsing a hammer and an iron setter. IP, when the sheet is laid flat, thereare raised places along its centre, they must he worked down flat by hanmering from the edge of the raiged part outwards towards the edge of the shcet. If the centre of the sheet rests flat, and the edges are wavy, then the sheet is loose on the edge, and must he hammered from the wavy or loose parts in towards and along the centre of the sheet until the edges are drawn tight and true

Octagonal Fountain in Sheet Metal.-Fig. 1 shows an elevation of a greenhouse fountain which couid he made of copper or zinc. The parts A^{3}, B^{2}, and the mouided part of the foot C^{2} are of curved sheet metal, which, when mitred at the different edges, will form an octagonal basin, the centre piece and foot resting upon a circular bree. The fountain is supplied through the pipe shown projecting at ths base, and on the opposite side of the fountain an overfiow pipe should be arranged, the top of which projects thiough the bottom of the part
convenient number of equal parts, and draw projectors from these division points, A, B, B^{\prime}, ete., to join the nitre line $b^{2} 0$ (Flg . 2). No work the pattern for the baein, transfer the diviaions B to H (Fig. 1) to a straight line, as shown by B, B', C, D, E, F, G, and H (Fig. 3). Through each of these division polnts draw lines at right anglee to and on both sides of the centre line. Now take the to and on both sides of the centre line. Now take the line (Fig. 3) as B b^{2}. Also transfer the lengths $b^{1} b^{3}, c c^{1}$, $d d^{1}$, etc., from the plan (Fig. 2) th the lines with corre:

Fia. 6

Octagonal Fountain in Sheet Metal.

Abstract

A^{2} to a height equal to the depth of water that is to remain in the basin. To work the patterns for forming the fountain, draw to the required size an elevation as shown hy Fig. 1, the curved outline on the left-hand side representing the true shape of a section of one face when cut by a vertical plane containing the line ao in plan (Eig. 2). To draw the plan, take half the diameter of the top of the basin as radiue, and any point on the centre line, say o (Fig. 2), as centre. Draw the circle shown, then inscribe an octagon within the circle and so arrange it that the side of the octagon containing the points $b b^{2}$ is at light angles to the ground line. Eisect this side of the octagon and draw the line of bisection ob. Now divide the curve Air (Fig. 1) into any

sponding letters in Fig. ©, and through the points found draw a curve on each side of the pattern, as $b^{2}, b^{3}, c^{1}, d^{1}$, etc. Then take the radius o a from the plan (Fig, 2), and with this length mark a point from b^{2} at 0 (Fig. 3); then, using 0 as centre, draw the top curve a b^{3} to complete the using o as centre, draw the top curve a b^{2} to complete the basin pattern. The pattern for the centre piece and
foot (fig. 1) is worked in the sams way, the divisions from H to Y being the dietances to be transferred to the centre line (Fig. 4). The widths to be set off on each side of the centre line are shown in plan on the octagon face B^{1} (Fig.2), those for the foot being shown on the face C^{1} (Fig.2). Fis. 6 is the pattern for the circle forming the top of the oylindrical base. This pattern will be a rectangle, whose length wili equal the circumference of the base, and
whose width will equal the depth of the cylinder. When making the fountaiu, each section should be bent to the shape shown by Fig. 1, Fig. 3 being made to the shape shown for the basin. Figs 4 is shaped as shown by the shown for \boldsymbol{B}^{2} (Fig. 1), and Fig. 5 is bent to the shape of the part B^{2} (Fig. 1), and Fig. She sent to the shape of the then soldered together, and a small octagon, in which holes are punched in suitable positions for the passage of the pipes, is cut of the same size as the bottom of the hasin, and soldered to it. The sections of the centre piece and foot ars then soldered together, the foot is joined to the centre piece, and this to the basin.

Aluminium -Aluminium (symbol Al, melting point varying from $1,050^{\circ}$ to $1,292^{\circ} \mathrm{F}$., specific giavity 26), when of 98.5 per cent. purity, is bright white in colour, somewhat resembling silver, though its appearance depends much on the temperature at which it has been worked. It is capaole of taking a high polish. Its melting point may be increased greatiy if impurities are present or if it is alloyed with another metal. Aluminium is only slightly elastic; it is, however, fairly malleahie and ductile, but these latter properties are impaired $b y$ the presence of its two chief impurities, silicate and iron.
sublimes over with the salt (sodium chloride) and forms a double chloride of aluminium and sodium. This double chloride is heated in a reverheratory furnace with suitable fluxes and with metallic sodilm; the sodium combines wlth the chlorins and leaves the aluminium free to fall to the bottom and to be drawn ofr into ingot moulds. The chemical method of producing aluminium now has been superseded by the cheaper aud more satisfactory electrical process. The three best known electrical methods are the Cowles, the Hall, and the Herault, the first-named depending on the heating effect of the electric current and producing aluminium alloys only, whereas by the other two methods aluminium salts are submitted to electrolytic action at a high temperature, pure metal being in theso cases produced.

Plumbing Work Aboard a Troopship.-The oldfashioned troopship is now practically abolished, and troops are carrled in hired transports, whlch have to be specially fitted up. The sanitary arrangements for the troops are hers briefly described. Great cleanliness is especially nectssary among troops who are packed aboord a ship. Every sanitary appliance is thoroughly

Plumbing Work Aboard a Troopship.

f of more than 99 per cent. purity, it can be rolled, it is said, into leaves $\frac{1}{4}$ in in. thick, in this respect being inferior only to gold. Aluminium has a tensile strength of 7 tons to the square inch. When pure, it is noncorrosive and resists the oxidising action of the atmosphere, but this advantage has to be partly sacrificed to obtsin increased hardness and elasticity by adding small quantities of copper, nickel, or zinc. It digsolves in hydrochloric acid and in most solutions of the alkalies, hut it is only slightly affected by dilute sulphuric acid, and not at all by nitric acid. Rolled or lorged metal breaks with a fine silky fracture. Aluminium is not found in a metallic state, but when in combination with oxygen, various alkalies, fluorine, silicon, and acids, it is the base of many clays and soils, Common componnds of aluminium are felspar, mlca, gneiss, and trachyte, whilst other aluminium compounds, classed as precious stones, are the ruby, sapphire, garnet, turquoise, lazulite, topaz, etc. The ores Prom which aluminium is commercially reduced ars bauxite, cryolite, and corundnm. In reducing bauxite, It ls mixed with soda ash in a furnace, an aluminate of soda heing obtained afterwards, and the insoluble substances are separated bylixiviation. By passing carhonic acid gas through the solution, pure almmina is precipitated, and this is formed with solt and charcoal into balls, which are heated in an earthenware retort through which chlorine gas is passed, the result being that the charcoal combines with the oxygen, and the *hlorine with the aluminium; the alumimium chloride
flushed by a ship's hose several times a day. Fig. l shows a section of a latrine, A A indicating water supply in lead pipes, the size of the pipe (from $\frac{3}{4}$ in. to $1 \frac{1}{2} \mathrm{in}$.) depending pipes, the size of the pipe trom ing to $1 \frac{1}{2} i n$. depending on the size of the latrine and urinal to be supplied. sheet lead in the same way as a sink or cistern, and is usually about 18 in . wide and 18 in . deep; the length depending op the number of troops to be accommodated. 00 indicato lead wastes of 4 in . and 2 in diameter respectively; D D, taps to regulate the water supply; E, minal made of sheet lead, same as latrine. Fig. 2 shows a section of a washhouse, $F F$ indicating a tipping chamber made of sheet lead; G G, tin-plate tipping bowls ; H H, cam-action taps for water supply ; J J, 2-in waste pipes of lead. Fig. 3 shows a slop shoot. There are usually four of these, two fore and two aft. They are covered with sheet lead, tacked and soldered as shown. They are placed at the side of the ship, so that all slops may he shot overboard. The latrines and washhouses are placed on the upper deck above water level, and the wastes empty into the sea. They are temporary timber structures, the roof being covered with canvas to keep it water-tight.

Cleaning Gilt Bronze Ware.-Gilt bronze ware, if greasy, should be dipped in a hot solution of caustic potash, washed in hot sospsuds, and ringed in clean water. potas, greasy, dip in a mixture of 10 parts of nitric acid, 1 part of aluminium sulphate, and 40 parts of water, and then ringe in clean water.

Scoop for a Coal-weighing Mnchine,-A scoop (Fig. 1) for a coal-weighing machine should be made of No. 19 S.W.G. best charcoal iron. To mark out the pattern of the body (Fig. 2), flrst squars a sheet of iron and set off along the edge a distance'a B equal in length to the required measurement around the sooop. At A and B and at C, which is the centre of the line AB, erect perpendiculars; then set off the distance CD equal to the length of the scoop. From D along the line $D 0$ measure $D E$ equal in length to $A C$. With E as centre, and ED as radius, describe a semicircle as FD G. Then AFDGB will be the pattern required. Extra allowance, represented by the dotted line, must be made for wiring. Cut out the pattern, roll it to shape, and set off the wiring edge. Up-end the scoop on a piece of iron and mark round the pattern of the back. The laps for riveting and the wiring edge at the top, shown in Fig. 3, are additional. Punch $\frac{s}{k}-i n$. holes in the laps, and

Scoop for a Coal-weighing Machine.
bend them at right angles to the back; set off the wiring edge also, but in an opposite direction. Fit the back on, mark the holes, punch them, and then rivet the hack in place. The scoop should now be wired, the rod being in ons piecs and meeting in the centre of the back; otherwiss the strength of the scoop will be sensibly decreased. A wrought-iron handle is next riveted to the back as shown in Pig . 1. Two pivots, which should bs casebardened, are riveted to the side of the scoop so as to allow it to rest in position on the machine, and also to enable it to be freely turned for delivery.
Hydrochloric Acid.-The liquid known as hydrochloric or mariatic acid, or spirit of salts, is an aqueous solution of the pure muriatic acid, which is a colourless, invisibls gas possessing a pungent odour and an acid taste, and fuming when in contact with the atmosphere. This gas is irrespirable, uninflammable, has a specific gravity of l'2695, and becomes liquid under a pressure of forty atmosphsres. Muriates or hydrochlorates are combinations of this gas with a base. One method of producing the liquid ordinarily known as muriatic acid is to slowly pour 11 fi. oz. of sulphuric acid into 8 fl . oz. of 18 to slowhy, pour in oz of suphuric acid into 8 is. oz. of water, and, When cold, add to 12 avoirdupols oz. of dried c cork in the neck of the latter passes a glass tube which is connected with a three-necked wash-bottle, furnished
wlth a safety tube, and containing loz. of water. Heat the contents of the flask, conduct the disengaged gases to the wash-bottle, and thence, by means of a glass tube, to a bottle containing 12 f f. oz. of distilled water ; in this bottle the tube dips $\frac{1}{2}$ in. below the surface. Continue the process until $16 \frac{1}{2}$ il. oz. of muriatic acid are obtained. The last bottle must be kept cold during the operation. Commercial hydrochloric acid is a secondary product of the manufacture of carbonate of soda.
Regulator for Reciprocating Water Motor. When the reciprocating motor described on $p .298$ is used for organ hlowing, an automatic speed regulator as ehown by the accompanying illustrations will be required. In Fig. 1 the feeders are lettered F. The cord A passes over the pulleys B, one end being fastened to the top of the reser roir R, and the other to the lever 0 which actuates the valpe. To keep the cord tight. two weights D are used. E is an ordinary l-in. full-way valve; the serew epindle must bs roplaced by a plain rod to work through the stuffing box. The lever passes through an eve (Fig. 2) at the end of the spindle. The length of the lever c should be adjusted so that the

A

Regulator for Reciprocating Water Motor.

friction of the valve spindle through the stuffing box is overcome, and also so that when the reservoir is full the valve is closed as shown. While the motor is not working the valve will be fully open. On opening the starting valve water will be admitted to the motor, which will now run at full speed. As the reservoir bellows fill, the regulator valve will gradually close, the speed of the motor being thus reduced. On air being withdrawn from the hellows, mors water will be admitted, and the speed will incresse; a constant air pressure whl thus bs maintained in the reservoir bellows.
Papering a Ceiling. - The paper for a ceiling is prepared in the same manner as for hanging on a wall. Special attention is, of course, paid to the pasting of the paper, and for ohvious reasons it is almost useless to attermpt to put a common paper on a ceiling. The paper should bs of good quality ; and if the paper is a beavy one, it may, as in the case of heavy wallpapers, a beavy one, it may, as in the case or heavy walpapers, case of a paper hung on a wall, the paper, until it is drg, is held in place partily as the result of friction, but principally by the adheslveness of the paste; but when paper is hung on a celliug, contact is maintained solely by the adhesiveness of the binding medium. It is necessary, tberefore, to prepare the ceiling so that the paper may more readily adhers to it by first thoroughly cleaning the ceiling and then coating or sizing it with a solution of glus and whiting. When this is dry the paper solution of gius and whiting. When this is dry the paper smoothed with pumice-stone, as paper will not readly adhere to a rough surface.

Maling Small Eilter.-A small filter for purifying pater may be made in this way. Procure a large earthenware flower pot, well cloan it, and fix a piece of glass tube in the hole at, the bottom. Put in a layer of very small gravel (flint pebbles for preference); upon this place a layer of fing clean rand, and over this a layer of granular animal charcoal about 4 in. deep. Above all place another layer of clean sand. The filter may bs supported on a large jug or other suitable receptacle, and the water run in at the top. Plenty receptace, and should first be run through the filter so that of water should first be run through the filter so that
the sand and charcoal may settle down properly and the filter become efficient; it will be working at its best when the water falls only in drops.

Soldering Catch on Gun-barrel.-In soldering a catch on a gun barrel itwill be necessary to tin the bar'rels and also the catch, and then to bind the latter to the barrels with strong wire; also bind the barrels for some distance from each side of the catch, making the ribs secure with wsdges. To melt the solder, use heaters; these are generally made of copper with iron handles; or iron rodscan be used, thesnds being mads red hotand inserted in the barrels. Cnt some small slips of thin solder and place them on each side of the catch, using powdered resin. As soon as the solder melts, remove the heaters and cool the barrels.

Sheaths for Hand Camera with Changing Bag.The accompanying diagram shows the pattern for a sheath for a hand camera with changing bag arrangement. The sheath should be cut in the zinc and bent on the dotted lines. If fairly thick sheaths are used, and if the sides of the sheaths are bent over, and not

Sheath for Hand Camera with Changing Bag.

merely the top and bottom, as is often done, there should bs no fear of scratching the plates.
Preparing Snlphurie Acid.-Sulphuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$, known also as oil of vitriol, is an odourless, dense, oily liquid having a specific gravity of $1 \cdot 842$. Pure sulphuric acid is colourless, but the commercial acid is of a straw to brown colour. It is a typical acid. It occurs but rarely in a free natural state, but combined with certain elements it is common in the animal, vegetable, and mineral kingdoms. A simple method of preparing sulphuric acid on a small scale is to boil sulphur in aqua regia or in nitric acid; the oxidation of the sulphur will produce the sulphuric acid. The two principal commercial msthods of preparing the acid are based on discoveries made in the fifteenth century by Valentine. By one process, sulphate of iron (greon vitriol, hence the term "oil of vitriol") is distilled in earthenware retorts, the vapour passing into a receiver containing a little ordinary sulphuric acid and forming a brown, fuming, oily liquid having a specific gravity of 1.9 ; this is the process employed at Nordhausen, Germany, the product being known commercially as Nordhausen acid. The English process inay have two forms (1) in which sulphur is used, and (2) in which sulphide of iron (iron pyrites) is used; both of the processes depend on the production of sulphurous acid. Sulphur is ignited and burnt in a conical brickwork oven ; just above the sulphur is supported a pot, known as the nitre pot, which is flled with a mixture of sulphuric acid and either soda nitrate or potash nitrate, from $81 b$. to 10 lb . of nitro with trom 51 l . to 6 lb . of acid being allowed for every hundredweight of sulphur. If iron pyrites is used, it is roasted in arched chambers. Under the action of the heated sulphuric acid the nitre decomposes, the nitric acid fumes passing into another chamber along with the sulphurous acid olntained by burning the sulphur. The sulphurous acid abstirncts from the nitric acid sufficient oxygen for its couversion into sulphuric acid, the nitric acid becoming nitric oxide, which quickly becomes nitric peroxide by
taking oxygen from the air supplied for the combustion of the sulphur. Steam is introduced, and the sulphurous acid constantly being produced takes oxygen from the nitric peroxide and continues the supply of sulphuric acid; thus the cycle of actions and reactions continues $u_{\text {util }}$ the whole of the sulphur is consumed. The sul. phuric acid falls into water, which is drawn off for conceutration when it reaches the specific gravity of 1%. The solution is concentrated first by evaporation in lead pans until the specific gravity is $1 \cdot 6$, and then by boiling in vessels of platinum or fint glass.
Glazing with Putty.-In glazing a window lay the sash on a beach, and with the thumb run along the rebate a bed of soft putty; this is called back puttying. Next lay the piece of glass in its place, and with the second finger gently press along all sides near the rebate to get an even bed. Now get more putty, of a stiffer kind, and run along on all sides. Stand the sash stiffer kind, end run along on all sices. Stand the sash the glazing knife (see Fig. 1), allowing the knife to rest on the arris of the wood rebate, inclined at an angls according to the depth of the rebate. Work along each side from the mitre, finishing off in the centre each time. No difficulty will bs experienced if the putty is of the proper consistency, but if the putty is too oily it will drag. A little dry whiting in a dnsting brush will remove all loose putty after glazing. Fig. 1 shows a proper glazing knife, and Fig. 2 an ordinary stopping knife. The glazing knife should be shorter and firmer than the knife required for ordinary stopping. Only experience can in sure proficiency in glazing.

Theatrical Grease Paints.-The base for grease paints is 2 parts of clarified lard or cocoanut fat mixed with 1 part of white wax ; or vaseline or paraffin wax may be used. Grease paint is put up in cylinders

Fig. 2

Glazing Knives.

about 4in. long and $\frac{3}{4} i n$. in diameter, and in making a stick of flesh-tinted paint, pigments in the following small quantities will be required, No. 1 tint, deepest: As much vermilion as will cover a sixpence. No. 4 tint, medium: One-third larger quantity of a mixture of equal parts of vermilion and zine white. No. 3 tint, palest; Same quantity as No. 2 of a mixture tint, palest; same quantity as No. 2 of a mixture mixing the colours with the base, warm the latter and rub in the pigments with a palette knife; force into a tube, which is to serve as the mould, and when cold, push out the grease paint with a round piece of wood and wrap in tinfoil. Another way of making fleshtinted paint is to mix together 3 dr , of vermilion, 2 dr . of tincture of saffron, 5 dr . of powdered orris root, 20 dr . of precipitated chailk, 20 dr . of oxide of zinc, 20 gr . of camphor, 20 minims of oil of peppermint, 1 dr . of bouquet essence, aud sufficient almond oil to form a paste. Brown grease paint-Melt 6 parts of cacao butter or other base, mix in 1 part of burnt umber, and when nearly cold add 5 drops of oil of neroli. Also see under yellow, below. Deep red grease paint-Make into a paste, with sufficient almond oil, 15 dr . each of oxide of zine, subnitrate of bismuth, and plumbate of alumina; colour with 30 gr . of carmine dissolved in 80 minims of water of ammonia, and perfume with 12 minims of oil of peppermint, 12 gr . of camphor, and lidr. of bouquet essence, Rose colour arease paint-Colour the lard and wax base with madder lake. White grease paintMix together 1 oz . each of oxide of zinc, subnitrate of bismuth, and plumbate of alumina, and 5 dr . or 6 dr . of almond oil. This paste is perfumed by incorporating with 12 gr . of camphor, 12 miuims of oil of peppermint, and 1 dr . of bouquet essence. Yellow grease paint-Incorporate equal parts of yellow ochre, precipitated chalk, and oxide of zinc, and make into sticks with mutton suet or the base given above; for pale Jellow, use more oxide of zinc; for brown paint use burnt nmber, and for blue use ultramarine instead of yellow ochre. Greuse paints containing bismuth injure the skin.

Using Neat Portland Cement.-When neat Portland cement is used in thin layer's that are exposed to the air, it cracks and breaks off. Thus it is unfitted for skimming walls or floors, or for pointing brickwork, and in such cases should be mixed with sand in the proportion of 1 of cement to 1 of sand, or 2 of cement to 1 of sand. Cement may be used neat for jointing drain pipes wheu the drains are to be flled in quickly, drain pipes wheu the drains are to be filled in quickly, neat cement veing used for thls purpose. The cause of the cracking, and of the hrittleness, is attributed to unequal shrinking. Where the cement will not be exposed to air, as in the interior of brickwork, it may be used neat if necessary.

Cleaning Sponges.-To clean sponges, soak tbem for about hall an hour in warm dilute hydrocbloric acid (1 part of strong acid to 5 parts of water); remove, rinse in water, and then steep in methylated spirit for a further thirty minutes. The hydrochloric acid decomposes the lime soap which is precipitated in the cells of the sponge, and dissolves the lime, leaving the fatty acids of the soap, which are removed by the spirit.

A Tripod Plate-stand. - The hardwood stand for toast, etc., shown by Fig. 1, is simple, quaint, and useful. However it is placed, three of its legs must rest on the floor whilst the other three are ready to support the plate. Fig. 2, which is one-twelfth full size, is a section phate. Fig. 2, which is one-twellh ing in diameter, and through the hub. This is a ball in. in diameter, and angles. Four of the legs or spokes are fixed in these holes, and a third hole (shown in the centre of Fig. 2) is bored at right angleg with the two former ones, for the two remaining spokes. Each of these is 8 in . long and $\frac{3}{4}$ in. in diameter at the greatest widths; they are so shaped as to have some resemblance to racks, this preventing any article set on the stand sliding up gither of the spokes, and thus getting tilted aside. A ring of
eoft metal round the middle of the hub is useful to
both of ite sides with a stick so that it may be detucbed. Using this disc as a template, the succeeding glasses are obtained very easily. I'he circles which are cut out touch each other, and leave as waste only the very smallest possible quantity. An able workman will cut 6,000 glasses a day. After the separation, the glabses are in the form of mors or less concave dises, dollowing the shape of the spheress concave discs, were cut. Their edges require to be deepened for the purposs of raising them sufficiently over the surface of the dial to leave a free circulation for the hands. One way of doing this is to place the discs over moulds of fine earth containing a receptacle of the form which the glass is desired to take. These moulds are thrust in an oven, and when the glass is softened by the heat a workman with a plug of paper forces down the glass into the receptacle. Arter this operation, it is necessary to polish the whole of the glass on a stone; but, to avoid this, a different moulding process may be nsed. The glass is placed over a mould of the same kind, but of convex form, and of such dimensions that the edges of the dise pass all round it. In softening it. in the oven, the sides fall the length of the mould; a workman completes the operation by capping the mould with a wood model. The edges are beveilsd on a grindstone and polished on another stone. For costly watches thick glasses are made, and from these the outside convexity glagses are made, and from these the outside convexity known as "flettage"; from some the central part only of the convexity is removed; these are known as "pointillage."
Electric Arc Lamp for Portraiture.-An automatic feed arc lamp for photographio portraiture is expensive.

Electric Arc Lamp for Portraiture.
prevent splitting. The sams device might be utilised on a smaller scale for fancy articles: a stand thus arranged might carry a receptacle for odds and ends ou a lady's worktable, or a smoker's ash-tray.
The Manufacture of Watch Glasses.-The first watches, the "Eggs of Nuremberg;" were oval in shape, and had glasses which had been cut on a stone from a solid block of crystal. Later, when the watches took a round shape, this costly process was again used for the best watches, but for the inferior ones glasses were obtained by cutting, with a red-hot ring, two caps in small spheres of blown glass, the edges being trimmed on a grindstone. As the mechanism of watches lost its bulk, these glasses were found too protuberant, and again glasses cut in the mill from crystal blocks were used; these "cheves" glasses were very expensive. An attempt to reduce the cost was made by blowing small phials whose bases affected the form of the desired glasses. This foundation was separated, aud its edges were finished on the millstone. But it was necessary to blow as many phials as glasses, and the price remained high. The modern manufacture of watch glasses differs from the early methods only in the perfection of its tools and better division of the work, but the principle has not altered. A tube has its end dipped in the glaes pot and a workman blows a small bulb; this is softened by holding it near the door of the furnace, and, the end of the tube being put into communication with a reservoir of compres ed air, a big sphere is blown. This sphere, about 1 yd. in diameter, must bs produced without rents, and must be of the requisite thickness. From it ars cut convex discs of the size required. Formerly, this was done by marking round a mutal template with the and of an earthenware tube at white heat; cold water being thrown over the glass, the sudden contiretion of the cold material detached the disc. The modern method is to use " "tournette," which is a compass having a diamond as its marking point. Its use is delicate worls. The diamond having traced the circle, the latter is struck on

A clock work arrangement or an electro-magnet causeb the carbons to be drawn tugether or separated until the correct position is obtained automatically. A handfeed lamp, however, although demanding more attention than an automatic, apparatus, would serve the tion than an automatic apparatus, would serve the cost of the automatic lamp. 'I'he apparatus merely consists of a bar a (ses illustration) to which is fixed a clamp B. Travelling along a is a similar clamp for the carbon C, adjusted by a rack D and ratchet wheel E, worked by the wheel F. An opal reflector G is fixed as shown aud receives the rays of light, reflecting them into the larger drum H , which in turn throws the light on the figure. The drum is made to turn somewhat tightly in I at J. A counter-balance L is fixed as shown, and the whole swings from the ceiling at M. By means of the ball socket at K the lamp may be instantly placed in any position. Wires N and 0 convey the current to the carbons P and Q. Of course, the clamps carrying the carbons must be insulated from the rest of the apparatus. For this purpose ths grip of the clampe is generally made in sections with sheets of mica between.

Preparing Calf Skin for Banjo.-To prepare a raw calf skin for a banjo, place the skin in a warm damp spot until sufficient putrelaction has taken place to euable the hair to readily slip; or the skin may be put into limewater with lime in excese. The latter method is quicker, but involves mors risk to an amateur. The hair is now scraped off, and the skin placed in the limswater (if this has not been previously done) to remove the grease. The skin is now put on a frame and well stretched in every direction, thoroughly scraped on both sides to remove dirt, loose cells, fat, and flesh, and to reduos the thickness, and then allowed to dry. The above is subject to little modifications. For example, the fleshing knife used by the practical man may be replaced by an ordinary knife and scrubbing brush; the thickness may be reduced by pumicestons, and the colour improved by dusting on powdered chill z_{2} etc.

Hquid for Dry Shampooing. - A liquid for dry shampooing may be made by dissolving 2oz. of Castile soap in ls pt. of spirit of wine and adding 3 pt. of soap in If desired, the liquid may be scented with a few drops of essence of bergamot. A stronger material may be made by using carhonate of potash (pearlash) in be made by using carconate of poap, but in this case it would be better to wash place of soap, but in this case it
Temporary Outdoor Photographic Studio.-Fig. 1 shows a simple form of temporary outdoor photographic studio. It is merely alight structure fitted with a double set of blinds, one blind being of darkish green material fairly opaque, and the other of thin cotton. The thin blinds should be nearly always kept down, hut the darker ones ture arranged according to the effect desired. The dark blinds should be fixed on spring rollers, which can be purchased, and are inexpensive. The roller consists of a cylinder through which passes a rod, around which is wound some fairly stont wire to form a spiral spring, one end heing attached to the rod and the other to the rsvolving cylinder carrying the blind. The ends of the rod. are cut square and fit into square openings in side supports. When working in this studio, a hood or sky

FIG. 2

Temporary Outdoor Photographic Studio.

shade should be fixed to the lens of the camera as in Fig. 2. The simplest arrangement for a sky shade consists of two rods at a passing through tubes 13 screwed on each side of the camera; a cloth C may be thrown across the rods. This arrangement serves the purpose of a sky shade and also of a tocussing shade.

Polishing and Ke-silvering Brass Clock Dials.For polishing brass dials of clocks a lathe is required, although it is not absolutely essential. If ouly a few dials have to be done, the following hand method, although tedious, will doubtless answer well. The surface of the dial must first be well rubbed down with a pad of leather and very fine emery powder then go over it again with another leather pad and a mixture of oil and powdered pumice-stone and a mixture of oll and pow prepare a silvering bath made as follows. Dissolve $\frac{1}{4} 1 \mathrm{~b}$. of cyanide of potassium in 16 oz . of distilled or boiled water: in another vessel dissolve $\frac{1}{2} \mathrm{oz}$. of nitrate of silver in 16 oz , of water, and, when dissolved, throw into the vessel a spoonful of common salt, stir well with a stick, and allow to settle. Now dissolve some salt in water, and when the silver solution has settled nix in a few drops of the salt water solution. If there is any cloudiness, salt must be added; stir and allow to settle. If the salt water does not produce cloudiness, the water must be run off and the white deposit or piecipitate cargfully preserved. Well wash the deposit with boiling water by mixing, allow to settle, and run off. Now to the white deposit add about 1 pt. of clean water, and afterwards, by 1 oz . at a time, the first prelared cyanide solution, till the white powder is dissolved; stir well after each addition of cyanide. Make up the bath to tgal. If, on placing the article to be bilvered in this solution, a black deposit results, water
must be added; if it coats slowly, add white precipitate. Now well warm the clock face, und coat with a layer of beeswax the part that does not need silvering. Immerse the article in the silvering solution till well covered with silver, then take it out, well wash, clean off the wax, and polish the whole surface with jewellers' rouge and oil applied with a very soft cotton pad. An alternative method for silvering is as follows. Dissolve azoz. of nitrate of silver in $\frac{2}{2}$ t. of cold water, and add $\frac{1}{2} 1 \mathrm{~b}$. of cream of tartar with liz lb. of common salt ground fine; mix and stir well, adding water till of the consistency of thick paste. Ruh this paste on the dial, after rough polishing as at first, for a minute or so. When silvared, clean with a little wet whiting, wash in cold water, and dr'y. Coat the brass face with thin transparent hard varnish.
Self-propelling Chair for Invalid. - A common windsor armehail can be converted into a merlin chair by adding a pair of bath-chuir wheels with a polished wood driving rim (see A iu the sketch); the axle is

Self-propelling Chair for Invalid.
bolted to the cross spindles. The chair is supported at the back by a wroughtiron fork c and an 8 -in. wheel; this fork passes through the back spindle (not shown). A footboard is housed into the front leg stumps and is secured by a chain as shown at B.
Renovating Old Leaded Lights. - Old and leaky leaded lights to be renovated should be taken out of the window frames, laid flat on a hoard, and painted all over with a rather stiff paint of red and white lead and linseed oil, using an old, nearly worn-out paint hrush. To force the cementing material well into the lead cames, pressure must be applied to the brush, which should he drawn across the cames. The glass can he cleaned by rubbing with old rags or wisps of hay, and finally polished with clean pieces of rag or hay and wood ashes. The cement may have to be picked out wood ashes. pointed piece of wood from the corners of the squares of glass. Finally dust some lampblack over the whole to darken any edges of the cement that may be visible. Both sides of the lights should be treated with the cement.

Frosting Silver.-Polished silver is frosted by a few. minutes immersion in nitric acid diluted with an equal volums of water. A hetter effect is gained by frequent dipping and withdrawing. On removal from the acid, rinse in water, immerse for afew momentsin a strong bath of potassium cyanide, and then rinse in cold clean water. During these processes, handle the silyer with wooden. tongs or clamps, and do not touch it with the fingers.

Correcting Barrel of English Lever Watch.-One cause of ths harrel of a fusee lever watch rubbiug on the pillar plate may be that the harrel is toc low down, or has too mich side shake upon its arbor : or the barrel arbor may have too much endshake inside the brrrel. Take out the barrel, hold it square in a pair of sliding tongs, and test the inside endshake. If this is excessive, the barrel cover can be sprung down in its centre by placing it over a hollow in a piece of boxwood and using pressure. A little endshake is necessary. When corrected, place it In the frame and see whether the whole harrel is too low, or if there is 80 much side play an to allow fouling of the plate. It there is, the holes in the barrel bottom and cover will require bushing. If the barrel requires raising, spring down the bottom in the centre and correct the endshake by springing in the cover a little more.

Stick and Umbrella Rack. - The stick and umbrella rack shown by Fig. 1 is intended for use where there is not room for a hall stand. Prepare two pieces of $\frac{4}{4}$ in. walnut or mahogany 3 ft , 11 in . by 3 iu. by ${ }^{3}$ in., and two pieces each 2 ft . 6 in . by 3 in . Plane these and gauge them to thickness and width, and halve the corners together, taking care to keep the irame square. Knock it to pieces, shape the corners, etc., clean up carefully, and fill in with
generated, the heat to which it is raised, and tne rapidity with whlch it is formed. Charcoal supplies the body to be burned, nitrate of potassium the oxygen to support combustion, and sulphur raises the tempera ture of the grases, and thus increases their expansive force, which, for heavy rifled guns and large charges, is as much as 25 tons to the square inch. All the powder used in the English service is of the same composition, and varies for different purposes only in the size and density of the grains to vary the rate of explosion. By this means. without lessening the velocity given to the projectile, the strain on the gun can be reduced. The larger the gun the greater the density and size of the grains. Thus for 80 -and lo0-ton guns, prismatic powder of hexagonal shape, from lin. to $1 \frac{1}{2}$ in. thick, and having a density of $1 \cdot 75$, is nsed, whereas for rifles and machine guns fine grain is employed, having a density of l'72.

Driving Piles on a Batter.-The guides of the piledriving machine must be set to the batter at which it is intended that the piles are to be driven. The easiest way to do this with a machine having upright guides will be either to shorten the back raking shores

Stick and Umbrella Rack.
French polish; then glue together. Next prepare two pieces, each 1 ft . 9 in, by $3 \ddagger$ in., for the rack, and shape them as shown by Fig. 2. Polish them and fix them to the frame with three or four screws through the back. Then turn ten hat pegs (Figs. 2 and 3), which may be polished while in the lathe. They can be fixed to the frame by $\frac{1}{-i n}$. dowels, turned on the back ends and glued into centre-bit holes in the top and bottom rails of the frame. Brass hat pegs may be used if preferred. The rack can be finished by polishing.

Gunpowder.-The proportions for the ingredients of gunpowder employed at the end of the nineteenth century are given in the following table:-

	Nitre.	Sulphur.	Charcoal.
England	75	10	15
France $\left.{ }_{\text {Prassia }}\right\}$			
Urussia ${ }^{\text {United }}$ States $\}$	75	125	12.5
Russia	73-78	12.63	13.59
Austria	76	12\%	11:5

Gunpowder is an intimate mechanical mixture, not a chemical compound, chemical action taklng place when It is ignited. The gascous products formed by ignition : are carbonic acid gas, carbonic oxlde, and nitrogen. The explosive force depends upon the amonnt of gas

Driving Piles on a Batter.
or else to set them farther back at the foot, if the sills aire long enough to allow of this being done. The piles will most likely require guiding by walings placed one row near the top and another row as low down as possible, as shown in Fig. 1. Sometimes a hinged joint is provided at the head of the piling machine after the fashion indicated in Fig. 2, where machine after the fashion indicated in Fig. 2, where shores, hingeing on a spindle that serves to carry the pullev. By this arrangement the machine may be set for driving vertically or at any required batter.

Making Alcohol from Sugar.-Alcohol is made from sugar by the following process. Dissolve 1lb. of brown sugar in $\frac{1}{2}$ gal. of warm water; when the tempergture has fallen to blood heat, mix a little of the eolution with a teacupful of fresh brewer's yeast and add the mixture to the remainder of the solution. Allow it to ferment for from thirty -six to forty-eight hours, then skim off the yeast. Place the fermented liquor in a still and distil off about a quarter of it; the first portion passing over will contain most of the alcohol, but it will still be a weak spirit. To concentrate it, throw away the residue in the still and re-distil the portion that passed over, this time at a very low temperature. By careful rectification it is possible to obtain spirit containing 84 per cent. of alcohol; the 16 per cent. of water is removed by chemical agents.

Plumbers' Soil or Smudge. - Plumbers' soil or smudge is made in small quantities, as it deteriorates if kept. To make a soilpotful, place in the pot ilb. of size or diluted molten glus and a little water ; gently warm until ths size dissolves, but do not boil. Mix存cuh.in. of chalk ground to a fine powder with a pennyworth of lamphlack, and then with a pallet knife incorporate some of the melted cize with the mixture on a flat hoard or stone to form a thin paste, after which place the whole in the pot, warm, and stir together thoroughly. Try the soil on a piece of lead; if when dry it peels off, add water: if it is rubbed off easily, the size is not goon, or the lead is greasy. Old and thick soil is thinned with porter or stont, but do not add too much or the soil will hecome so sticky that the solder will cling to it.
Tyring Cart Wheels.-After running off a wheel on a bar ol iron to get the exact length it is necessary to know how much should be left to allow for the bending. No hard and fast rule can be given, as some brands of iron contract in bending more than others; but if lin. longer than the circumference is left, it will be sufficient. Having cut off the bar and bent the tyre, place the wheal to be tyred back uppermost on a tub or on the anvil, putting an iron rod through the centre of the stock and the hole in the anvil; traverse the Gole with a measuring wheel, as Fig. 1 , marking a joint on the wheel, starting from the normal point on the measuring wheel at A, and setting the dial hand to the point of starting after the wheel has been traversed. Then run round the inside of the bent iron, marking the dial point at the finish; this will give the approximats
with malt or with sulphuric acid. The alcohol produced is extremely weak; 1t is then distilled carsfully, and leaves most of the water and all the solid matter in the still. Another distillation produces rectified spirit containing 84 per cent. by weight of alcohol. To prepare stronger alcohol, distillation should be repeated several times with quicklime, the final distillation yielding ahsolute alcohol, which should contain 95 to 99 per cent. of alcohol. Proof spirit coutains 49 per cent. by weight of alcohol. Methylated spirit is rectified spirit to which 10 per cent. of wood spirit, or $\frac{3}{8}$ per cent. of petroleum naphtha, has been added to render it undrinkahle; it passes free of duty for manufacturing purposes. Whisky is made from malt and distilled as for rectified spirit rum is made from molasses, gin from malt, etc., and rum is made from molasees, gin from mait, etc, and mrandy from Fot be sold weaker than 25° under proof, i.e. containing not less than 40 per cent. of alcohol; and gin not less than 35 ' below proof, containing 37 'per ceut. of alcohol. Potato spirit made from potatoes, and "corn" spirit mads from Indian corn or maize, are common alcohols containing much fusel oil. Still commoner alcohol is made from beet treacle. The three last are made and used largely in Germany, but not much in Great Britain. Wines contain from io to 20 per cent. of alcohol; heer as a rule contains ahout 5 per cent.
Joint for Hot-water Pipes. - The accompanying illustrations show a simple and efficient method of making joints in hot-water pipes. Fig. 1 is a section of the finished joint. To make the joint, first canlk tightly to the bottom or the socket two turns of yars

as shown in the section at A. Now cut a length of yarn sufficiently long to go once round the pipe, and to torm a lip as shown at B (Fig. 2). Wrap the yarn round the pipe, and just press it into the socket, leaving a apace pipe, and just press it and the back two turns, lay the ends between it and the back pwo surns, lay the ef the lip shown at B (Fig. 2). The space between the yarn is now filled, as shown at C in the section, with neat Portland cement mixed with water to the consistency of cream, by pouring it in at the lip B. Before the cement is set turn in the ends of the Jarn and caulk the last turn up against the liquid cement. When the joint is set, neatly plaster a ring of neat Portland cement D round the end plaster a ring of neat Portiand cement D round the end pipes may be filled with water in about twelve hours after completing the joints. These joints, if carefully made, will be perfectly tight, and not so liable to crack the sockets by expansion as a rust joint.
Renovating Bronze Ornaments-To clean and renovate bronze ornaments that have gone dull and rongh, try brushing the articles with fine brush and powdered pumice-stone and water; if this does not have the desired effect, they will have to be dipped, cleaned, and re-bronzed. Well boil them in a solution made by dissolving $\frac{2}{2}$ lb. of caustic potash in 1 gal. of water, then dip them in clean water and dry, Any rough places must be smoothed down with a fine file or fine emery-cloth Now dip the articles in an acid bath, wash, and dry. Make up a solution consisting of 1 gal. of water and $2 \frac{1}{2} \mathrm{oz}$. of iron perchloride or nitrate of iron, the latter for preference. When the iron salt has diesolved, immerse preference. When the iron salt has is atisfactory, conthe bronzes for a short the ime in mersion till the desired shade is obtained. The above solution will give any shade from brown to black. When the articles are quite dry, they may be preserved from further* damp by coating with a very pale lacquer.

Weight of Air．－Rsgnault ascertained that at the f reezing point of water（ 32° F．）a cublc centimetre of perfectly pure，dry air had a weight of 0 riplyy32 of a rramme prhen the barometer stood at 76 centimetres at Paris．Of course，the earth attracts hodies more strongly at the poles than at the equator，though the slight differsnce can in ordinary practice be ignored．In linglish equivalents，a cubic toot of air has a weight of 0.080681 lb ．，or $1^{\prime 29}$ oz．，at $32^{\circ} \mathrm{F}$ ．and at ordinary atmo． spheric pressure－that is， 14.7 F ．and at ordinary atmo－年he density，and consequently the weight，of air vary with its pressure and temperature．In ascertaining the weight of air exceedingly delicato apparatus is neces－ siry，or there will hs a large percentage of error in the result．The usual method is to weigh a bulb of glass or other material filled with air；the air is ex， hausted，and the bulb weighed again，the difference in the two weighings being the weight of the quantity of air that is sufficient just to fill the bulb．By ascer－ taining the cubical contsnts of the bulb，it is an easy matter to calculate the weight of any given quantity of air．The table below gives the absolute weights of a cubic foot of air under varying conditions of tem－ nerature and pressurs．The weights given are those that would be obtained by weighing the air subject to
means of getting the ferment in this country is to shake the unlk in a bladder or to add eome rennet．According to the American Druggist，kouraiss commonly is made in America by adding yeast to cows＇milk and then ferment－ ing．The best results are，however，obtained from the use of mares＇milk，this being the basic ingredient of the original Russian koumiss．Mares＇milk is less rich in casein and fatty matter than cown＇milk，and is therefore more easy of digestion．In the United States of America cow ${ }^{\prime}$ milk is used always，and generally it answers the purpose well，but it ia better to dilute the milk with water to reduce the percentage of casein，etc．Mares＇ milk contains 8.75 per cent．of milk sugar，cows ${ }^{2}$ milk only 5.35 ；therefore it is necessary to add sugar to the preparation when made from cows＇milk．The following recipe has been found to answer well．Dissolve 3 oz ．of milk sugar in 32 oz ．of water，and add the solution to 96 oz ．of milk；rub together $\frac{1}{3}$ oz．of compressed yeast and 21 oz．of brown sugar in a mortar with a little of the mix－ ture，and then strain into the other portion．Strong bottles are essential，champagne bottles being frequently used，and the corks should fit very tightly and be wired down ；if the cork does not fit properly，the carbonic acid gas as formed will escape and leave a worthless pre－ paration．The koumiss must be kept at a moderate

WEIGHT OF CUBIC FOOT OF AIR IN POUNDS．

E	Pressure in pounds per square inch，above atmosphere．																							
$\underset{\text { E }}{\substack{0 \\ \hline}}$	0	1	2	3	4	5	6	7	8	9	10	15	20	30	40	50	60	70	so	90	100	125	150	200
	． 063	－		－	－	$\cdot 1156$	－		－		－1450	－1741	2037	2624	3211	3798	4385	4972	5559	． 6146	． 6733	8201		
10°	－6845		－	－	－	－1132	－	二	二	－	－1419	－1706	－1994	－2568	3143	－3717	4292	${ }^{4866}$	$54+1$	6015	－6590	8026	－9462	
20°						－1108					－1390	－1671	1952	－2515．	－3077	－3640	－ 4202	4765	3328	－880	＇6453．	7859	． 9265	1.2078
$\begin{aligned} & 30^{\circ} \\ & 32^{\circ} \end{aligned}$		－ 0862				－ 10881	＇1136		1246	1301	$\cdot 1361$	－1636	－1912	－2463	－3014	－3566		$\begin{array}{r} 4668 \\ 4649 \\ \hline \end{array}$	5219	． 57746	${ }^{6321}$	7699	${ }^{9} 9076$	84
	－0794					$\cdot 1061$					1334	－1601	${ }^{1} 1874$	$\stackrel{2414}{ }$	－2954	－3491	4034	4574	5114	－5654	${ }_{6195}$	7545		
50	． 0778				－	－1013				－	－1308	－1572	1837	23	－2896	$3+26$	3955	4885	5014	5514	6073	7397	8721	11368
60	． 0763			－	－	－1023			－	－	－1283	－1512	－1802	－2321	－2841	－3360	－3879	－4398	4918	． 5137	－5956	$72 \overline{1}$	8553	$1 \cdot 149$
70°	． 0749				－	100t				－	1258	－1513	1768	－2278	2787	－3296	－3806	－4315	4835	－3331	－5844－	7118	－8391	
80°	－6735	－		－	－	0．180					1235	－1485	－1735	－2235	－2735	3226	3736	－4230	4736	． 236	－5736	6986	823	．0736
		－			－	${ }^{0966^{\circ}}$				－	1213	－1458	－1704	－2195	－2686	－3176	3658	－4159	4650	－ 3140	5631	6859	8886	． 0541
100°	0709				－	03530	－			－	1191	－1432	－1673	2155	2638	3120	3692	4084	4566	－5019	5531	． 6736		
110°	－0696				－	－0933				－	－1170	－1407	$\cdot 164$	－2118	2591	－3065	3535	4013	4486	4960	5131	－6618	7802	－0171
120°	－0673	－			－	－0917			－	二	． 1150	－1383	－16168	－2081	－2547	－3012	－3478	3913	41409	4875	＂3340	－6504	7668	
140°	． 066					－0 0352				二	$\cdot 1112$	$\cdot 1337$	－1562	－2012		2912	3362	3812	4326	4712	． 516	62	－－	${ }^{9663}$
150°	－0651	二	－	－	二	－11872	二	－	－	－	$\cdot 1091$	1315	－1536	－1979	－2422	－2864	${ }^{-3367}$	3750	4192	4635	$\cdot 5078$	6184		9504
160°	${ }^{0610}$				－	00558				－	－1076			$1 \cdot 19.17$			＂3254	$\begin{array}{r} 36920 \\ -3620 \end{array}$	$5 \cdot 4120 .$					${ }^{-9351}$
1780°	．0620				二	－0851				－	$\cdot 1059$	$\begin{gathered} 1273 . \\ \hline 1253 \\ \hline \end{gathered}$	$\begin{aligned} & 3 \cdot 187 \\ & 3 \end{aligned} \cdot 1464 \cdot$	$\begin{aligned} & 1916 \\ & \hline 1886 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.2345 \\ & 6-2308 \\ & 6.20 \end{aligned}$	${ }^{-2773}$	－3152	$\begin{array}{r} 36300 \\ -3574 \end{array}$	8	$\begin{aligned} & 4488 \\ & \hline 448 \end{aligned}$	$\begin{gathered} 49816 \\ 48 \end{gathered}$		${ }^{7} 7659$	${ }^{\cdot 9203}$
190°	－0611				二	－0818	二			－	$\cdot 1026$	1234	－1442	－1857	－2272	270	－	－3519	3933	－4350	${ }^{4765}$	5801．	－6842	${ }^{8920}$
200°	．0601		二	二	二	－0816				－	$\cdot 1011$	1215	． 1420	． 1829	－2238	2617	二	－3465	－3875	428	46933	． 57636	．	．8784
$210_{21}{ }_{2}$	．05921					－0792					－09963	－1197	${ }^{-1399}$		－220．	2608	3002	－3414	－3817	${ }^{4220}$			．6631	${ }^{86533}$
220°	008	－				－0782	－				－0981	1179	－1378	－1775	－2172	－2569	2966	－3364	－3761	－4158	${ }_{4555}{ }^{46}$	－5548	． 6540	8526
230°	－5575	－	－	－	－	0771	－	－	二	－	－0967	－1162	－1358	1749	2141	2532	2923	3315	3766	－4097	－4488	5467	646	－8402
250°	．0559		二		－					二													－626t	
$\begin{aligned} & 275^{\circ} \\ & 300^{\circ} \end{aligned}$	$\begin{aligned} & 0540 \\ & 0525 \\ & 052 \end{aligned}$				－	$\left\lvert\, \begin{gathered} 0624 \\ 07601 \end{gathered}\right.$	二			－	$\left\lvert\, \begin{aligned} & 0907 \\ & 0987 \\ & 0.0 \end{aligned} .\right.$	$\begin{aligned} & 7 \cdot 1091 \\ & 8 \cdot 1055 \end{aligned}$	$5 \cdot 1235$	$\begin{array}{r} -1642 \\ -1588 \end{array}$	－ 21914				-34965	3847				${ }^{7} 78888$
$32.5{ }^{\circ}$	－0516				－	－0678							－1191	1538	1882	－2226		－2915	－3258	3662	－3916	4806		7386
$3 \overline{0}{ }^{\circ}$	－0490		－		－	．0657		－				－ 0990	${ }^{1157}$	－1490	－182t	${ }^{-2157}$	－290	－2824	$\mid-3157$	－340	${ }^{3824}$	－4657	54	7158

the given conditions in an air－tight case surrounded by \＆vacuum ；if the case were surrounded by the ordinary atmosphere，the case of air would appear to have a less atmosphere，the case of air would appear to aave a less $70^{\circ} \mathrm{F}$ ．，pressurs 80 lh ．per sq．in．ahove the atmosphere， has an actual，absolute weight of 0.4825 lb ．；weighed in air having a temperature of 70° F．，the weight would appear to be only 04076 lb ．The table printed above is on the authority of the Locomotive．

Making Koumiss．－Koumiss（spslt also kumyss）is a fermented liquor made originally by the Tartars from fermented liquor made originally by the cartars from mares＇mik；a somewhat similar liquor，called lobau or Yavirt，is made from cows milk by ths arabians and name of ket．To prepare it，the milk is diluted with a little water，then placed in bags made of hides，and shaken till the cream is thrown up；it is theu placed in earthen vessels and kept in a warm place until l＇er－ mentation takes placs．To hasten this，a little koumise is added from a previous fermentation．The liquid is lrequently well stirred to incorporats the curd and fat， and must be shaken before being drunk．Ths process is a true fermentation，the milk sugar being destroyed by a peculfur ferment with the production of lactic acid， alcohol，and carbonic acid．The liquid is said to have au agreeabls sourish taste，ind is sometimes recommended， though it is rarely $e e e n$ ，in England．One of the few
temperature，and to ensure it being properly finished the bottles containing it should be gently shaken es，ch day for about ten minutes to prevent the cloting of the casein．It is well to take the precaution of rolling a cloth round the bottle during the shaking process as the amount of gas generated is great，and should the bottle be of thin glass or contain a fiaw it may burst．Some few days elapse before the fermentation passes into the acid stage，and when this has taken place the preparation is much thicker．It is then in the proper condition for allaying sickness，being retained by the stomach when almost everything else is rejected．A fairly good quantity of koumisa else is bejscted．A prepared in a small way in the following manner．Fill a quar＇t champagne bottle to the neck with purs cows＇milk，add two tablespoonfuls of white sugar dissolved in a little warm water，and a very small gnantity of compressed yeast．Then securely fasten the cork in the bottle and shake the mixture well ；place it in a room having a temperature of from 70° to $80^{\circ} \mathrm{F}$ ．for six hours，and finally in au ice box for about twelve hours，and it then should be ready for use．
Removing Tar from Black Cloth．－The best way to remove tar from black cloth is to immerse the boiled portion in benzene，After soaking for several hours renew the benzene，and with a hard nailmbrush carefully brush away the atain．

Sliding Sashes In Railway Carrlage Doors.-Fig. 1 is an elevation of the inside of a railway carriage door showing the strap for lifting the sash; Fig. 2 is a gection through the door ; whilst Fig. 3 is a detail showing the bottom rail of the sash and the method of holding the same in position when closed. The brass angle bar A is screwed to the underside of the bottom rail of the sash, and hooks over the bar B, fixed to the middle rail of the door. Sufficient space is left at the top to allow it to clear the bar B and fall into the groove E (Fig .2). Differing in detail from the above is the railway carriage door with sliding sash, of which Fig. 4 shows a half inside elevation. From the section (Fig. 5) it will he seen that the door pillar is grooved from the top to within a few inches of the bottom, where a padded rail is put

At D the method of fastening the strap and the bottom plate is shown. The sashes are planed, grooved, mortised. etc. by machinery, and knocked torether; then the corners are cleaned up roughly by hand. The frame is then puttied and the glass putin. The joints are next cramped up, and the wedges (see Figs. 6 and 7) are dipped in glue and driven in. When these are dry the ends of the tenons and wedges are cut off level, and the frame is titted into a gauge or into a door. It is then cleaned up, a piece of zinc being used to prevent the sandpaper scratching the glass; the top edge is then rounded, and the plate put on the bottom edge, when the sash or glass frame, as it is generally called, is ready for varnishing and polishing. On many railways the angle plate is not used, the rail under the sash inside being binged tc

Sliding Sashes in Railway Carriage Doors,
scross the door; on this the sach falls. To take out the sash, the door is opened; the sash may then be pushed upthrough the top of the door, although some companies screw stops into the grooves above the sash to prevent the sashes being removed without the use of a screwdriver. In Fig. 6 the joint at the top of the sash at a has a circular corner, the square-cornered joint of the bottom rail being shown at C , Fig. 7. Sometimes the corner at C is mitred sin., but as a rule the round is stopped on the stile and the mitre of the round worked up with the chisel. B, Fig. 6, is a section of the top rail and D, Fig. 7, a section of the bottom rail finished. The grooves are run right through the length of the stiles and rails, the tenons being made of the same thickness as the width of the grooves. From $\frac{3}{10}$-in. to $\frac{1}{4}$ in. polished plate glass is used, and the grooves are made larger to allow for a hedding of white-lead putty stained a mahogany colour.
fall under the glass frame when it is raised; also some railways use both the angle plate and the falling "garnish" rail.

Renovating Maroon Repp Chair Covers.-To renovate faded and soiled maroon repp furniture covers, varoceed thus, Strip the gimping, then with an old screwproceed knock up the tack heads sufficiently to allow them to be gripped with a pair of pincers; care must he exercised so as to damage the cover as little as possihle. The majority of repps are very poor and threadbare at the back, owing to the thick diagonal cord being forced up with the weft yarn, leaving only the warp yarn slightly hound to form the backing; therefore the best method hound he to have the cover's French cleaned. Then put would he to have the covers French cleaned. worth the new gimp on the chairs; old gimp is not worth

Working Copper-plating Solutions.-Oopper-plating solutions, made by dissolving the grean precipitate from a copper sulphate solution with potassium cyanlde, should be worked hot. A temparature of from $150^{\circ} \mathrm{F}$, to $180^{\circ} \mathrm{F}$. gives the best results, the copper deposit being brighter and more coherent than at lower temperatures. When large bulks of alkaline copper solutions arg nacessary, and it is lound inconvenient to beal them, it is advisable to precipitate the copper from 3 solution of ite sulphate with liquor armmonia, then add more of this to dissolve the precipitate, and finally add the putassium cyanide. Work this cold and revive by adding a little liquor ammonia from time to time.
tunt brass and bronze alloys. Copper sometimes oceurs native, being then often covered with an oxide and carbonate crust; it is sometimes found in grains in sand, but is more generally obtained by the reduction of its ores, which are very plentiful. The ores mav bs reduced-(1) by treating them in reverberatory or blast furnaces, or in both; (2) by the "wet" method; or (3) by the electro-chemical method. By one German furnace process the ore is oxidised and the sulphur expelled by roasting, and the ors is then smelted in a cupola, two cisterns receiving respectively the slag and metal which flow through tap-holes. Repeated roasting is necessary, and thon all sulphates are removed by

Splayed Linings to Segmental Opening. - The correct way of getting the true shape of the soffit of splayed framed-up linings, sides and soffit to have the sams angle of splay, is the following. Set out the Flan and elevation (Figg. 1 and 2), and the section through the centre as shown at Fig. 3. Draw the norizontal line A B passing through the centre 0 of the segment. Produce the section line 18 of the soffit until it cuts the line AB in D. Thisis the centre required

Splayed Linings to Segmental Opening.

and 8 as radii, draw the ares $7,1,14$, and $13,8,15$. Now divide half of each of the uppar and lower arcs in elevation (Fig. 2) into any number of equal parts as shown, then on the development (Fig. 3) set off distances exactly equal as shown by tha corresponding distances exactiy equal as shown by the corresponding
figures. Join 7 to 13 ; this gives the trueshape of the leitfigures. Join 7 to 1 ; this gives the true shape of the laitcourse, will be the same. The arcs drawn through e and 1 (Fig. 3) show the amount of bevelling to each edge. To get the bevel for the top of the jambs (or side linings), with H (Fig. 1) as centre draw the are K a and project 1 p to M, then project horizontally from 7 to M. Join II to 13 , which will give the bevel G required, as shown.
Particulars of Copper.-Copper (Cu) is a highly malleable, ductile, and tenacious red metal greatly used in many industrial arts. It does not resist the action of acids, and even moisture affects it, causing it to form an oxide known as verdigris; this, under the action of carbonic acid, turns to a grean carbonate. Copper is also caused to oxidise by heat; it is volatile only at a great heat. It has a specific gravity of $8 \cdot 9$, ind melts at 2,000 F. Commerclal copper contains many impurities, amongst them being iron, silver, bismuth, antimony, arsenic, cuprous oxide, lead, tin, and sulphur. Copper is much used in its commercially pure state, but is greaty in demand as the chief ingredient of the impor-
lixiviation. Silver is removed with lead, which is afterwards separated by cupellation. By another furnace method the copper pyrites is roasted together with chloride of sodium, sulphurio acid being formed; this attacks the soda, and the copper is turned into a soluble sulphate, the iron of the pyrites being then in the form of peroxide. The fumes of the chlorins, set free from the sodium chloride, impregnate lime, and this becomes a bleaching agent. The wet method of reducing copper ore is to grind and roast it, mix it with salt, and again roast it so as to form copper chloride and sodium sulphate, which are then dissolved in dilute acids. Any silver which may be in solution is precipitated by the action of zinc iodide, aud the copper chloride solution is siphoned off and precipitated with scrap-iron. After washing the precipitate, it is refined in reverberatory furnaces. The copper from these may be cast into slabs, and to make thess into thin shasts the slabs are annealed and rolled repsatadly, the rolls being brought nearer at each successive operation; the copper is annealed after each rolling.

Cleaning Gold.-To clean gold ware, mix together 2 parts of acetic acid, 1 part oi oxalic acid, and 2 parts of sulphurio acid, stir in 2 parts of rouge, and mix with 200 parts of distilled water. Rub this on with a cleao cloth, rinse off with hot water, and dr'y.

Gildiog Metal Chains without Battery.-As metal chains, eto., gilded without the aid of a battery only take on the thinnest film of gold, they cannot be expected to stand any real wear, as the film of gold is easily rubbed off. The following bolution may be used in gilding brass and copper chains. Disgolve $\frac{1}{2}$ oz. of gold chloride in 1 qt . of distilled water, add llb. of potassium carbonate diesolved in 1 qt . of distilled water, and boil the mixture for two hours. Swill the chaing in the hot solution for a minute, rinse in hot water, and dry by shaking in sawdust Silver and other metal chains may be gilded without a battery in an ordinary gold cyanide gilding solution by attaching a strip of gine to the article. But in this case the gilding solution soon becomes contaminated with zinc.

Making Flags.-Flags are made of bunting joined by a double seam, the two edges heing turned in. Sewing bunting cut diagonally is a rather a,wkward job. Silk is used for small and finer flags. Material may be economised by careful cutting; for example, the square of blne cut from the ceutre of the letter P (see illustration)

Signal Flags.
will do for tine centre square of the code letter s. The red circle from the pennant F will come in for the centre of the pennant 0 , the white circle from c for the circle in D, and so on. Paint and prints are not satisfactory for making flags. The illustration ghows the distinguishing colours and forms of the code. The flag shown at the top left-hand corner is the code signal and gnswering pennant. The flag Q hoisted alone at the mainmast head signifies that the ship is in quarantine. mainmast head signifies that the ship is in quarantine. The flag \mathbf{P} hoisted alone at the foremast head signifes the fair way, that the chip wants a pilot.

Antimony-Antimony (Sb.) is a bluish white metal, erystalline and brittle, and so can be powdered easily. Its specific gravity is 6.7 , and its melting point about 430° specific gravity is chief use is in the formation of serviceable alloys, such as Britannia metal, pewter, and Queen's metal, to which it imparts brittleness. The melted metal rapidly oxidices if exposed to the air, and if bighly heated burns with a white flame, glving off fumes of antimony trioxide. Antimony is dissolved by hot hydrochloric acid, hot concentrated sulphuric acid, and aqua regia, and if treated with nitric acid forms a straw coloured powder known as antimonic acid. Commercial antimony contains impurities in the form of potassium, copper, iron, lead, etc. Antimony occurs native, but generally the metal is found in combination with others; the chief antimony
ore is stibnite. The antimony is recovered from this ore by two distinct processes; by the first of these is separated the antimony oulphide, which is in its turn refined by the second process. In Germany, whence is obtained much of the commercial antimony, the ore is placed in covered pots having perforated bottoms, below which are receivers. Between the pots is the fire, the heat of which fuses the sulphide, which runs through the holes into the receivers. Crucibles heated in circular wind-furnaces are employed to refine the sulphide in England. The charge is 40 lb . of sulphide and 20 lb , of scrap-iron, and the product is antimony and iron sulphide, which is again melted, this time with sulphate of soda and some slag, a product of the next process. The resultant metal is melted with pearlash and slag, and cast into ingots. Antimony can be produced by electrodeposition.

Wire Gauges.-The table shows the value in inches of the sizes on the principal wire gauges.

Number of Gauge.	London or Old English.	English Legal Standard.	Stubbs or Birmingham.	Brown and Sharpe.	Roebling.
	Inches.	Inches.	Inches:	Inches.	Inches.
0000000	-	5	-	-	-
000000	-	-464	-	-	- 46
00000		-432	-		-43
0000	-454	4	454	$\cdot 46$	-393
000	-425	-372	-425	-40964	-362
00	-38	318	'3*	-364	331
0	-34	$\cdot 324$	-34	-32186	-307
1	\cdots	3	3	-2893	-283
2	-284	$\cdot 276$	-284	-25768	'263
3	-259	-252	'259	-22942	\cdots
4	$\stackrel{3}{23}$	-232	-238	$\cdot 20431$	-225
5	-22	-212	-22	$\cdot 18194$	-207
6	-203	-192	-203	-16202	-192
7	-18	-176	-18	-14428	$\cdot 177$
8	-165	$\cdot 16$	'165	-12849	-162
9	-148	$\cdot 144$	-148	$\cdot 11443$	-148
10	-134	-128	-134	$\cdot 10189$	$\cdot 135$
11	-12	$\cdot 116$	-12	$\cdot 09074$	-12
12	-109	-104	-109	-08081	'105
13	-095	'092	-095	.07196	.092
14	-083	-08	-083	-06408	.08
15	'072	$\cdot 072$	-072	-05706	-072
16	-065	$\cdot 064$	-065	-05082	-063
17	'058	-056	'058	-04523	-054
18	$\cdot 049$	-048	$\cdot 019$	-0103	-047
19	${ }^{\circ} 04$	-04	-042	$\cdot 03589$	$\cdot 041$
20	-035	-036	-035	-0<196	-035
21	'0315	'032	'032	-02846	-032
22	-0295	-028	'028	. 02534	-028
23	-027	'024	-025	'02257	-025
24	-025	-022	-022	-0201	,023
25	$\cdot 023$	-02	-02	-0179	-02
26	-0205	'018	'018	-01594	-018
27	-01875	-0164	-016	.01419	$\cdot 017$
28	$\cdot 0165$	-0148	-014	-01264	-016
29	-0155	-0136	-013	$\cdot 01125$	-015
30	-01375	-0124	$\cdot 012$	-01002	-014
31	-01225	-0116	-01	-00893	-0135
32	$\cdot 01125$	-0108	-009	-00795	-013
33	-01025	-01	-008	-00708	-011
34	-0095	. 0092	$\cdot 007$	-0063	-01
35	-009	-0084	$\cdot 005$	-00561	-0095
36	-0075	-0076	*004	-005	. 009

Cleaning Silver--To clean silver ware, with a soft brush rub on a thin paste of equal parts of levigated (not precipitated) chalk and sodium hyposulphite rubbed up with distilled water. Rinse in clean water and dry in sawduct. Or let the paste dry on the silver, then rub off and rinse in hot water. To clean silver coins, immerse the coin in a bath of 1 part of sulphuric acid immerse the coin in a bath of 1 parts of water. In from five to ten minutes the crust of silver sulphide will have been dissolved; then rinse in clean water, rub with a soft brush and castile soap, rinse again, dry with a soft cloth, and rub with chamois leather. Silver-plated ware may be cleaned in this way. With a soft linen rag rub on a moistened mixture of 2 parts of cream of tartar, 2 parts of levigated chalk, and 1 part of alum, all in dry powder, and keep until required for use in a tightly corked bottle. Rub the plated ware lightly, rinse in hot soapsude, and then in clean water, and dry in sawdust. Small plated articles blackened with silver sulphide may be dipped for an instant in dilute hydrochloric acid and thea ringed in clean water. Large articles blackened in the same way may be immersed in a 10 per cent. solution of sulphuric acid, or may be wiped with a swah carryiug dilute nitric acid; always after applying acid rinse in clean water.

Preparing Whitowash,-A good way of preparing whitewash is to break up 6 lb . of whiting in a pail containing just sullicient water to cover the whiting; when the latter is thoroughly slaked and settled fown, pour off the surplus water, stir the dissolved whiting with the bare haud and urm, and add 1 qt . of hot double size. Incorporate the two and set aside in a cool place to form a jelly. To preveut a yellow shade, grind a little indigo or ivony black in water and mix with the whiting and strain before adding the size. When required for use, dilute with cold water and use at once. Excess of whiting will cause the distemper to crack and fiake; excess of size will impar't an "eggshell" gloss. To prepare a good ceiling whitewash, proshes as above as far as the slakiug of the whiting: ceed as above as far as the slakiug of the wbiting: solution of Young'e prtent size use a cupfinl of fize to every 2 gal. of the dissolved whiting. If the wash is to be perfectily white, potato starch may be used. Set aside to jellify, and then with a distemper brush rub it through a piece of coarse canvas stretched over the top of a pail. For use, dilute with cold clean water.

Fancy Dog-kennel-Here is a design for a fancy panelled dog-kennel suitable for a room. The kennel may be about 20 in . long, 15 in . wide, and 14 in . high. Fig. 1 is a side elevation showing opening, Fig. 2 an end elevation, Fig. 3 a plan of the top, and Fig. 4 a cross
and washed, most of the mechanical impurlties being removed. The ore then is partially roasted or calcined for two hours in a reverberatory firnace, some of the ore becoming lead oxide and the rest becoming lead sulphate; some of the sulphur in the ore helpe to form sulphurous acid, which escapes as gas. On raising the heat of the furnace, the oxide, sulphate, and unaltered sulphide react mutually, and form sulphurous acid and mevallic lead; lime is thrown into the furance during the latter stages of the procere, at the end of phich the molten lead is dun off and the slag is removed.

Restoring the Lustre of Silver.-The best way to restore the original lustrous whiteness of silver goods lost or impaired by exposure to sulphurous atmospheres or by having been often and perhaps carelessly cleaned, is first to anneal and then to pickle the silver, the latter portion of the procese resembling the colouring of gold alloys. The aunealing may be done in a charcoal fire or in the fiame of a gas or oil blowpipe; the heat destroys all organic matter adhering to the surface of the ar'ticle, at the same time oxidising on the surface the base metals with which the silver io alloyed. The annealing requires some care and attention, or The annealing requires some care and attention, or silver has been soft-soldered previously, it is unfit to be annealed, as the heat necessary for this would melt the solder. It is necessary to remove all stones, steel, or any

Fig. 3.
eection. Any strong wood may be used. The framing ehould be about in. thick, the panels $\frac{8}{\theta^{2}}$ in., and the bottom ${ }^{5}$ in. The top would require to be jointed, mitred, and tongued together. The framing could be rebated and the panels fixed from the back into the rebates. Moulding about 1 in. wide and mitred round as ghown would improve the appearance.
Lead.-Lead (symbol Pb , melting point $612^{\circ} \mathrm{F}$., specific gravity 11'4) is a bluish grey metal which is lustrous when freshly cut. Being very malleable, ductile, and tough, it is used largely in many of the crafts. It is devoid of elasticity, very soft, and can be cold-welded by. pressure. Lead is not affected by most acids, but moisture and nitric acid rapidly oxidise it. If it ie mowly cooled from ita melting point, it crystallises into elowly cooled from its melting point, it crystallises into
octahedrons. Sheet-lead is of two kinds, cast and rolled, octahedrons. Sheet-lead is of two kinds, cast and rolled, occasion requires, in one of two waye, soldering or burning. Lead is easily tused, and enters into the composition of many useful alloye, some of which are eolders. Lead occurs in the form of ore, and generally ae sulphide of lead, known commercially as galsna. This has a metallic lustre, and often ie in crystallised cubes, always containing silver. Lese importantlead oresare cerusite, a dirty white eubetance, containing, besideslead, carbon and oxygen; pyromorphite, a green, yellow, or brown ore containing, besides lead, phosphorue, carbon, oxygen, and chlorine; mirneteslte, which Is bimilar to pyromorphite, but contains arsenic in the place of phosphorus ; and anglesits, a white ol grey ore composed of lead, sulphur, and oxygen. In the reduction of the principal ore-galena-it is first plcked, then broken
material not silver or liable to be injured by the heat, and it is also advisable to remove pins, tongues, or other steel work from brooches, etc. Over- or under-heating must be prevented; in the former case, if the article is overheated, the silver is liable to melt; and it underoverheatcd, the sirver is labie mather matter ie not effectuheated, the adhering organic matter ie not exfectuIn order to obtain the required degree of heat, and not to run a risk either of under- or over-heating, the article is held with a pair of pincers very close over the flame of the lamp so as to be covered wlth soot all over, and is then exposed to the blast of a flame by meand of a blowpipe until the soot burns or disappears. When the article is cool, it is immersed in a boiling solution of article is cool, it is immersed in a 1 parining folution of from 1 part to 5 parts of sulphuric acid in about 20 parts of water The quantity of the water depends upon the the solution. The solution dissolves the extracted deposit of oxide and leaves a coating of fine'silver on the surface. Good sterling silver will be whitened almost in an instant, common gilver will take a minute or even longer ; if the articles are left too long in the solution, they turn an unseemly greyish colour, and the process has to be repeated. Common silver has to be treated has to be repeated, Common silver has to be tieated is obtained, and in some cases even will have to be silvered by electro-plating. As soon as the article in the acid turns white it is transferred quickly to lukewarm water. The articles are then dried iu sawdust, kept in an iron ve日esel near the stove or in any warm place. Any places on the artlele desired to 100 k bright are burnished with a steel burnisher. Silver merely oxidiced by exposure to the atmosphere, and merely oxidised by exposure to the atmosphere, and not by repeated cleaning, is restored simple with a clean tooth brush and a little carbonate of soda.

Cleaning Furred Pipes.-A satisfactory method of removing fur or lime deposit from hot-water pipes has not yet been discovered, and it is generally bstter, and about as cheap, to put in new pipe. One method of removing the lime is to fill the apparatus wlth oome seale-coftening compound; but if this plan is adopted, the appuratus cannot be used for eome days. Another method ls to take out the pipes, make them hot, and then hammer the pipes outside in order to loosen the llme deposit 80 that it can be sbaken out. This is not a perfect method, as bammering does not readily loosen the scale.

Particulars of Agate．－Agate，esteemed the leatst valuable of the precious stones，is a variety of quartz oc－ curring usually as rounded nodules，known as geodes，or veins in trap rock and serpentine．Silica enters into its composition largely，and usually alumina and oxide of iron are present．The layers ot chalcedony，carnelian， gmathyst，common quartz，jasper，opal，and fint form bands of variegated colours，and these hands in the polished agate，by reason of their peculiar and distinctive arrangements，give to the several varieties their respec－ tivs names，such as ribbon－agate，fortification－agate， zone－agate，ctar－agate，moss－agate，clouded－agate，etc．； also ggates are named from the substance which forms the predominant layers，for example，jasper－agate，flint－ agate，etc．The cutting and polishing of agates is an industry at Oberstein，in Oldenburg，Germany，and in Scotland also，where they are known as Scotch pebbles． Agate is used in finger－rings，for seals，beads，small handles，burnishers of many kinds，bearings in delicate mechanism，pivots，and for the knifs－edges of weighing machinery．for which and other purposes its hardness peculiarly fits it．
Bronze Alloys．－Bronze is a yellowish，reddigh，or chocolate－brown alloy of copper，tin，and other slemen－ tary metals，and is made in a similar way to brass；and indeed，there does not appear to be a sharp distinction between these two alloys．Below are given the propor－ tions of some of the hetter known bronzes：－

d	\|采荡	宮		葛	$\begin{array}{\|l\|l\|} \hline \text { 荗 } \end{array}$		ジェ		＊
minium		－	91		－				
${ }_{\text {Ditto }}$	10.3	－	${ }^{43} 5$		二	31		$\cdot 7$	
Ditto ．．．	7.5	－	90	25	－				
Antique ．		－	87			－	13		
Asitto Grey		－	97	－	二	二			
Bluish Red		－	84.2	－	－	二	${ }_{1} 1.58$		
Ditto	－	－	82	－	－	－	18		
Dark Grey	－	－		－	－		24		
Fontaine		1	8	－	1	－			
Ditto ．．．	－	－	8		－	－	－		
Ditto	－	1	7	\cdots	－	－			
Ditto ${ }^{\text {Ditto }}$	－	0.5	$2 \cdot 5$	－	－				97
Hard		－	87		二		123		
Reddish Yellow．．	－	－	88.8	－	－	－	11.2		
Ditto ．．．		－	${ }_{94}^{92} 8$	二	二	－	$7 \cdot 2$		
Ditto …	－	二	98	－		－			
Statuary ．．．	－	－	88	－	1	－	9		2
Whitish ．．．			${ }^{9} 9.6$		二				
Ditto	－	－	66.6	－	－	－		－	
Ditto（hest）	－	－	$33 \cdot 4$	－	－	－			－

Cleaning Silver Watch Dials．－Dirty silver dials having enamelled figures are cleaned in a different way from those having painted figures．If the figures are enamelled－and this can be ascertained by touch ing them with the point of a graver－the dial may be heated over an alcohol lamp，and then scoured with pulverised pumice－stone applied with a brush or by the fingers．Boiling for a few minutes in a copper cup containing chermically pure sulphuric acid diluted with twice its quantity of distilled water will render the dial snow－white without in the least iujuring the enamelled figures．Rinsing in hot water and drying in hot sawdust completes the operation．If the dial has painted figures，the use of heat and acid are out of the question，and very careful handling is necessary if the figures are to be preserved．The cleaning or whitening may be performed by rubbing on the dial a thin paste of precipitated chalk and distilled water．The operation will be a lengthy one，but will be satisfactory if the necessary care is taken．

Stripping Gold from Gold－plated Ware，－By the following process the gold may be stripped from a gold－plated article，no matter whether it was fire or electrically gilt．Warm up an almost exhausted gold－plating bath，and use the plated ware as the gnode．After the current has been active for a short time，the gold will be found to be entirely stripped irom the article，and is recovered by diluting the stripping fluid with double the quantity of water and adding a solution of sulphate of iron．The gold will be precipitated in powder form，and may then be melted．The gold may be stripped also by means of a mix－
ture of 10 parts of sulphuric acid， 2 parts of hydrochloric acid，and lpart or nltric acid，in which it will gradually dissolve．The articles must always be entered in this mixture in a perfectly dry condition．To recover the gold，diluts this acid mixture with from ten to twelve times its quantity of water，and add a solution of iron， The gold in this instance also will be precipitated in the form of powder，and may then be smelted in the usual manner．If the shape of the article allows of it，the gold may be scraped off．The copper of the scrapings may bs eaten out with nitric acid，after which the gold can be smelted．
Sealing－wax，－To prepare sealing－wax，melt together at a rooderate heat 30 oz ．of Venice turpentine aud 45 oz．of shellac；stir weli with a wooden stick and introduce，a little at a time，a mixture of 6 oz ．of geuuine Bologna chalk， 6 oz ．of magnesia，aud 28 oz ．of vermilion， all in fine powder．When the mass is thoroughly mixed， pour in 7 oz ．of turpentine， 3 oz ．of a solution of mastic in turpentine，and 3 oz ．of Peruvian balsam；heat the mixture again，stir well，and the sealing－wax is ready for pouring into suitable moulds．The above sealing－wax is red；for blue wax，substitute ultramarine for the ver－ milion；for yellow，use finely prepared and perfectly anhydrous chrome yellow；and for black sealing－wax， use finely powdered ivory black．Sealing－wax sticks having wicks through their centres are made with the same composition．The wick consists of from six to ten cotton threads saturated with wax or stearin ；the wick is stretched tightly in a specially made mould，which is provided with a funnel through which tine molten sealing－wax is poured．But little ingenuity is required to construct a suitable mould．
Polish for Calf Kid Boots．－The best polish for calf kid boots is white of egg；this should be kept till it is stale and forms a liquid，not a jelly．Ordinary blacking should not be used for calf kid boots．Another polish can he made by boiling pieces of calf kid，aud adding a little gelatine，a very small portion of glycerine，aud yellow soap；simmer up again，then strain and put in bottles．

Working Nickel－plating Solution．－A nickel solu－ tion for plating is at its proper working strength when it coutains llo．of rifckel sulphate to the gailon of water．To maintain it at this strength attention must be paid to the anodes and their condition． As a rule，one surface of anodes exposed to the action of the solution should exceed by one－half the sur－ face of the goods being plated．The anodes should also freely dissolve iu the soluriou，and therefore should not be too hard．It nickel has been drawn from the solution too last，it will be liable to become too acid，and this condition may be ascertained by testing it with blue litimus paper，which will quickly redden if acid is in excess．But a slight excess is permissible when plating iron and steel．An excess of acidity miy be corrected by adding a small quantity of liquid ammonia；but an addition of nickel sulphate will be required also if the normal strength of the solution has beem reduced．The hydrometer will thow this reduc－ tion by comparing it with a sample of known correct strength．The readinge on the hydrometer scale show the density of the solution，but not its tem－ perature．Nickel－plating solutions are always worked cold．

Graining Walnut．－The ground colour for＇walnut graiving is composed of 10 parts by weight of white－ lead， 2 parts of yellow ochre， 1 part of burnt umber， and 1 part of patent driers，thinned with equal parts of raw linseed oil and turpentine．Let the work stand for forty－eight hours after the ground has been applied；then，with a lump of fuller＇s－earth and a damp sponge，damp down the ground．Brush over the panel with weak beer，burnt sienua，and a little vandyke brown，mottle it with a mottler，and sotten with a badger．When dry，over－grain with a thin mixture of vandyke brown and weak beer，using the solution freely； employ over－grainers of different sizes，and soften up－ wards．While this coat is still wet，add the dark veine and curl with an over－grainer and drop black．When the work is dry，glaze and shade with a mixture of vandyke brown and a little drop black．The panels should be darker than the moulding．Before varnishing， see that the work is elean，paying special attention to the quirks；see that all joints are sharp and clear． The varnish used should be of good quality，and must be applied on a dry day．If applied in wet weather it will hloom．

Putty or Coment for Glass．－A cement or cuperior putty for glass is the composition known as gilders putty，the constituent parts of which are whiting， resin，glue，silver sand，and linseed oil：it sets as hard as metal，and can be moulded to any shape．

Dry Platos that an be Daveloped in Water. Photographic dry plates that can be devaloped in water contaln one of the developing agents in a film of gum on the back of the plate. On placing the plate in a speciAled quantity of water containiug the alkali, the gum dissolves, liberates the reducing agent, and dsvelopment commences. The process is recommended for the use of tourists, so as to avoid the necessity for carrying developing materials; but it is doubtful whethe.' it possesses any advantages, as an accelerator and a restrainer and a glass measure must be carried. Tabloils are just as convenient, and probably more reliable, as the plates do not keep well;-the plates are prepared as follows. Dissolve 100 gr . of pyro and 15 gr . of selicylic acid in 2 dr . of water and add 1 dr . of alcohol. Dissolve 150 gr . of gum arabic in 3 dr . of water. Mix the two, and brush over the back of the plates. About $\frac{3}{2}$ dr. should be used for each quarter-plate. Allow to dry spontaneously. Expose as usual, and develop by immersion in water containing two to three drope of strongest liquor ammonia, 880 per ounce.

Side-tipping Waggon.-Fig. 1 is a perspective sketch of a side-tipping waggon for brickmakers' clay showing the arrangement by which the waggon is swung from
able heat, the metal is poured into moulds. If the brass is to be made into sheet, it has to undergo a series of annealings and lollings until the desired thinness is attained. Below lígiven a short table of brass alloys:-

Nume of Brass,	Copper.	Lead.	Tin.	Zinc.
Bright malleable	70	-	-	30
Common	50	-		50
Common pale ...	50	6	4	40
Emerson's patent (light)	$65^{\circ} 6$	-	-	$33 \cdot 3$
English...	67	1.	-	32
	$70 \cdot 29$	$0 \cdot 28$	017	29.26
Fine pale (brittle) ...	$53 \cdot 88$	2	24.23	$32 \cdot 14$
French ... ${ }^{\text {P }}$	71.9	2		25.1
Pinchbeek	80	-	--	20
	83	二	二	17 28
Rolled	75	-	3	22
Sheet-metal worker's	62	-	1	37
Ditto	90	-		10
Ditto	92.7	-	$2 \cdot 7$	$4 \cdot 6$
Ditto	67	0\%5	$0 \cdot 5$	32
Ditto	65			35
Ditto	83	-	-	17
Tombac... ...	88.8	-	$5 \cdot 55$	$5 \cdot 55$
White ...	10	-	10	80

Cleaning and Curling Feathers. - Feathers may be cleane α by washing them in clean water, using a soft cloth, and then absorbing the water with dry plaster-of-Paris. Another method is to wash them in goap and water, followed by clean water, and then by plaster. Or benzoline may be used, tinishing with plaster if desired. In extreme cases, use hot water (steam is better), follow with turpentine, then with benzoline, using plaster last. When quite clean, the feathers may be curled by any of the following methods.

Fic. 3

Fig. 4

Side-tipplng Waggon,

side to side. The sizes and measurements of these waggons vary according to the number of cobic feet of earth they have to carry. The waggon illustrated is about 33 in . long by 26 in . Wide by 25 in . deep. The bolts on which it awings are 18 in . in diameter, the space between the two middle bolts being $5 \frac{1}{2}$ in and the outer spaces 4 in. These bolts rest on a 3 -in. by 2 -in, angle iron riveted to two 4 -in. by 2 -in. channel irons. Fig. 2 shows a swinging frame on which an ordinary waggon 33in. long by 26 in . wide by 12 in . deep is run. Both frame and waggon are tipped up. The two bent-iron bars in the middle catch over the axles, thus preventing the waggon from falling out. Figs. 3 and 4 are, respectively, side and end elevatlons with dimensions of the sheet-iron frame.
Brasses.-Brass is a general name for alloys of copper and zinc. The colour varies with the proportions of the ingredients, though, strictly speaking, the term "brass" can be applied only to those copper and zinc alloys of a decided yellow colour. Ordinary brass is malleable and ductile, especially suitable for casting, and, though harder than copper, melts at a lowar temperature than that metal. Unlacquered brass quickly tarnishes under atmospheric action. By one method of making brass, the zinc and other lngredients are plunged into the molten copper. When the whole is in a molten state, it is stirred with hot brass or iron rods to produce a thorough alloy: just previous to pouring, soms sodilum sulphate or sodium carbonate is thrown on to the metal to bring to the surface any impurities, which may then be skimmed. By another method, copper slips are plunged into licuid zinc until an alloy difficult of fuslon is formed, when the rest of the copper is added. Whan cold, the alloy is broken into pieces and melted under charcoal, zinc or copper being added, if necessary, to give the requisite colour and quality. When at a suit-
(a) Place under one of the barbs a blunt knife (a tableor paper-knife), the thumb being on the top to regulate the pressure, and draw from the shaft outwards. Each of the barbs should be treated in this manner. This method, though slow and tedious, is the best. (b). Damp the feathers and place them in hair-curling pins for a couple of days. Then carefully comb out. (c) slightly warm a goffering- oi curling-iron, and curl the barbe in batches. Shake well. (d) If merely damp and out of curl, placing the feathers in iront of a fre to dry will in many cases re-curl them, (e) Black (dyed) feathers can be curled by holding them for a few seconds in the smoke of a fire. No special tools are necessary, but the work requires care and patience.
Blackening Brass Pins.-Here is a method of darkening or blackening brass tacks and pins. Add to a solution of copper sulphate (bluestone) a strong solution of washing soda; allow this to settle, pour off the liquid, and add a quantity of water equal to the liquid poured off; then allow to settle again. Then pour off as completely as possible, take the green sediment with four pletely as possible, take the green sediment with four ammonia gradually until the articlea immersed in it assume the desired colour.
White Paste for Canvas Shoes,-This is a reclpe for a white paste for canvas shoes. Scrape some pipeclay into a saucer, add a few pieces of oxalic acid and a very small portion of washing blue, and then pour on warm water till the paste is of the required thickness. If a paste of not quite such a dead white is desired, scraps in a little buff-ball after the oxalic acid has diesolved. In uslug the paste, first it is well rubbed into the shoes, and, when dry, rubbed out and then lightly brushed.

INDEX．

（Illustrated Subjects are denoted by Asterisks．）

Acetate of Cellulose， 259
Acetylene Gas， 282
－－Action on Burners， 282 － 22 ，Bunsen Burner for，
－－Burners，Cleaning， 802 －of， 301 ，llluminatiag Power －Makiug， 28 Calciam Carbide for ——— Generator，${ }^{*} 282$ 67
Acid Action on Gold Broaze Powders， 253
in Atmosphere， 309
Blackening Alumiaium witb， 13
，Oarbonic，Generator for， ＊329
Chromic， 47
of
Preparing， 47
，Cleaning Bronze ia， 30
for Embossing Glass， 107
Etching Alabaster， 240

－Brass， 86
 －Copper， 140
－，Hydrochloric， 342
，Muriatic，34？
－，Nordhansen， 343
－，Obscuring＿Glass with， 153
Pickle for Gun－metal Cast－ ings， 97
－，Picric，Preparing， 96
－，Uses of， 96
－Solution，Standard， 86
－－，Succinic，in Amber， 339
－，Sulphuric， 343
Preparing English Method of Preparing， 343
hausen， 343
－，—，Specific Gravity of， 343 Preparing 343 ，Method of
Preparing， 343
－，Tannic， 17
－Whitc，for Glass Embossing， 107
Acidity of Nickel Solntion，Cor－ recting， 229
Actinometer（see Sensitometer）
Adamantine Spar， 187
Adulteration of Milk，Detecting， 191
Aërated Water Machine，＊329
African Ivory， 262
After－damp Gas， 254
Agate， 353
－，Cutting，307， 337
－，Poliehing，307，337 ．
－，Uses of， 353
－Varieties oli， 353
Air（see also Atmosphere）
－，Cooling， 109
－Cracks in Plaster Walls， 59
－Gun Construction，＊256
－－Pressure ${ }^{239}$ ，${ }^{\text {－}}$ ， 256
－Prassure， 239
－Pump for Blow－lamp，＊T3
－，Pure Dry，Composition of， 239
－Space in Barracks， 239
－\quad pace in Barracks， 239
－Factories，239
Hospitals， 239

Air Space in Lodging Houses， 239
－ －－ Schools， 239
－Vessels in Porkshops， 286
－－，Watery Y Puops， 97
igy vapoar in， 239
－weighiag， 348
Ala baster， 240
－，Cementing， 154
－，Cements for， 240
－，Cleaning， 240
－－，Colonring， 240
－，Etelang， 240
Imitation， 240
—，——，Cements for， 240
－，－，Cleaniag， 240

- —，一，Colouring， 240
- ，一，Etching， 240
- ，一，Hardening， 240
- ，一，Staining， 240
—，Polishing，154，240， 271
－，Saw for， 68
－，Staining， 240
－，Tools for Working， 240
Alarm，Working，240， 271
Alarm，Electric，for Clock，83， ${ }^{*} 141$
T，Shop－door， 181
Albatross，Staffed，Cleaning Head of， 186
Albert，Burnt－Gold，Restoring Colour of， 264
Allumenised Printing－out Paper， 45
Alcohol， 347
——，Absolute， 347
－，Amyl， 347
，Ethyl， 347
－in Beer， 347
－Brandy， 317
－－Gin， 347
－Whiskey， 347
－Wine， 347
Making，from Sugar， 346
Methyl， 347
，＇Proof， 847
－—，Proopyl， 347
－Rectified， 347
Alcoholic Solution of Gelatine， 228
Ale，Brewing， 169
Aleppo Galls， 211
Alkali Solation，Standard， 86
Alkalies（see Potash，Soda，etc．）
Alkanet Root，Colouring Oil with，
41
Alloys of Antimony， 351
－，Brass， 354
——，Grold；Colouring，36，46， 54
Altar，Private，${ }^{*} 106$
Alumina Soap， 80
－with，Waterproofing Fabrica with， 80
Aluıininın， 341
Acid and Arsenic Bronze for Blackening， 13
－－，Blackening， 13
－Bronze， 353
－Compounds， 341
－，Copper－plating， 300
－，Cowles Method of Pro． ducing， 341
，Frosting， 31
－－，Frostang， 318
＿－Furnace， 218

Alumininm，Gold－plating， 300 －Hall Method of Produciug， 341
，Herault Method of Produc－ ing， 341
Lanseigne and Leblanc＇e Baths for Plating， 300
－－Leaves， 341
－，Malleability of， 341
－＿，Matting or Frosting， 314
－，Melting Point of， 341
－，Nickel－plating， 300
－Ores， 341
－－，Reducing， 341
－，Polishing， 314
－，Silver－plating， 300
－—，Soldering，I64，174
－，Solders for，164， 174
－，Specilic Gravity of， 341
－，Tensile Strength of， 341
，Thermo－electric Properties of， 90
Amber， 339 ．Bleaching， 323
－，Distinguishing，from Arti－
ficial Amber， 339
——，Drilling Fossil Copal， 830
－，Triling， 339
—，E＇lectrical Properties of， 339 ，＇Fat， 339
－，Melting Point of， 359
－Oil， 334
from，Artiticial Musk made －Distillates，Bleaching
＿334，Distilling， 334
－Succinic Acid in， 334
－Pipe Monthpiace Cement．
ing，156， 253
－，Polishing， 339
－，Resins in， 339
——，Sawiag， 339
－，Solvent for，323， 389
－，Specific Gravity of， 339
——，Succinic Acid in， 339
——，Tapping， 339
－＿＇Testing， 339
－－Working， 339 ．

- ， 1 ，in Lathe， 339

Amber－coloured Liquid for
Chemists＇Show Bottles， 13.
American Breast Collarfor Horse， 162
－Clock Pallets，Testing， 242 －Striking Wrong， 275
－Koumiss， 348
－Organ（see Organ）
－Potash， 170
－Red Pine，Strength of， 150
————，Weight of， 150
－Roll－top＇Desk，Roll－shatter for ${ }^{2} 291$
Amethyst，Artificial， 76
－，Ontting and Polishing， 337
Amianthus Asbestos， 303
Animonia， 270
－Killing－bottle for Iasects， 81
－Soap， 202
－Sulphate， 187
Ammonium Tartrate， 262
Anpère－turn， 150
Amyl Alcohol， 347
Anaglypta，Affixing，to Ceilings and Walls， 148
Aneroid Barometer，Talking

Angle Zinc， 97
Angler＇s Folding Stool，＊21
Anglesite an Ore of Lead， 352
Aniline Colours，Dyeing Pampas
Grass with， 12
－－，Using，in Iuk，74，97，
108，212，223，225， 238
Animals＇Heads，Modelling，in Papier Mâché， 65
－Skalls，Bleaching， 286
－，Skeletonising，28， 286
Annealed Brass，Cleaning， 116
Antelope Horns，Removing Cores trom， 281
Antimony， 351
—，Alloys of， 351
，Impurities of， 351
－，Melting Point of， 351
－Ore， 351
－－，Reducing， 351
－，Specific Gravity of， 351
－，Thermo－electric Properties of， 90
Antique Bronze， 353
Antlers，Stags＇，Cleaning，77
——，－，Mounting，＊77
，Mounts for，＊ 77
Ants，Ridding House of，＊170
Apple－scoop，Bone，＊47
Aquatortis，Cleaning Bronze in， 30
Aquamarine，Cntting and Polish－ ing， 337
Aquarium（see also Fish Tank）
－Cements， 218
－Constrnction，Angle Zinc for， 97
－Shells，Cleaning Growths from， 65
－Top，Pattern for，＊118
Arabian Leban，Yaourt，or Kou－ miss， 348
Arbour Design，＊147
Arc，Detcrinining Centre of，＊172
－Length of，＊227
Arc Lamp Carlions， 264
－，Hand Feed，for Por－
traiture，＊344
－Lamps，Illuminating Powers of， 301
Arch，Brick，Centering for，＊${ }^{*} 155$
－—，Circle，Strength of 278
，＇Circle－on－Circle，Centre for， ${ }^{*} 171$
——，Elliptic，＊201，＊211
－，－Gothic，＊195
－，Gauged，Charging for， 235
，Measuring for，${ }^{* 235}$
－，Return Bead Round，＊158
——，Semi－elliptic，＊209
．Working Mouldinga on，＊146
Arehitects＇Perspective Draw－
ings，＊13s
Arclitectural Drawings，Colour－ ing， 122
－Photography，Camera Swing Back in， 338
Argon， 239
Arkansas Oilstone， 246
Armchair，Spring Seat in，＊330
Arsenic Bronze， 13
——，Removiag，from Ziac， 294
－Soap， 217
－Sulphide， 291
Art Print Blinds，Outting， 47
Artificial（see also Imitation）
－Amber，Distingaishing，from
Real， 339
Gems， 76

Arthficial Mask from Amber Ohl 334

- Oilstone, 2! 4
.-Stone Cement, 221
——Tepth, Mechanicial Plates for 249 168
Artiticially Seasoning Small Lumber, * 167
Artists" Black, 34^{-}
- Canvas, Sticking, to MillBoard, 104
Asbestos, 303
--, Amiantlıus, 303
—, Blue, 303
—, Fossil-flax, 303
—, Fossil-paper, 303
-_, Miniag, 303
-, Mountain-leather, 303
-, Mountain-wood, 303
- Paste, Applying, 286
-, Rock-cork, 303
—., Rock-leather, 308
- , Rock-wood, 303

Ash Grey Bronze, 353
—— Wood, Strengt of 21
Ashburton Marble, 292
Ashes, Separating Gald fioa, 64
-, Metals from, 64
Asphalt, Damp-proof Conise, 143, 168, 259
, Mastic, for Laying Woodblock Floors, 245
\ldots Soot Black rawde from, Bio
Assembly-rooin Flonr, Rolled Joints for, *217
Astracgal Joint, Plunber's, 247
Astragals, Soldering, on Leal Soil Pipes, 172
Atmosphere (see also Air)
-, Acid-laden, 309

- Agreeable, Honidity of, 239 239
——, Tumperature of, 239
-, Argon in, 239
- Carbon Dioxide or Carbonic Acid in, 239
-, Constituent Parts of, 23: -, Impurities in, 239
Angers, Tempering, 310
Angite in Basalt, 256
Aunt Sally Gallery, 145
Aurora Pearl, 279
Aurora Pearl, 279
Austrian Gunpowder, 346
Auto-copyist Process, 216
Auto-copyist Process, 216
Autograph Door Curtain, ${ }^{*} 110$
Autograph Door Curtain, *110
$-\quad$ Moulds for Rubber Stamps, 89
Automstic Sewage Filter, *203
Axed Granite, 205, 245,259
Axes for Face-working Granite, *205, *238, 245, *282
-_, Patent, for Granite, *205, *235, 245, 282
--, Temperimg, 310 , 245
A.de Tempering, 310

Axle Arms, Hardening, 163

- Boxes, Hardening, 163
-, Machine for Withdrawing, from Wheels, "126
- Tree of Cart, Length of, 277
-, Vehicle, Case-hardening, 66
—, Forging, 66

Baby's Cradle, Stand for, *41
——Swing, "205
Backgronnds used in Photography, 112, 203, 211
Bacon Cuttinga, Converting, to Soap, 113
Bacterial Filters for Sowarge, 321

$$
\text { - Treatinent of Sewage, } 321
$$

Bulger Skin, Cleaning, 244
Pag Changing Box for Camera, *283
Bars, Coalor' Csnvas, 170
Bags, Coal, Waterproollag, 199
Bskera' Ovens, Stcaming, 217

- Steam-heated Ovens, "37

Balance, Clock, Counting Vilura. tions of, 298

Pinoe, Drim Clock, Re-pointing
Pivots of 285
-, Watch, Polsing, 802
Balanced or Dancing Steps, *i77
Balance-staff of Watch, Putting
New Pivotin, 253
Bald Wig, Theatrical, 19, 307
Ball Clay for White Boamel, 29
Ballast, Clay, Burning, 59
Balls, Billiard (see Billiard)
-, Cast-iron, Weight of, 107
—, Cutting Wooden, Inside
another Bsll, *325
-, Glass, Smoothing, 117 Golf, 21
Hollow Wooden, *325
or Spheres, Determining
Contents of, 173
Balsam, Canada, 57
Ba, -as Glass Cement, 81
Baitic Oak, Strength of, 150 - Red, Weight of, 150

RaInedwoed, 315
Balusters, Finishing, in Greea and Bronze, 62
Bamboo Bedstead, *46

- Cabinet, *132
-Camera'Stand, *336
——Canes, Staioing, 34
- Joiats, Filliag in, 263
- Newspaper Rack, ${ }^{*} 123$, *134
- Rocking Chair", 237
——Table-top, Fastening Legs to, *123
Bait, lisling, Pastes for, 198 -, Preserving Roach as, 270 Bands, Straw, 309
- 309 , Jenny for Twisting,
* 300 , Twisting Hook for,

Band-saw, Braziag, 100, *272 27
—, Broken, Use for, 160
—, Sharpening, 185

- Wheels, Attaching Leather
to, 282^{*} Worm Screwe to Baдjo, Fi
*IS
——, Fretting, 115, 216
—, Fretting, 115,216
\longrightarrow Vellum, Prepariag, from Calf skin, 344
Banner Tassels of Silk, *274
Bar Burnisher for Photographs, 298
298 , Labricsnt for use with,
Barber'a Chair, Fitting Winclsor Chair as, *98
-_ Shaving Pastes, 45, 250 - Worn Latler Brush, Use for, 57
Bardilla Marble, 292
- Polishing, 125

Bark of Ivory Tusk, 262
Barley, Mskiog Malt from, 187
Barn, Dutch, *182
Barometer, Aneroid, Tsking Feights with, 336
—, Fitzroy, 274
——, Mercurial, Reading, 226
$\longrightarrow, \longrightarrow$, Re-filling, 11
$\overline{\text { Bar }}$, Regulating, 226
Barracks, Air Spsce in, 23
Barrel Arbor, Fitting, to Watch, 332

- Heads of Scroll-iron9, 56
- of Lever Watch, Correcting, 346
Barrels, Gun, Boring, 330
-,, , Soldering Catch on,
-_, Paraffin, Cleaning, 58
Butts, 58 Butts, 58
\longrightarrow, Rifle, Bluing, 192
-ing, 48 , Flnx used in Solder-
—, Soldering, 48
Barrow Wheal, Setting out Frsme of, "32
Bartows, Sinall, *170, *216
Bars of Soap, Making, 121
Basslt, 256
——, Minerals in, 256
——, Olivine in, 258
Basement of House, Damp Walls in, 218
siri, Bloke
, Water-closet, Clegning 50
Backets, Oval, Repairing, ${ }^{\text {T }} 309$
-_ Por'Siagle-atiaks, *308
——, Square, Repsiriog, "309
-, Staining, 315
—, Staille for, 315
Wi, Wi kerwork, Cryotale on, 124
Basket-sticks, ${ }^{4} 308$
Bate's Saccbaromoter, 161
Bath for Ferrotype Photography, *307
, Photographic (see Photoglaphic)
--, Re-enamelling, 88
Swimming, Colouring Bot tom of, 204
—Top, Re-polishing, 134
Top, Re-polishing, 134
, Vspour, Stove for, 327
Bathroom Mirror, *186
Bath-stone, 309
-, Painting, 59
-, Preserving Colour of, 59 Saw tor, B8
——, Trestiag, with Fluate and Szerelmey Liqıids, 59
Batter of Wall, 262
Battery Carbons, 264
Bauxite, Reduciag, for Aluminium, 341
Bays, Lead, for Ogee Roop, 2280
Beading Spiadle for Woadworking Lathe, *288
Beadiags,Ruaning Return, Round Arch, *15S
_-, Scratch Plane for, *168
Beads, Glass, Making, 41
Beadwork, Cabinet or' Workbox for, 49
Beam, Calculating Strength of, 144 - Conn passes, 321
-, Irlitched, Strength of, *162
Besumé Hydrometer Dogrees coinpared with Specifie Gravities, 150
Beaunoatage Inlay for Mandolines, 288
Bed-rest for Invalid, *189
Bedroom Table, *36
Bedstead, Bamboo, 46
- Brasswork, Lacquering, 59 ——, Removing Lacquer from, 59
- Reaowsting, 59, 132
—, Child's, *70
——, Fixing Wood Teeter Head Fixing woo
to, Paints for, 59
-.-, Repsinting 59
Steve-enamelling, 59
—, Wooden, *70, *273
Beech, Strength of, 1.50
- Weight of, 150

Beer, Alcohol in, 347
-: Brewing Ale, 169
-, Cooling, 333
-, Dandelion, 338
, Ginger, 338
, Herb, 398
-, Nettle, 338
_, Sarsaparilla, 91, 338
from, 347 Alcohol. made
from
from, 347
Beetles, Setting, 226, 243
Belgian Blsck Marble, 292

- Fossil Marble, 292

Grand Antique Marble, 292

- T Marble, 292

Bellande's Indelible Writing Ink, 238
Bellows, Conical, of Camers, ${ }^{*} 276$
Belt Rack for 'Tent Pole, ${ }^{2} 260$
Belts, Lesther, Cement for Join-
ing, 97, 253
by, 99 , Power tranemitted
Bench for Circular Sow
\longrightarrow Stump, 454
Bending Bost Ribs, 8

- Brass Tubes, 14, 270, 316
*318
- Copper Pire, 810
——Copper Pipes, 185
—— Landan Panels, 27

Bending Ribs of Smsll Boat, 81 \longrightarrow Wood for Rackets, 167
———by Stesm, *167
Bending-block for Kailway Coupling Shackles, 87
Bent-wood Furniture, Blacken ing, 31 B
———, Renovating, 316
Benzene, Clesaiog Articles with, 119, 124, 164, 181, 136, 216, 286, 348
-, Preparation of, $3 \$ 0$
-_, Uses of 336
-Wax, 290
Benzolind (see Benzene, above)
Berries, Preserving, 68
Beryl, Cutting, 337
-, Polishing, 337
Bevel Set-square, *180
Bevelled Stock HoO1s, *252
Bevelling Fraines, 5.270
—— Glass, Wheels for, *314
-Tlaie Glase, 119
Bevels for Hip Rafters, " 57 Lantern Hips to Semb-octagonal Lantern Light, 1 Ms
\qquad Rianco Re Rafters, Taking off, *165
Bianco e Yero Antico Marhle, 292
Bicarbenate of soda, 318
Bicycle (see Cyde)
Bicycles, Shod for Storing, *170
Bier Stand for Mortnary, *73
Billiard Balls, Stains for, 318
——Chalks, Blue, 159

- - Green, 159
-Tsble Coraer, *153
Rillposters' Pastes, 234
Binding Lantern Slides, 11
Bindings, Fish Hook, Varnigh for, 183
Binoxalate of Wax for, 163
Removing foush Stains, Biotite Mica, 41
Birch Chairs, Re-polishing, 199
Bird Cages, ${ }^{*} 169$, 223
- Cases, Imitstion Earth for: 173
—— Room, Warming *202
- Skins, Preservative for, 44
$\square-\quad$, Relaxing, 168, 186
--, Stuffed, Cleauing, 136
Birdlime, 205
Birds' Eggs, Glass Blowpipes for Blowing, 311
Bird's Eye Marble, 292
Biriningham Wire Gauge, 851
Biscuit Ware, Underglsze Colours for, 158
Bismoth, Removing, from Zinc,
294, Thermo-electric Properties of, 90
Black and Gold Marble, 292
$\cdots \overrightarrow{\text { Bottie Waxes, } 15}$ Ornamento, 314
- Bronze for Iron, 80
—, Brunswick, Removing, 14卫
- Canvas Shoes, Re-dyeing. 255
- Chins Ink, 247
Cloth, Reinoving Grease Staias from, 315
Cop-Tar from, 348
—— Copying Inks, 220
- Crayons, 16, 67
_—Drawing Inles, 247 Enamel for Ferrotype Plates, 268
-——— Stoving, 263
- Fillings for Headstones, 164
-_ Mandolines, 268 -_- Mandolines, 268 \rightarrow for Camera Interior, 106 - Freniclı Polish, 314 , Gas, 313
——Glussy, for Plambers, 826
- Hurness Oil, 247
- Holish, 233
——Inks (soe Ink)
- Inlay lon Mandolinee, 268
——— I vory, 194 - Lainj (see Lampblack) Marble, Polishing, 281
——Marking Inke, 215
- Mica, 221

81

Abstract

\qquad

^[\qquad]

[^4]\qquad

Black, Oil, 250

- Paint for Glass, 199
- Paints, Cheap, 126

Polish for Mirror Frames, 183
-, Sont, 250 Shop Fittinge, 183

- Stain for

Billiard Balls, 3 I8 Wnod, 164)

- Stencil Inks, 218
- Ticket Ink, 137
——Varnisb, 314
- - for Grates, 313
- Straw Hats, 50
-, Vegetable, 195
_-Vein Marble, 292
Blariting Inks, 212
Blackboard, Characterristics of Gond, 230
- Dresaings, 68, 230
-, Filling Cracks in, 8
- Re-dressing, 230

Blackdamp Gas, 254
Blackening Aluminium, 13
Bronze for, 13

- Bect-wood Furniture, 316
-

Brass, 55, 125
-
—Pina and Tacke, 354
——Brown Boots, 43

- Carriage Irouwork, 301
- Face, Complosition for, 301
——Iron, 308, 330
- Jaunting Car Ironwork, 302
- Letters on Headstone, 213
- Nickel, 288
- Silver by burning Gas, 42
- Standard Lamp, 330
-Thermometer Scales, 37
Blacking, Paste, 333
-, Solf-polishing, 105
Black-jack Zinc Ore, 335
- - , Reducing, 335

Blanco, Claaning-White Boots with, 233
Bleaching Amber, 323
Oil Diatillates, 334

- Animals' Skulls, 286
- Bone Grease, 152
- Bones, 286
- Damp-atained Marbie, 67
- Fleor Boards, 31
- Fluid, Filtering, 390
- Ink Stains (see Ink Stains)
- Ivory, 251, 262, 280

Linseed Oil, 325

- Ma

Marble, 67,335
Negative, 306

- Ostrich Faathers, 257
- Piano Keya, 310
- Pulp Cane, 213
- Skulls of Animals, 286
- Straw, 23
- Weather-staincd Marble, 335

Blende and its Reduction, 335
Blinds, Art Print, Outting, 47
-, Cleth for, 47
\rightarrow Lettering, 310
-, Linen, Cutting, 47

- of Photegraphic Studio, 323
-, Venetian, Colouring, 241
,-- , Paintiog, 162,241 from, 172 Removing Old Paint , - Varniah Green for, 241
, - , Yellow Stain for, 66
, Wirc, Frames for, *64
—, - - Gilding, 214
—; --, Gold Lettering on, 175 ,-, Painting, 214, 308
Blindstitchepairing, 308
Blindstitching Hair Mattresa, *207
Blisters on Paint, 20, 30, 83
Block, Scribing, *144
—, —, Clip for, *156
uaed in Pbotographing Oyclist, *33;
Blocking Out on Glass Positive, 319
Bleck-lettering, Tools for Engraviug 79

Blocks, Floor, Cutting, with Circular Sew, *336

- for Hollowing Tin-plate, 71

Bloodstone, Cutitiog and Polish jug, 837
Blowholes in Iron Castings, Cement for, 58
Blowing Fan for Forge, *319
*Organs. Water Motor for, *342
Blow-lamp, Paraffin, *171
Blo, 一, Air Pump for, *73
Blow pipe, Glass, for Eggs, 311
-, Paraffic, Reservoir tor, *323
Blue Aabestos, 303

- Delge Marble, 202
- Billiard Cbalk, 159
-Colour in Nickel, 210
- Crayons, 15
- Dye, 245
- Grease Paint, 343
-, Indigo, 19
-Inks, 213
- Liquid for Chemiats' Show Bottles, 13, 293
-Lumineus Paint, 263
- Mottled Snap, 245
- Photographs, 140, 201

Prossian, 195, 300
-, Soluble Prussian, 41
-Stain for Alabaster, 240 - Billiard Balls, 318

- Varnish for Straw Hats, 50

Writing Ioks, 213
Blue-black Writing Inks, 211
Bluing Rifle Barrels, 192
Board, Window; for Flower Pots, -326
Boards, Black (see Blackboard) , Drawing, Stretchiog Paper on, 236
, White Ground for, 91
, Floor, Bleaching, 31
-, Dry Rot in, 20 from, 165

- Paint from, 31 , Tightening up, * ${ }^{*} 19$ Pitch-pine, Cutting, *15 Boat, Collapsible, 228
, Coppering, 39
Cover', Converting Sail to 169
—, Gilding Lines on, 109
- Models, Copper-plating, 53 Rep White Coating for, 97 , Repairing Hole in, 89
- Ribs, Bending, 81
- - Fitting, 81
- Sail, Converting, to Waterproof Cover, 169
-, Relaoving Mulberry Stains from, 216
-, Tacking Copper on, 89
,Wood for, 81
Body-horse for Coach-painter'a Use, 191
Boehm System of Fingering for Wind Instruments, *152
Boiled Linseed Oil, Distinguishing, from Rew, 243
Walls, 86 for Damp-proofing
Boiler, "Boot," Safety Valve of, 840
, \rightarrow, Steam Cooking with,
Egg-ended, Determiningt Contents of, *173
, Fusible Plings for, 42
-, Heal-resisting Covering for, 120
for Heating Cuoumber Honse, 85
Kitchen, Leaky Tap and Joint of, 202
, - , Preventing Rust io, 142
, Model Locomotive, Working Preasure ol', 181
Plates, Rivets fur, 167
-, Saddle-shaped, Pattern for, ${ }^{*} 56$
Shell, Applying Asbestoa Paste to, 285
System for Steam Cooking, *174
, Vertical, Grate Area of, 15

Boilers, Copper Range, 96 -, Lancashire, Chimney Shafts for, 149
, Two, fitted to one Hotwater Cylinder, 124

- Dsed in Glue Making, 43

Boiling Point of Water, 336
-Water in 5 -gallon Tank, *200
Bollards, Mooring, Fixing, 83
Bolt, Square, Proportions of, 102 Bolt-heads, Whitworth, 100
Bone and Ivory, Difference Be tween, 262

- Apple-scoop, *47
— as Substitute for lvory, 262
-, Bleaching, 286
-Graase, Bleaching, 152
- Removing Ink Stains from,

Bonkbinderg' Paste, 234, 235
Book-rack, ${ }^{*} 229$
Book-rest, Portable, *172
——, Table, *114
Books, Disinfecting, 130
Boat Gold-veining Edges of, 112
Boot (see also Shoes)

- Blacking, Paste, 333
- Blacking, Self-polishing, 105
-Bottoms, Browning, 23 -, Buff Balling, 62
-, Brown, Blackening, 43
—, Calf Kid, Polish for, 353 fanvas, White Paste for
354 , Cleaning, 190
--, -, Darkening, 11^{1}
——, 一, Polishing, 199
-, -, Paste for, 78 , -, Removing Vaseline Stains froln, 215
Clicker's Knife, Sharpaning, 247
Cracking and Creasing Across Toes, 50
- Edges, Brown, Stain for, 85
- Finishing Irena, Cutting, 53
-, French Cork. ${ }^{17}$
-_, Makiug : Attaching Bristle to Waxed Thread, *104
Back, *313
--, Renoring Varnish from,' 22 Shop, Double Seats for, *144 Size for Kip Work, 228
-, White, Blanco for Cleaning 233
- Buckskin, Cleaning,

224
"Boot" Canvas, Cleaning, 235
Boot" Boiler for Steam Cuok ing, *174

Bootmaker's Paste, 235
Boracic nr Borax Soap, 300
Brriug (see also Drilling)

- Bricks, 131
- Ebenite, 306
-- Glass, 106, 294
—Gun Barrels, 336
— Metals, Speed for, 109
- Vulcanite, 366

Borings Cement, 11
Bort Djamonds, 293
Bottle Capping Mixtures, 15
Corks, Protecting, from
Chemical Action, 278
-, Waxing, 278
Glass, Cutting, 233
-, Oil, Cleaning, 314

- Waxes, 15

Bottles, Chemists' Show, Coloured Liquids for, 13, 293
Bow, Violin, Re-hairing, *214
Bowls, Playing, Cleaning, 234
—, ——, Staining, 234
Box, Flower, for Window, *311

- Gutters on Roofs, 313
——for Jewels (see Jewel Case)
- Oil Colours, *190

Oil Colours, ${ }^{\text {Stump Moulding, }}$ *54
Hot, for Neratives and Lantera Slides, *26
, Letter, in Tia-plate, *291
-, Money, *42
Musical, comnected to Striking Clock, 336
, Oral-top Wooden, *266
Boxes, Axle, Hardening, 163
-, Gauge, for Compo., *167

Boxes, Pill, Grease-proofing, 334

- Stencil Plates for Marking

Box-hardening Wrought-iron, 218 Bexing Oat Cart Panela, 243
Boxing-routers, *243
Box's, Formulia for Water-clischarge of Pipe, 69
Box-sextiant for Surveying, *02
Brackets, Cantilever, *260
, Gas, Bronzing, 61
-, Dead Dipping, 61
Dipping, 61
Leatherwork, Cleaning, 67 Mouldiag Edges of, *78
Ornamental, *278
Braid, Gold, Cleaning, 190
Brake Bleck for Railway Wagen *303
Branding Ink, 35
Brandy, Quantity of Alcohel in, 347
Brass, 354
—, Blackenidg, 55, 119, 125

- Brackets, Bronzing, 61
\rightarrow Dead Dipping, 61 Dipling, 61 , Finishi
-, Brazing, 60 Spelter for, 60
Braaking Stresses of, 163
Bright Malleahle, 354
, Bronzing, 61, 125
-, Buraishing, 103
-Buttons, Blackening, 119 Candlesticks, Lacquering, 87

Casting, Moulds for, 50,271 307
Cells for Optical Work, *48
Chains, Gilding, 351 , Cleaning, 103.

- after Annealing, 116

Clock Dials, Polishing, 345 -, Re-silvering, 345
Collars, Cementing, on Launps, 253
ware, 119
, Common, 354
, - Pale, 354
-'Curtain-poles, Bending, 14
Dog-collar, *22
-, Einerson's Patent, 354
-, English, 354
Etching, 145
Fine, Solutions for, 86
, Fine Pale, 354
-, French, 354
Gas-bracketa (aee Brass
Brackets, above)
——Gas-cocks, Casting, *51

- Finishing, 51
, Gilding Liquid for Dipping 209
, Gold Lacquar for, 258
Kettle, Removing Dest from, 178
, Lacquer for, 277
-, Lacquered, Cleaning, 251
-, -, Reunvating, 201
Lacquering, 139, 208, 277
Money Box, $* 42$
Monoy Box, *42
, Moulds for Casting, 50, 271
- Moulds for Casting, 50, 271 ing Slides of, 228
- -, Rernoving Dentes fromi, $168, \frac{251}{}$
290°-, Solder for Brazing, 290
, Oxidising, 55
, Pinchback, 354
-Pins, Blackening, 354
-, Polishing, 251
—, Composition for, 83
Pouring, 277
Red, 354
-, Re-lacquering, 103, 251
- Repoussé Worik, 214
- Rints, Cementing, on Lamps, 253
ware, 119
Rings, Making, 810
- —, Rolled, 354

Brass Screw-hcads, Polishing 910 Sleest, 354
Sheet-metal Worker's, 354
, Silvering, 85
Spelter, 60
-, Powdering, 175
, Stove used in Lacquering, 277
Table-lamp, *:212

- Jacks, Blackening, 354

Tap of Range, Fixing, 151
, Tinning, 140
, Tombac, $35+$
'Tube Drill for Glass, 294
Tubes, Bending, 14, 276,316
*286, ${ }^{\circ}{ }^{2} 316$
, Polishing, by Hand Floating, 5s
-——, 一, Mops for, 58 , Emery Wheel,
-, White, 354
——Wire as Brazing Spelter, 311
———, Bending, 316
Brassfounding, Stump Moulding in, $36,{ }^{* 54}$
Brassing Zinc, 247
Brass-plating Solutions, 18, 165
Brasswork of Bedstaad, Relacqueriag, 59
from 5 , Removing Lacquer from, 59
132 -, Reuovating, 59,
Bray's Burners, Gas Consumpltion of, 297
Brazilian Topaz, Cuttiog and Polishing, 337
Brazing, 311^{-}
——Bandsaws, 100, *272

- Brass, 60
- -, Spelter for. 60
-, Feet oa Copper Wat
Feet oa Copper Watch-dials, 272
——Iron, 80
- - , Spalter for, 60
——Key'Stems, *311
- Musical Iostruments, Solder for, 200
- Silver Pipe-mounts, 29
- Steel, Solder used in, 23, 275
- wit, Solder for, 236
- with' Silver Solder, 29,275

Bread Ovens, Decker, *37
Breast Collar, American, for Horse, 162
Breccia Sanguina Marble, 202
Breche Portor Marble, 292

- St. Antonin Marble, 292

Breeding Cage for Small Birds, *223
Brewing (see Bear)
Brick Arch, Centering for, *155
-——, Strength of, *278
—— Kiln, ${ }^{*} 175$
Brickmaker's Side-tipping Waggon, 354
Brick-paved Floor, Covering, with Coacrete, 91
Bricks, Blue, Clay for Making, 66
,-D Damp-preof Course of,
, Boring Holes in, 131
-, Dinaa, 30

- for Furnace Cupola, 30
-, Ganister, 30
-, Lowood, 30
,, Red Facing, 261
Brickwork, Damp Preventive for, 84, 86
—, Fixing Marble to, 67
- - for 'fall Chimuey, 149
-, Hoop-iron Bond for, 127
—, Model, Clock-stand in, ${ }^{\text {T }} 149$
-, Mortar for Pointing, 30, 115, 127, 241
—. Oxide Paint for, 170
-- Portland Cemeat for Pointing, 344
ifo Preparing, for Painting, 170
——, Re-colouring, 127
——,Tuck-pointing, ${ }^{*} 115,127$

Bristle, Attaching, to Waxed Thread, "104
Britannia Metal, Solderiug, 276
BritishAssociationSerew-threads, 81
Brocstelle Jaune Marble, 292
—Violette Marble, 292
Bromide Enlargements, Working 1p, 174

- Print, Murnishing, 217

Solution, Applyin Paper, ${ }^{*} 106$
Bronze, 353
-, Aluininium, 353
, Antique, 353
, Arsenic, 13
, Ash Grey, 353
-_, Bluish Red, 353
Chandelier, Cleaning, 30 , Cleaning, in Aquafortis, 30 , Dark Grey, 353
,' Fontains Moreau'g, 353 , Gilding Liquid for Dippiug, ' 209
——, Gilt, Cleaning, 341
-, Hard, 353

- Ornaments, Renovating, 347
- Powders, 115, 258
-253, Action of Acids on, 263
, Applyiag, 110, 121
-——, Pulverised Mica as
-, Reddish Yellow, 353
-, Statuary, 353
Bronze-green Paint, 62
Bronzes, Colouring, 112
-, Imitation, Colouring, 112
-, -, Renovating, 129
Bronzing BaInsters, 62
$\xrightarrow{\longrightarrow}$ Brass, 61, 125
- Cordelova Frieze, 42
——, Electro-, Solution for, 274
- Gas Brackets, 61
- Initation Plaster Frieze, 42
- Iron, 308
-L Lead, 277
- Metal Vessels, 24
- Solution for Ornements, 347
- Stair Balusters, 62
-Zinc, 247
Brooches, Cemeating and Soldering Catches 00, 163, 177
—, Gold Wire, 69
-,' Repairing, 177
Brougham (see also Landau, Carriage, Cart, ete.)
—— Panels, Polishing, 109 Bed, Pattern for, *79
Brown B, Testiug, *70
Brown Beots, Blacksning, 43
- --, Cleaning, 190
-———, Darkening, 117
-——, Polishing, 190
- - - - Paste for, 78 - -, Removing Varelina Stains from, 215
- Crayons, 16
- Grease Paint, 343
- Kid Gloves, Cleaning, 198
- Portland Cement, 313
- Stain for Alabaster, 240
- - Billiard Balls, 318
- Straw, Bleaching, 23
——, Vandyke, 195
- Varnish for Straw Hats, 50

Browne \& Sharpe's Wire Gauge, 351
Browning Boot Bottoma, 23
Bruises, Embrocation for, 247

- in Brass Instruments, Removing, 168, 251
Brunswick Black, Removing, 141
Brush for Enamel Paint, 57
- Mrench-poli6h, 238
- Marks in Enamelling, 40
- Poligh for American Organ, 109
—Rack, *200, *381
Brushiug-out Method of Embossing Glas, 243
Buchner's Carmine Ink, 223
Bucket as Photographic Print
Waaher, 154
-, Putting Copper Hoop on, 45

Buckled Copper, Flattening, 106
Buckskin Bocta, Whits, Clean
ing, 224
Buff Leather Gaiters, Cleaning, 103
Buff-balling Boot Buttons, 62
Bufis for Polishing Metal, 24
Bugg, Ridding House of, 226
Builder's Level, ${ }^{*} 27$
B Trestle, ${ }^{2} 14$
Building Stone (see Stone)
Buildings, Damp-proof Courses in (sce Damp-pmof Ceurse)
—, Measuring 209
—, Painting Compo. Work on, 143
——, Sham Timber, ${ }^{1} 142$
Warming, 85; 89, 91, 146 ${ }^{* 173, * 202,208, * 228, ~}{ }^{235}$
Bullock Horns, Polishing, 302
Bunsen Burner for Acetylene Gas, 22

- compared with Flat-flame Burners, 92
Burvers, Acctyleae, Cleaning, 302 , -302 , Llluminating Power of, 302
, Bray'a, Gas Consumption of, 297
—, Bunsea (aee Bunsen, above) , Incandescent, 269
of, 301
, - , for Oil * 151
-, Multiple Wick Oil, Mluminating Powers of, 301
—, Oil Lamp, Cleaning, 319
Welsbsch, Gas Coosumption of, 297
Bur, , Using, 22
Burning Clay Ballast, 59
- Lead Flashiogs into Stóuework, ${ }^{*} 229$
253 Serms with Hydregen, 253
- Limestone, 120

Burnisher for Silver Pipe-mounts, *29
Bu, Photograph, 251, 298
Buraishitig (see also Polishiog and Glazing)

- Brass, 103
- Bromide Print, 217
- Photograph, 201, 293

Burnt Co Lubricator for, 251, 298
Burnt Cork for Blackening Face, 265
_- Geld, Restoring Colour of, 204

- Sienna, 194
- Umber, 194
'Bus Under-carriage, *231
Bust (see also Bronzes and Figurea)
Butt, Water, Converting Paraffin Barrel to, 58
-——, Disinfecting, 201
Butter, Preserving, 202
Butterflies, Cases for, *306
-, Killing, 81, 306
, Killing-bottles for, 72, 81
-, Paper Envelopes for, *306
—, Preserving, 72, 218
—, Relaxing, 72
——, Setting-boards for, 72,213
——, Tweezers for Holding, 72
Buttoning Pony Cart Cushions, 303
- Upholsteyed Chair Backs, 244
Buttoos, Brass, Blackening, 119

C

Cabinet, Bamboo, ${ }^{*} 132$
——for Beadwork, ${ }^{*} 49$
-, Scent, combined with Jewel Box, "199
_-Work, Chinese Lacquer, 37 *104, Inlaying Stringing in, *164, Panelled Dodre in, *285

Cabinet-maker's Steel Scraper; Sharpening, 134
Cables, Seven-strancled Electric, Jointing, 79
, Stranded Wire, Calculating Weight of, 56
Cadoret's Textiloid, 98
Cages, Bird, *189, *223
Calamine Zinc Ore; 335
Calcinerl Lamphlack for Papor Making, 250
Calcining Lampblack, 250

- Gypsum or Plaster-of-Paris, 17
Calcinm Carbide (see alao Acety leae)
-——, 28 Electric Furnace for, 28
Calf Kid Bonts, Polish for, 353
——Skia, Chrome Tanning, 34 lum Preparing Banjo Vellum from, 344
Calico, Distemper Paint for, 252
——, Flatting Colour for, 252
——, Printing Photographs on, 87 Callipers, Washers for, 331
Calomel, 189
Paper for 1 ndelible Writing. 238
Caneo Cutting, 192
Camera, Bag Changing Box for, *283
- Bellows, Conical, *276
——, Carrying, on Cycle, 86
——, Changing Plates in, ${ }^{*} 175$, *283 , Copying Negatives in, 11,*95 , Double Repeatiag Back for, *23
- for Enlarging, *275
——, Ferrotype, 252
Fixed Focus Haud, Enlarging with, *121
——, Folding Hand, *220
for Stereoscopic Photography, *22
, Haod, *322
*336-, Bambeo Stand for,
,
, -_, Sheaths for, *313
Interijor, Dead Black for, 106 , Kodak, 54
——, -_, Enlarging with, *68
Lens, Hood or Sky Shade fer, *345
- Stops, 104, *173, 186

Msgazioe Back for, ${ }^{2} 28$ Pinhole, *211
Postage Stamp, 305
, Quarter-plate FoIding, 220
, Quarter-plate Stand, Shutter for, ${ }^{*} 169$
Shutter, Corract. Speed of, 130
25,128 Determining Speed of 25, 128

Everset, 93

- for Quarter-plate Stand Camera, *169
*212 —— taking Denblee,
taneons, 187
———, Unicum Type, ${ }^{*} 79$
——Stanıl, Banıhoo, ${ }^{*} 336$
——, Studio, *267
——Swiug Back, Use of, *338
——View Fiuder, 85, *148
Cainphorated Chalk, 331
Canoda Sulphr Soap, 300
Cauada Balsam, 57
- as Glass Dement, 6

Candlan soow shoes, 25
Candles, Wax, Making, 95
Candlesticks, Brass, Lacquering, 87
Cane, Bamber, Lacquering, 87
Cane, Bambeo, Staining, 34

- Furniture, Bailboo (sea Bamboo)
-D, Dalacca, Staining, 95
-- Pulp, Bleaching, 213
- , Tonquin, Staining, 34

Cannon Pinion, Removing, from, Keyless Watch, 60
Canoe, Canvas, Painting, 141

Canos Mast，＊141
－to Carry une Person， 118 Cantilever Brackets，I xing，＊260 Canvas，Artists＇，fasten $\in d$ од Mill－ board， 104
Bag，Sailor＇s， 176
－Canoa，Painting， 141

，Cementing．to Rubber， 283 ，Chemical， 96
，Dyeing，Blus， 245
－，Fixing Pictures on， 245 －，Painted，Keeping Pliable， 228
＊－Shoes，Black，Re－dyeing， 255
－－White，Oleaning， 233
－－Waterprooting 96
Canvássing Landan Panels， 27
Cap．Circular Maolded Stone， ＊236
Capping Mixtures for Bottles， 15
Car＇（nae also Cart，Carriage，etc．） ，Jaunting，Blackening Iron－ work of， 302
，一，Staining， 302
Carbide of Calciumn（See Calcium）
Carbolic Soap， 300
Carbon Dioxida（sea Carbonic Acid，below）
－Paper，$\uparrow 3$
meut on， 315
－Process，Transfer Paper for， 330
－，Tisaue，136， 270
Carbonate of Lime（see Chalk）
－——Zinic， 335
Carbonic Acid in Atmosphere， 239 －————Coal Mine， 254 Oxide in Coal
Carbons for Elactric Lamps and Batteries， 264
Carbuncle，Cutting and Polishing， 337
Cardboard，Fixing Artists＇Canvas to， 104
－Mounts，Gold， 108
－Painting，for Slate Pencil Writing， 58
－Pulp， 233
Cardinal Coleur Dye for Feathers， 34
Carmina Ink，Buchner＇s， 223
Carnalian or Cornelian，Cutting and Polishing，72， 337
Curjenter＇s Bevel Sat－square， ＊ 160
－＇＇l＇ool Cupboaird，＊317
－Try－square，Testing，＊50
Carriage（sea also Landau， Broughan，etc．）
－Cushion，Making， 308
－－Frames，Pasting Cloth to， 205
－，Invalid，Hood for，＊290
－Ironwork，Blackening， 301
－－Japans for， 301
？，Varnishing，IT， 302
，Pair－horse Close－futchell，for ＇Bus，＊231
－，Pleated Back Squab for， 308
－，Varnishing，in Wood， 17
－Wheels，Dressing up Spokes of，＊103
－，Putting Felloea on，＊31
Carriages，＇Railway，Mouldings used in，＊191
Curt（ass also Car，Carrisge，etc．） －Axle Arms，Hardening， 163
－－Boxes，Hardening， 163
———Tree，Length of， 277
—，Dōg，Painting， 269
－，－Varnishiog， 269
－Grease， 107
，Hand．＊3S3
Mail for Furniture， 51
，Mail，Re－painting， 325
－，Re－varuishing， 325
，＇Varnish for， 325
－，Painting，131，176， 269
－Panels，Boxing Out， 243 Working，R243 Planea for －，Porky，$\$ 16 * 96$
－，Cushion for， 303

Cirt，Pony，Painting， 176
－，Varviahing，1i6， 269
Wheel Spakes，Miking Tongues on， 81
－Wheels，Heavy，Pitch of． 277
———，Lining Ont，91
＊347, Measiring Wheel for，
$\xrightarrow{34}$
Putting Felloes on，＊31
Gurve．Tyring， 347
Curved Oak，Removing Varnish from， 38
－Photo－frame，＊60
Carving Wood，Knifa for，＊325
Carvings，Wood，Smoothing， 296
—，一，Staining． 296
Carv，Wax－polisbing， 296
Carving－tools，Slarpening， 301
Case，American Organ，Reviying， 299
，Cork－lined，for Butterflies， ＊306
－for Ferns，＊101
Jewels（sae Jewel Case）
Leather，for Croquet Mallet， ＊20
，Marble Clock，＊284 Cementing， 322
，一一一一，Polishing， 322
－，Model Brickairing，19， 322 ＊149
，Ormolu Clock，Cleaving， 311
of Stuffed Birds，Imitation Earth for， 173
Turned Wood，for Drum Clock，＊52
Case－hardening，Compounds for， 66， 213
－Cycle Parts，Oven for，＊107 Large Wrought－iron Work， 213
－Vehicle Axles， 66
Casein， 232
－as Cement for Glass， 232
Cask，Oval，Determining Bevels for Joints of，＊66
Cast Plaster Panels，Staining，to Imitate Mahogany， 68
－Sheet Lead， 352
－Zinc or Spelter， 335
Casting Aluminium，Furmace for， 218
－Brass， 277
————Gas－cocks，＊51
307 ，Moulds for，50，271，
Lead Water－pipes， 202
Ormaments in Relief，Compo． for， 166
－Trusses，Gelatine for， 189
Castings，Cement，made in Plaster Moulds， 228
，Golden－brown Paint for， 154 Gun－metal，Acid Pickle for， 97
Iron，Cement for Blowholes in， 38
－for Lead Toys， 185
—，Mallaable Iron， 326 ———，Annealing， 326 ，————，Colouring， 130 Plaster，Giving Ivory Appearanca to， 157
－，Wax Moulds for， 196 —，Steel for， 163 296 ，Flatting or Filling for，
Cast－iron Balls，Weight of， 107
—，Breaking Stress of， 163
——Gutter，Fixing，＊202
Roller，Pattern for， 243
Castner Sodium Process， 21 T
Castor Kid Leather， 286
Castor kid Leather， 286
Cast－steel，Breaking Stress of， 163
Catch for Door of Street Lamp， ＊ 92
Catches ing，to Brooches，163， 177
Cat＇s－eye Stone，Cutting and Polishing， 337
Canlked Joints in Hot－water Pipes， 321

Ceiling，Clearcoling， 20 －，Hanging Anaglypta，on， 148 ，－Lidcruata Walton on， 148
，Paper for， 342
－，Papered，Sizing， 291
－，－－，Varnishing， 291 ，Whitening， 72
Whiting for 72
Prpering，72， 34°
Size for， 72
－，Whitening， 72
－Whitewash， 352
Celestial Globe，Cleaning， 251
———，Renovating， 251
Cells－，Varnishing， 251
Cells for Optical Work，＊48
Celluloid，Ceror Microscope， 73
elluloid，Cementing，to Glass，

236

Cometal， 236Cements for， 236
－Combs， 143
，Distinguishing，from Ivory， 295
，Freach， 262
－，Non－inflammable， 98
＇Piano Keys，Polishing． 295
Scratches from，Removing
Scratches from， 285
Vornish Renovating， 295
Warnish， 249
Cellnlose， 62
Cel Acetate of， 259
Celsios Thermometer（see Centi－ grada）
Cement for Alabaster，154， 240
——Amber，156， 253
Ant Aquarium， 218
，Artificial Stone， 221
，Borings， 11
Castings，Making，from
Plaster Moulds， 228
for CelLuloid， 236
－China，232， 259
，Concrete（see Concrete）
Cornices，Fioishing， 148
for Ebonite，－236
Floor，Coloured， 56
－－，Grooved， 320
－，White， 131
Frame，${ }^{2} 221$
for Glass，61，232，259， 3 ธ3 3
－Golosh Repairing， 296
Heat－resiating， 232
—— tor Hot－water Pipes， 30
，Hot－water Resisting， 146
，Hydraulic； 240
－for Imitation Alabaster， 240
－—— Indiarubber，52， 241
－Irdiarubber，©astings， 58
－Joints for Drain－pipes， 191
Keene＇s，Running Oval
Frame in，${ }^{*} 221$
— for Lead－light Glazing， 74
－Lubricators， 106
253
－Marble，65，146， 322
－Marble， 65
Mineral Specimens， 259
Oil Lubricators， 106
，Paraffin Oil－resisting，113， 253
，Parian，for Patching Plas－ tering， 325
for Pointing Brickwork，30， 115，127， 241
Portland（aee Portland Cement）
－Rendering on Rubble Wall， - Ren
-148
for
for Repairing Plasteriog， for
325
for Rock， 259
Screed Rnbler，52， 241
——，Screed for，＂ 244
for Socket Joint of Steam
Pipe， 11
stome，89， 221
－—— Tortoiseshell， 250
－Sturco，Wash for，88， 327
－，Univarsal， 259
＿－Vase for Garden，＊228

Cement for Vulcanita or Ebonite， 236
Wash，Portland， 153
for stucco，88， 327
Waterproof， 241
，－，for Glass， 232
for White Marble， 322
－－Xylonite， 236
Cementing Amber Mouthpiece of
Pipe，156， 253
－Canvas to Rubber， 283
—Catches on Brooches， 163
－Celluloid to Glass， 236 ：
－- Metal， 236
－China to Metal， 232
－Clock Cased， 322
—Collars on Lamps， 253
－Cooking Ranga Joints， 73
－Ebmite to Glass， 236
－Enanel Metal， 236 282
Felt to 1ron Rollers， 81
－Glass， 253
－Letters to Windows， 232
－to Celluloid， 236
－Ebonita， 236
－—— Metal， 232
Wuod， 232
－Xylonite， 236
－Hot－water Pipes， 30
—Indiarubber to Canvas， 283
－Iron to Leather， 129
－Kuifa Tangs into Handles， 253
－Lamp Reservoir， 253
－Rims， 253
Lead－lights to Steel Frames， 74
Leaky Leaded Lights， 3 4̄
－Leather to Iron， 253
－Marble Clock Cases， 322
－Oilstone in Case， 246
Range Joints， 73
—Rim on Oil Lamp， 253
— Rubber to Canvas， 283
－Washhand Basin， 232
－Xylonite to Glass， 236
Centaring for Brick Areh，＊I5
Centigrade Thermometer，304， 305
－Degrees，Converting，to Falurenheit，304， 305
－ 304 －，－Réaumur，
Centre of Circular Arc，Determin－ ing，${ }^{*} 172$
Centrifugal Pump，＊28
Cernsite an Ore of Lead， 352
Cesspool，Constructing， 335
－，Emptying， 335
Ceylon Ivory， 262
Chain，Brass，Gilding， 351
，Burnt Gold，Restoring
Colour of， 264
－，Copper，Gilding， 351
－，Cycle，Lubricant for， 197
－，Fusee，Mending， 260
，Gilt，Deepening Colour of， 150
－，Silver，Gilding， 351
－，一，Oxidising， 150
from， 273 Stripping Gilding
Chaiustitch Sewing Machine，To
Chair（see also Furniture）
－Backs，Ubholstered，Button－
ing and Tufting， 244
，Bamboo Rocking，＊237
，Barber＇s，Fitting Windsor
Chair as，${ }^{2} 98$
－，Birch，Re－polishing， 199
—，Child＇s，${ }^{\text {² }} 116$
Close－studding Edges of， ＊210
，Cord－bottomed，Re－seating， ＊174
－Covera，Maroon Repp，Re－
novating， 349
——，Divau，＊21
，Invalid＇s Self－propelling，
＊345
—，Kitchen，Varoiahing，131， 259
－，＇，Marlboro＇Easy，＊122
－，Merlin，Converting Wind．
sor to，＊345

Chair, Putting Spring Seat in, *350
—, Rocking, ${ }^{*} 237$
-, Rush-hottomed, Re-seating -174

- Seat, Upholstering, 204
-, She Yelvet, Fenovating, 191 , Sheraton Easy, *99

Windsor, Couverted to Barler's Chair, *98
, Hindsor Converted to Merlin. *345
Chnliedony, Cutting and Polishing, 337
Chalk (aee also Crayons) ——, 391
--. Blne Billiard, 159
, Camphorated, 331
Green Billiat d, 159
Precipitated, 331
-,' Prepared, 381
, L, or Whiting, 329 Through, 87
Chandelier, Bronze, Cleaning, 30
Chinging Bag, Sleaths for Hand
Canera with, "343
Box for Camera, 283
Chapped Hands, Clealu for, 244
Charcoal Drawings, Preparing , Board for, 91
-, Impregnating, with 氵itre, 25
-, Making, from Oak Branches, *109
-, Quickening Combustion of, 251
Charnley Forest Oilstone, 246
Chemical Action, Protecting Bottle Corks from, 278

- Canvas, 26
- Fire Eugine, 116
- Tanks for Magic Lanterns, *61
Chenicals, Refrigerating with, 200
Chemists' Show Bottle Liquids, 13, 293
from Freezing, 293
Chest for Electrical Engineer's Tools, *35
- Light Coach - body Maker's Tools, *65
, Tool, Fastening Tenon Saw to Lid of, *137
Cheves Watch Glass, 344
Chezy's Formala for Water Dis chsrge of Pijes, 69
Chicken Rearer, Heating, 148
Child's Bedstesd, *;0
- Chair, ${ }^{-116}$

Chimes, Tube, 148
Chimney Breast, Underpinning, *260
100-ft., *194Bennoving Soot from, 16
Shaft, Felling, 115
, Sninky, 83, 113
, Tall, Brickwork of, 149
, -, Foundations for, 149 85 -, Hoisting Materials for,
China'Bssin, Broken, Cementing, 232
-_, Cementing to Metal, 232 (see aleo Glass)
, Cements for, 232

- Clay made from Felspar, 242
- Ink, 24 r
- Patchwork, 294
- - Cement for, 294
- Odds and Ends for,
-- Putty for, 204
--, Puttera' Clay for', 185
Chinese Laequer Work, 37
- or Zinc White, 195

Chipuendsle, Mahogany to imitate, 79

- - Pine to imitato, 127

Chisel Hindles, Polishing, 227
Chisels, Cold, Tempering, 310
-, Firmer, Tempering, 310
-, Granite Cutting, msde from Files, 323

Chlorate of

Chloride, Gold, 297
-, Lead, 242
Fit lime Bleaching Fluid,
Filtering, 300
——, Mercaric, 189
-, Mercurous, 189
, Platinum, 269
, Selenium, 20
-, Stannous, 25
Clrome Taming, 34
Yellow, 297
Chromic Aeid. 47
Chrysolite, Catting and Polishing, 387
Chrysoprase, Cutting snd Polishing, 337
Circle, Arc of, Findiag Centre of, ${ }^{*} 172$
*227 - - Length of,
Circle-nn-circle Arch, Centre for, 171
Circles, Glass, Cutting, 133
Cirenlar Curve, Finding, when Contre is Inaccessible, *177 - Moulded Stone Cap, *236 Mouldings, *78
*78 , Ronter for Working, *
—— on Shelf Brackets, *'f8

- Saw Bench, *285
with, ${ }^{*} 330$
- ——, Safety Guard for, *52
- - , Sharpening, 277

Cistrank, Contents of 93
Cistern, Flushing, Repairing, *277
Clarifying (see also Filtering)

- Dextrine, 144
- Gelatine Syrup, 89

Clarionette, Boehm System of Fingering for, *152
Clay, Ball, for White Ensmel, 29 - Ballast, Buroing, 59

- for Blue Brick Msking, 87

-, Clnoa, formed from Felspar, | 2 24 |
| :--- |
| Figures, |
| Preserving, |

-, Modellers', Toughening, 131 , Potters', for China and Porcelain, 185

- for Red Tenghening, 181
——Side-Tipping Waggon, *354
- Tobacco-pipes, Glazing, 28, S6
Cleaning Acetylene Burners, 302
- Alabaster, 240
- Ainerican Organ Reeds, 299
- Animals' skuils, 23, 286
- Antlers, 77
- Aquarium Shelle, 65
- Badger Skin, 244
- Barrel from Piraffin Oil, 58
- Basins of Water-closet, 50
-, Benzene Process of, 119, $124,164,181,186,216,286$, 348
- Birc, 186
- Buat Sail, 216
- Bme, 62
- Battles, 314
- Bowls, 234
- Brackets of Leatherwork, 07
- Brass, 103, 251
- Bronze, 30
- Bronze Ornaments, 347

Brown Bonts, 190, 215

- Kiu Gloves, 198
- Buckskin Boots, 224
- Buff Leather Gaiters, 103
- Burner of Oil Lamp, 319
- Canvas Shnes, 233
- Celestisl Globe, 251
- Chandelier, 30
- Climneys, 166
- Cloth, 17, 90, 119, 124, 104, $165,203,315,348$
- Clothas (see Cleaning Cloth)
- Coins, 351
- Copper, 251
- Cornl, 24

Crocodile Lesther Furniture Coverings, 329

Cleaning English Lever Watch, 99 - Engravings, 38, 206
lieatliers, 854

- Felt Hats, 286
- Fleeces, Suft Snap for, 328
- Floor Tiles, 152
- Furniture Coverings, 829, 849
- Furred Kettle, 253, 276 - Pipes, 352

Furs, 19

- Gilded Watch-plates, 237
- Gilt Bronze Ware, 341
- Clock Case, 311

Gloves, 22, 198, 311
Goat'a Horns, 65 Gold, 350
Grarsid, 190

- Gravestones, 259
- Hats, 338
- Horns, 65, 77
- Imitation Alsbaster, 240
- Interior St 203
- Iron Stonework, 231 Iron coated with Rust, 269 214, 227
Kettle, 258, 276
- Keys of Piano, etc., 310
- Kid Gloves, 22, 198

Lacquered Brass, 251

- - Copper, 251

Mieroscope, 85

- Lamp Burner, 319
—— Leather, 255
- - of Furniture, 269
- Leatherwork Brackets, 67
- Lineo, 17, 203
- Mahogany, 165
- Map, 32
- Marble, 67, 143, 160, 233, 335
-Mieroseope, 85
- Mosaie Eloors, 182
- Oil Lsinp Burner, 319

Paintings, 150, 159, 163

- Oily Bottles, 314
- Ormoln Clock Case, 311
- Paper, 22, 203
- Paraffín Barrel, 53
- Parchment, 22
- Pewter Teapot, 27 s
- Pictures, 38, 144, 159, 159, 163, 206
-— Pipes contisining Fur, 352
- Plaster Bust, 144
- Plsted Goods, 165
- Playing Bowls, 234
- Polisbed Wood, 46
- Prints, 38, 206
- Reeds of Americsn Organ, Re
299
- Rusty Iron, 269
- Sail Wood, 76
- Shells, 65
- Silk T 65
- Silver 165,351 Vers, 306
-—— Coins, 351
- Silver-plated Ware, 351
- Skins, 19, 181, 216, 244
- Sponges, 344
- Stag's Antlers, 77
- Stick Mounts, 255
- Stone Steps, 172
- Stonework, 281, 259
- Straw Hatb, 833
- Table Cover, 119, 165
- Tapestry, 306
—— Teapot, 278
- Tiger Skin, 216
- Tile Mosaic Floor, 182
- Tiles, 152
- Trousers, 164
—— Valencia Waistcoat, 90, 124
- Varnished Map, 32
- Painting, 150
- Velvet-pile Table Cover, 119
- Veneer, 208
- Wall-paper, 22
- Waalleather Gloves, 811
- Wateh, 99
- Wateb-plates, 287

Cleaning Water-closet Basins, 50

- White Buckskin Bonts, 294
- -Canvas Shoes, 233
- Cloths, 165
- - Kid Gloves, 22

Kid Gloves, 22

- Leghorn Hsts, 338 Marble, 160
- - Windows, 251
——Wire before Tinning, 214, 227
Wooden Playing Bowls, 234
Clinical Thernometer, 126
Cli_{1} ' for Engineer's. Scrithing Block, *156
Clock, Adding Electric Alarmn to, 33, 141
Anserican, Striking Wrong, 275

Testing Pallets of, 242
Balance Pivots, Re-jointing, 235 298

Vibrations, Counting, C
Case, Gilt Ornolu, Clean. ing, 311
——, Marble, *284
322

- - , Polishing, 322
- - - --, Repairing, 19, 322 , Compensation Pendulum-of, 77
- Dials, Brass, Polishing, 345 - - —, Painting-silvering, 345
- Drum, Re-pointing Balsnce Pivots of, 255
, Turned Wood Case for, 52
-, Dutch, Pendulum of, 90
Eseapement, 90
Eoweapements and Motive Power, 122

Grandfather, Defective
Striking Gear of, 201
Hairspring, Testing, 298
-, Lantern, Eight-day Movement for * 154
Mainspring, Fitting, 145
Musieal Box connected to, 336
, Oiling, 117
Pallets, Hardeniag, 214

- Jewelling, 307 -, Testing, 242
- Pendulun, Length of, 17,91 ,

178 , Weight of, 77, 91
pensitione and Steel Compensation, 77
Regulator, Compensation Pendulum for, 77
, -, Jewelling Pallets of, 397
-, Self-winding 126
Self-winding, 126, spring to, 145
, Striking, Musical Box col. nected tn, 336
-Striking too Quickly, 35
-Wrong, 201,275
Turret, 222
-, Vionna Regulator Striking, ${ }^{*} 123$
Clockstand in Model Brickwork, *149
Clockwork Metronome, *95
Motor for Gramophone or
Phooograph, 58
Close's Indelible Ink, 238
Cloth, Blind, 47
-, Cleaniag, 17, $90,119,1: 4$,
$164,16 \overline{5}, 203,506,315$
Cotton, Distinguishing
Worsted from, 105
, Dyeing, Black, 91,245
, 一, Blue, 245
--,','Turkey Red, 82
-, Fireproofing, $35,53,274$
--, Pasting, to Cartiage Frames,
805
, Printing Photographs on, 87,
Removing Grease Stains
from, 164,315
,- Ink Stsins from, 165.
203

Cloth, Waterproofing, 69, 80, 112, 190
-, 一, Almuina Soap for, so Procese Hine and Node's rocess ol', 50 ${ }_{80}$ - s 0 0 —, with Alumina Soal, - Rubber, 80 Cleaning)
Proventing Moths from Attacking, 211

- Rack, Hanging, *831
--, - - for Drying, *33
--, Removing Binoxalate of Potaslı Stilins from, 338 from, Bils
Cinthes-wriuging Machine, *27
Clomled Agace, 353
Coach-body Maker's ' $n o l-c h e s t$, *65
Cnach-painter's Body-horse, 191
Cuachsmith's Barrel Heads of Scroll-irons, 56
Coal Bags, Waterproofing, 199 Gas '(see also Gas)
- of, 239 Combnstion, Products of, 239

Hydrogen in, 269

- Miae Guses, 254
- Tar (see Tar)
- ——Dyes, 232 Colouring Spirit Varnishes with, 232
Coal-weighing Machine, Scoop for, ${ }^{*} 342$
Col, Trotting Sulky for, *318
Cockfounding, Plate Casting in, 36
Cocks, Brass, Casting, *51
Coconnut Oit Paste Soap, 300
Cod-liver Oil Emnlsion, 27, 190
Coffin, Filling in, before Polish. ing, 40
-, Pol ishing, 40
Coins, Silver, Cleaning, 351
Coke for making Electric Lamp and Battery. Carbons, 264
Coke--)reeze Coucrete Floor, 145
Cold Chisels, Tempering, 310
- Satts, Tempering, 130

Coll-water' 'Caps, Renewing Washers in, 283
Culapsible Boat, 228
Collar, American Breast, for Horse, 162
-, Brass, for Dog, *22
Collar-roofs, Scantlings for, 232
Collars, Ceinenting, to Lamp Reservoirs, 253
Renoving, from Glass Ware, 119
Collodion, 102

- Oothon, Solvents for, 249

Collotype Printing Process, 216, 249
Colnur, Flatting, for Calico, 252 - of Burnt Gold, Restoring, 264

- Electro-gildíng, Deepening, 150
Coloured Cement Farkening, 237
Coloured Cement Floor, 56
- Glass, Opaque, 01
- Pictures, Photographing, 87, 123
Colunring (see also Dyeing, Painting, and Staining)
- Alahaster, 240
- Architectural Drawinge, 122
- - Banboo Canes, 84
- linliart Balls, 318
- Brickwork, 127
-- Bronzes, 112
-- L'anes, 34, 90.
-Gelatine Photographic Filnns, 90
- Gold Alloys, 36, 46, 54
- linitation Alabaster, 240
- - Eronzes, 112
- l vory Billiard Balls, 818
- Kid Leather, 78, 164
- Malacea Cane, 95
- Malleable Castings, 130
- Mechanical Drawings, 122

Colouring Oil with Alkanet Root, 41

- Portland Cement, 313
--Spirit Varnishes, 232
- Swimming Pigments for, 50 Swimming Bath Bottom, 204
- Varnish, 259
- Yenetian Blinds, 102, 241

Colours (see also Dyes, Puint, Pigipeats, and Stain)
-, Aniline, Dyeing Pampas Grass with 12
--, Box for, *190
-, Flat, Flashing or becoming Patchy, 183

- for' Fresco Painting, 289
——, Primiry and Priacipal, 18
Underglaze, for Biscuit Ware, 158
- for Vulcanite, 168
——, Water, 20
Col -, Fixing, 262
Coluinn, Dereloping Spiral Flute on, *323
——Dininished Twisting, 99
--, Small, Patterns for, 200
Columns for carrying Roof, *226
CMablanelien Marble, 292
Combs, Composition for Making, 143
—, Tortoiseshell, 250
-, Forming Knobs on,
Compass-Cards, Fixing Needies ta, 49
-, Mariner's, 33
--, Pointing Reading, 33
g North, 307
Bed of Brougham
Undex-carriage, Pattera for
*79
Compasses, Beam, *32I
- - Tonrnette, 344

Com, Trammal, *321
Compensation Pendulum for Regulator Clack, 77
Compa. Work, Painting, 143
———, Gauge Boxes for, *167
Composition Rollers for Branding Sacks, 219
Compre, Printers', 217
Compression, 130
Concert Roans, Proportioning, for Sound, 98
Comerete Construction under Water, 260
-, Covering Brick-paved Floor with, 91
——Floor, 86
——, Coke-breeze, 145

- for Foundations, 98
- Fouratations for Gas Engines, 21

Granolithic, for Flooring, $-\mathbf{G}$

- L, Line, 119
-, Painting, 32
-, Quantities for, 88, 158
- -, strength of, 224
- Walls, Forming, under Water, 260
——Window Sills and Heads, *111
Condensation of Water beneath Corrigated Iron Roof, 47
Condensed Milk, 25
Condenser for Magic Lantern, 46
Cone Frnstum, Pattera for, *45
--, GaIvanised Iron, 284
-—, Pattern for ${ }^{* 37}$
——, Pattern Mor, *37
-, Wrouglit Iron, 37
Cones, Cycle, Hardening, 198 ———, Tempering, 198
Conical Bellows of Camera, *276 \longrightarrow Rim, Pattern for, * 45
Connemara Marble, 292
Contents of Circular Tank, 98
———Cylinders, 118, 173, 275
—— —— Egg-ended Boiler, 173
- - Heaped Material, ${ }^{*} 210$
-——Rectangular Tank, 19
-二 - Spbere, 173
- —Tapering Vessels, I40

Gooking, Steam, Boiler System for, ${ }^{* 174}$

Cooking-radge Joints, Cementing, 73 (see also Kitcben Range)
Cooling Air, 109

- Bear, 338
—Shed having Corrugated Iron
Root, 216
Copral, Dissolving, 127
Fossil, Distinguishing
Amber from, 339
Copper, 350
Buekled, Flattening, 106
Candlesticks, Lacquering, 87
- Chains, Gilding, 351
, Oleaning, 251
Dials of Watches (see Watch)
, Dies fo: Stamping, 237
——, Etching on, 110,237
,' Ftehing Cork on, Electrically, 237
, Executing Designs on, 237
Foot-warmer, *62
Fountain for Greenhonse, *340
, Hardening, 182
- Huop on Wooden Bucket, 45 , Inmurities in, 350
Kattle, SuIdering Spout on, 89
-, Laequered, Renovating, 251 tuequering, 87
Lamp, Blackenitg, 330
———, Lacquering, 330
- ——, Polishing, 330
from, Removing Lacquer from, 330
-, Melting Point of, 350
- Moulds, Tinning, 155
- Ores, 204
- —, Reducing, 350
- Pan for Frying Fish, 198
—Pipes, Beading, $18{ }^{5}$
- - Tinning, 62, 140

Plating Wiping Joints on, *62 Plating, 273

- Aluminiun, "300
-—— Lead, 322
- Model Boat, 53
- Plaster Statne, 254

350 Solutions, 53, 273, 300,
Polishing Tarnished, 141, 251

- Pohishing-lap, 387
-, Producing Raised Images on, 237
—, Punching Designs in, 237
Range Boiler, Advantages of, 96
-, Re-lacquering, 251
Reponssé Work on, 214,
, Sheet, 350
-, Sheet, Repairing Boat with, 89
—, -_, Tinning, 103
-, Silver Solder for, 63
—, Silvering, 85
-, Softening, 182
- Solder for, 63, 89
-, Specific Gravity op, 350
-, spinning, in Lathe, 73 ,
-, Stripping Silver from, 320, 337
Thermo-electric Properties of, 90
--Tubing, Determining Thiekluess of, 254
-Utensils (see Copper Vessels, below)
——, Various Kinds of, 204
- Vessels, Cleaainy, 57, 155
- - , Tiuning and Re-tinning, 57
- Wir, Rubber used in, 57 Wire, Calculating Weight of, 56 ing Capacities of 81
Copper, Flash-flue Washing, *283 Whepl-flue Washing, 283
Copying Drawings by Black Line Process, 236
———— Porterin's Process, 236
Glass Positive, 158
- Inks, Black, 220

Copying Inks, Red, 220

- - Yor Typewrit
- Manuscrint, 220 143 Manuscript by Photogiaphy, 143
—— Mounted Photographs, 141 Negatives to make Lantern Slides, 11, *95
- Printed Pictures by Photographic Transtereace, 302
Written Matter, Graphs for, 180
Coquille Marhle, 292
Goral, Cleanime. 24
Corat-wond, 247
Curd Bottom for Chair, *1'4
Curdelova Frieze, Bronzing, 42
Cuik Brot, French, *17
-, Burnt, for Blackening Face, 205
- Frames, Varnish for, 115
- Paint for Ironwork, 58

Corks, Protecting, from Chemical Action, 278
Corliss Valves for Steam Engines, 103
Corn Spirit, 347
Curuclian or Caruelian, Cottin' and Pohishing, 72, 337
Comet (see also Musicai Instrumeuts)
-, Loosening Slide of, 228
Cornice, Cement. Finishins, 145

- Mouldiug, Mitring, *12, *122, *136
-, Plaster, Repairing, 71
Corrosive Sublimate, 189
Corrugated Iron and Felt Roof, *225
\rightarrow ——, Cutting, 229
———, Puushilig Holes in, 229 ——, Riveting. 2:9
Under Side Contensation on - Dude oi, 41 216
Corundum, 187
- an Aluminium Ore, 842
——, Artificial, 76°
Cuté fór Pigeons, *219, *290
Cottage. Selection ot, so
Cottan Fibres, *106
Goods, Soluble Oil for Finishing, 251
-, Winding, on Reels, 301
Cottonseed Oil Soft soap, 328
Coneh Cushion, Stitching siunare Elge ta, 113

Cushion - seat, Putling Spring-seat on, 102
Combter, small, *31?
Gonpling Shackles, Furging, *6 for, * 6
Cover, Boat, , Converting Sail to, 1,9
-, Velvet-pile, Clearing, 119
Covered Midden Stead, *269
Covers, Furniture, Renovatiay, 306, 329, 349
-, Hateh, Waterproofing, 199
——, Saucepan, *112
-—, Umbrella, *Sa
——, Waggon, Waterproofing, 149
Cover-slips for Microscope Slides 133
Cawhouses, Paving for, 235
Cuwles Method of Produciug
Aluminium, 341
Cow's Hoof Pincushion, 309
————, Polishing, 309
——Milk (see also Mille) 348 , Makiog Koomiss from,
Crab, Sugar in, 348
Crab and Labster Pot, *184
Cracks in Blackboard, 84

- - Boots, 50
- - Plaster Walls, 59

Cradle, Baby's, Stand for, *41
Craigleith Stone, 309
Cranming Picture Frannes, *302
Crank-shaft of Engine, Torning, *102
Crate for carrying Pig, *9
Crayons (see also Chalk)
——, Black, 16, 67

Clayons，Blab， 15
－，Brown， 16
－，Red， 16
Crazy Chinawork， 294
－－，Cement for， 294
－－，Odds and Eurls for， 29.4
Gream for Putty for， 294
Cream for Chapped Hands， 244 ，Slazving，45， 250
Creoseted Tinber，Painting，154
Crest on Silver Jug，Obliterating 181
Crimson Laka，Applying， 305
Liquid for ${ }^{2}$ ， 305
Liquid for Chemists＇Show Bottles， 13
－Stain for Alabastar， 240
Crimsen Varnish for Straw Hats， 50
Crocidolite or Blua Asbestos， 303
Crocodile Leather，Faded，Re－ storing， 329
Crocus，49，83， 149
－Metal Polishing Paste， 49
－for Razor Strops， 49
－，Steal－rad， 49
Croquet Mallet，Leather Case for， ${ }^{*} 20$
Croas in Telescopa of Lavel， 69 Crucible，Plunubago， 46
－Sterl Furnace，＊39
Crutching Soft Soap， 329
Cryolite an Aluminium Ora， 341
Crystal，Cutting and Polishing，
Cryatals on Wickerwork， 124
Crystoleum Painting， 223
tographs， 123
Pietnre，Removing，from Glass， 161
Gubing Round Timber， 53
Cucumber House，Heating，＇ 85
Cuir－bouilli Leather－work， 235
Cup Leathers for Pumps， 199
Cupboard for Carpenter＇s Tools， ＊317
－，Glass－fronted Hanging，＊222
－，Merlicina，＊139
Cupola，Furnace，Bricks for， 30
Curbs for Tils Hearths， 244
Curing Bird－skins，Preservatives used in， 44
－Rabbit－skins，105， 285
－Sheep－skins， 24
Curling Feathers， 354
Curling－stones， 14
Cu，Polishíng， 14
Currying Sheep－skins， 24
Curtain，Autograph Door，＊110 －，Dyeing，Turkey Red， 82
－Poles，Brass，Bending， 14
－Rails，Swins，titted to Iron Bertstead， 104.
－Rod，${ }^{* 125, ~ * 145}$
Curve（sea also Circle）
－，Finding，when Centre is In－ accessible，＊177
，Involute，＊226
Curved Wing Wall，Projection of， ＊253
Cushon，Carriage， 308
Conch，Stitching Square Edge to， 113
－for Gig， 314
—，Pin，made from Cow＇s Hoof， 302
－—，Pony Cart． 303

- ，一一，Buttoning， 303
- —，一一，Covering， 303
－，Re－covering，with Moquatte， 145
Cus－Wilton Pile， 145 uahion－seat Couch，Putting Spring Seat， 102
atter Block for Bevalling Framea，＊270
Cutters，Moulding，Machine for Grinding，＊216
－for Satting Jewcl Hola in Gencva Wateh， 251
Cutting Corrugated Iron， 229
－Diamonda， 293
－Ebony with Cylindrical Saw， 306

Cutting Fleor Blocks with Cir－ cular Saw，＂ $3: 30$
－Fur Skins． 266
－Glass Bottle， 233
－－Ivory with， 187
Ivory with cylindrical Eaw， 306
Letters on Pollshed Granite
Headatones， 323
Oak Shingles， 802
\qquad
Oilstene， 246
Shoe Finishera＇Irona，＊53 Slate， 330
＊65 ${ }^{6}$ Slot in Top of Turned Piluar， ＊65
－Stonas，307， 337
— Stoneware Jar， 51
－Tiles，19，244， 302
－Vulcanite with Cylinarical Saw， 306
Woodan Ball Inside An
other Ball，＂325
Z Zinc in Shaet， 247
Cyanide of Gold． 263
－Potassinun， 137
Cycla．Carrying Camera on， 80 －Chains，Lubricant for， 197 －Cones，Hardening， 198 －，Tempering， 198
，Enainelling，303 ，Fiahing Brush Marks in， 49 －Fiahing Rod， 303
－Fixing Transfers to， 225 Oil，Filtering， 64
－Parts，Oven for Casa－harden－ ing．＊107
，Removing Nickel－plating from， 301
－Shad，＂170 ing， 198
Cyclists，Photograpling．＊337
Cylindar Determiming Contents of，118，173， 275
，Heating，from Two Firas 114
，Hot－water，with Two Boilers， 124
${ }_{152}^{\text {Pivots，Fixing，in Watch，}}$
Plugs of Watch，Punch for Relunving， 152
System Hot－waterApparatus， ＊158．＊258
Cylindrical Sawr，Cutting Ivory， Ebonite，etc：，with， 30 G

D

Daggera，Tamparing， 310
Damp Preventiva for Brickwork 84， 86

Stains，Stucco， 84 Marble，67， 335

206

－Wall Remedies，218， 318
Dampar for Postage Stamps，＊276 Damp－proof Courses， 259
\longrightarrow Asphalt，143，168， 259
————，Blue Brick， 259
———，Lead， 259
－－Slata， 259,250
－Stiffening Solutions， 100
Damp－prooting（see also Water． proofing）
Damp－spotted Mirror，Ranovat－ ing， 41
Dancing Stepe of Staircase，＂ 177
Dandelion Beer， 338
Daray＇a Formula for Water Dis－ charge of Pipe， 69
Dark Room，＂ 218
————LampE，＊189，＊233， 834
Darkening Ventilating，＊181
Darkening（aee also Blackaning）
－Mahogany，132， 149
－Old Wood，Yellow， 215
－，White， 815
Decker Ovens，Bakare＇，＊37

Dacoratad Style，Tracery Window in，＂ 267
Damagnetiaing Watches， 128
Dental Plates．Mechanical， 249 Dents，Relleanite， 168
Dents，Reunving，from Brass
Kcttle， 178
Inctrumenta， 168 ， 251 Musical
Dboxydising Tin， 320
Depth Toul，Wat hmaker＇s，22 Derby Black Marbla， 292
－Fossil Marble， 292
Desk，Roll－top，Rell－shutter for，
${ }^{*} 291$
Developars，Photographic， 171

$$
171
$$

—，—— One Solution， 120
－，一，Pyro，263，334
Making，＊263 AlParatus for
Developing Kodak Films， 57
Development of Photegraphic
Plates， 334
Dextrine，Clarifying， 144
D＇Héchette Marble， 292
Dial of Perpetual Calendar Watch， ＊44
Dials，Brass，Polishing， 345
－－，Clock，Re－silvering， 345
，Clock，Painting， 129
，Copper＇， 272
Brazing Feet on， 272 Enamelling， 372
Dials ，Solde 2 F ？
， 272 ．White Enamel for， 272
Diamond Dilver，Cleaning， 353
Diamond Drill， 185
Diamonit－printad Compasaes，341
Diamonds， 293
－，Alaska， 76
－，Cutting， 293
－，Dust， 293
－，＇Pariaian， 76
－，Polishing， 293
－－，Solirce of， 293
—，Splitting or Dividing， 293
－，Turn－table for Polishing － 293
－，Wietand＇s Artificial，
Dichloride of Lead， 242
Dies for Stamping Copper， 237
－，Steel，Cntting， 87
Innas Bricks， 30
Dining－room Ingle Nook，with Sander Rnot，＊332
Dinner Lifts，Mydranlic， 71
Diorama Moonlight Scenea， 116
－Scenes， 137
Dipper forFarrotypePhotography，
Dipning Matals（see Blackening， Brassing，Bronzing，etc．）
Dishes，Zinc，for Photographic Use， 187
Disinfecting Books， 139
－Water－butt， 201
Distemper Paint for Calico， 252
Distilling Lavender Water， 169, 176
－Oil of Amber， 334
－Resin， 161 Lavender，169，I75
－Tar， 182
－Water，＊108
－Whiakey，＂204
－Zinc Ores， 335
Divan Chair，${ }^{*} 214$
— Scttee，＊335
Dog Cart，Painting， 269
－Collar Barnishing， 269
－Collar，Brass，＊22
Dog Kennel，＊55，＊255，＊352
Dog Tooth Marbla， 292
Doll＇a Badstead，Wooden，＊70
Dolly，Matalworkers＇Mandrel，
Dome，Octagon，Covering，with Sheet Laad，＊280
－，Roof Cutting into Side of， ＊25
Door Curtain．Autograph，＊＊I 10
－，Device for Reoording Open－
inga of，＊243

Door Frame，Elliptical Headed， ${ }^{1} 13$
—— Paint Bliatering， 30
——，Re－painting， 30
－of Strect Lamp，Catch for Fastening，＊92
－，Sunblind for， 83
－Varnish Blooming， 317
——，Watertight Sliclins， 7_{7}^{7}
Door－plate，Filling Engraved Letters on， 102
Doora，Internal，Heiglt and Width of， 162
－，Panellad，in Cabinet Work， ${ }^{4} 285$
－，F－T Joinery，＊285
Sashed in，＊34
Doorway Porch，＊33
Dove Marble， 292
Dov－，Initating，33t
Dovetailing，＊24
Dowelled Work，Securing to－ gether， 98
Dragen＇s Blood， 210
Diain－pipas，Cemant Joints for， 191
Drains，Falls for， 227 of House，Connecting，to Deep Sewer，＊23
－，Pneumatic Test，for， 175
－，Smoka Test for， 175
－，Various l＇ests for， 265
Draughtsman＇s Ruliug Pen， Setting，＊47
Draw－lıoks，Locomotive Engine， ＊297
－，Railway Wagon，＊297
Drawing，Black Inks for，242， 247
－Board，Stratching Paper on， 236
－，Indian Inik Ground for， $9 x$
Ink fer， 242
Ofrca Work，Trammel Heads for，＊218
－Pen，Setting，＊47
Drawings，Architectural，Colour－ ing， 122
，Perspective，＊138
Black Lina Mathocl of Copy－ ing， 23 ，
——of Buildings， 209 Graphs for Multiplying， 180
-18
,$~ I i n$
——，Line，Making Lantern Slides of， 11
－，Mpehanical，Colouring， 122
－，Pencil，Fixative for， 139
－，＇Transferring，to Linen， 119
Draycot Marble， 2.92
Drilling Amber， 339
— Glass，106， 294
－－Lubricants for， 294 Hard Steel Watch Piuions， 237， 300
Watch Staff，＊42
Drilling－machine，＊178
Drills，Diamond， 185
－，＂Flirting，＂ 300
－for Glass， 294
－，Hardening．294， 300
Drinking Watar，lmpurities in， 827° ，Sources of， 327
Drum Clock Balance，Re－peint－ ing Pivots of， 285 $-\frac{1}{* 5}$ ，Turned Wood Case for，
Dry Plates（see Photographic）
－Ret in Wood， 26
Dry－cleaning Skins，19， 161
－Valencia Waistcoat， 90,124
Drying Clothes，Wall Rack for， ＊337

- Mops， 102

Drying－room，Steam－heated，9I， 208
Dulling Varnishad Surfrobs， 260
Dumpy Level and Staff，Taking Heights with， 336
Dunlop＇I＇yra Valves，Making Trammel Heade from，＊218
Duporth Marble， 292.
Diresco， 85
Dusting．on Process of Photo． grapby， 70

Dutch Barn, *182

- Metal Leaf, 253

Dwelling-house, Hiats on Choosing, 80
Dye, Coal-tar, Colouring Spirit Varnishes with, 232
Dyeing (see also Colouring and Staining)

- Billiard Baìls, 318
- Black Can ras Shoes, 255
- Canvas Blue, 245
- Cloth Black, 91, 245
- Blue, 245
- Curtains Turkey Red, S2
- Feathers, 34, 163, 255
- Glove Leather, 78, 164
_- Grasses, 130
- Green Cloth Black, 245
- Ivory, 262
- - Billiard Balla, 318
-, Nitiate of Soda used in, 16
- Pampas Grass, 12
- Ostrich Feathers, 163, 255
- Sheepskios, 169
— Stockings Black, 228
-Tablecloth Turlkey Red, 82
Dyıamo, Starting, 98

E

Earth, Imitation, for Cases on Stuffed Birds, 173
Earthenware Goods, 125

- -, Glazing, 18
-_, White Glaze for, 18
- Jar, Cutting 51

Earthnut Oil Sott Soap, 328
Easy Chair, Marlboro', *122

- -, Sheraton, 99

Eloniaed Frame, Repairing, 230
Ebnaite or Vulcanite, (see alsu Indiarubber) , 148
--, Boring, 306
-. Cements for, 236
—, Cutting, with Cylindrical Suw, 306
—, Polishing, 306
-, Tools for Working, 306
Taroing, 306
Fhony, Combined Stain and Polish for, 38
-, Fiaishing, 27
-'Fretwork, Polishing, 44

- Mirror Frame, Polishing, 35
-, Polishing, 27, 38, 44, 100
—, Sawing Up, 27
-- Selecting, 27
_-Stain and Varnish Combined, 195
——, Turning, in Lathe, 27
100 Walking-sticks, Polishing, 100
- Working, 27

Effervescing Salioe, 209
Eggs, Blown, Preserving, 01 Glass Blowpipes for Blowing, 311
-, Large, Device for Supporting, *254
"Eggs of Nuremberg" Watches, 344
Electric Alarm, Adding, to Clock, 83, *141

- -, Shon-rloor, *181
- Arc Lamp Carhons, 264 Por Hand Feed, for Portraiture, *344
- Battery Carbons, 264
- Cables, Seven-strand, Jointinig, 79
- Calamine Zine Ore, 335
- Current Carrying Oapacities of Copper Wires, 81
- Fúroace for Prodacing Calcium Carbide, 28
- Incandescent Lamps, Il luminating Powers of, 301
- Ineulator, Mica as, 41
- Key Action of Pipe Organ, 167
- Lamp Carbons, 264
- Piles, Thermal, *90
- Push, Double-contact, *99

Electrical Engiaeer's Tool Chest *35

- Methods of Producing Aluminiun, 841
- Process of Etching Copper, 237
Properties of Amber, 339
Electrically Depositing Irou, 313
Electro-brassing Solution, 18, 165
Electro-bronzing Solution, 274
Electro-coppering, 275
- Alaminium, 300
- Lead, 322
- Model Boat, 53

Plaster Statue, 25
-Solution, 53, 273, 300, 350 Working, 350
Eleectro-gilding Alnmininm, 300

- Cyanide of Gold for, 263
-, Potassium Cyanide for, 137
-Solution, $154,274,300,307$ 312
Electro-gilt Ware, Deepening Colour of, 150
353 , Stripping Gold from, 353
Electrolytic Method of Preparing Chromic Acid, 47
Electro-motive Force of Metals, 90
Electro- dickelling Ainmínium, 300
-, Black Streaks in, 52
-Solution, 229. 300

229

Correcking Acidity of,
_

Working, 229, 353

- Wax Moulds, 5

Electro-plate, Fumigating, 55
-, Oxidising, 55

- Rusting, Rennedy for, 267

El, Whiteniog, 2.5
Electro-silvered Articles, Stripping Silver froto, 339
Electro-silyering, 243

- Aluminiom, 300
-, Bright, 243
- Copper, 274
- \rightarrow Deterioration of, 233
- Striking Solutions for, 243
-Tin Teapots, 264
Electrotypes, Steel-facing or Ironfacing, 313
——, Warty Nodules on, 50
Elephant Ivory (see Ivory)
Elevators, Hydraulic, 71
Ellipse, Drawing, 66
Elliptic Arch, *201, *209, *21
- Gothic Arcb, *195
——Headed Door Frame, *13
Elm, Staining, 123
- Strength of, 150
——, Varnishing, 123
Elvans, Weight of, 150
Elvans, Cnttiog and Polishing, 337
Embossed Glasa, Sun Printing on, 308
Embossing Glass, 24 s
- Photograyhs, 166

Embrocation for Bruises, etc., 247
Embroidery, Frame for Working, *133
Emerald-green Pigment, 194
Emeralds, 76
——, Artificial, 76
—, Catting, 337
—, Polishing, 337
Eloerson's Patent Brass, 354
Emery or Corundum, 18

- —, Using, on Hard Oilstone, 246

Wheel, Polishing Brass Tabes on, 58
Emperor's Red Marble, 292
Emulsion of Cod-liver Oil, 27 , 190
Enamel (see also Japan)

- for Bedstead, 59
-, Black Stoving, 268
Letters, Cementing, to Window, 232
, Method of Using, 32 Paint, 221

57

Enamel Paint, Removing, from Furniture, 79

- for Pill Coating, 142
-, Preventing Knots showing through, 152
Removing, from Malıogany, 108
- Spirit Varnish, 221
-, White, 29
, White, 29 Ball Clay for, 29
dials, for Copper Watch dials, 272

Stoving, 268
Enamelled Slate, Polishing, 297
—, Removing Scratches
Enameller, Photographer's, 298
Enamelling (ses also Japanniug) -, 1.58

- Bath, 86
- Bedstead, 59
, Brush Marks in, 49Carriage Ironwork, 30
- Cycle, 303
- Furniture White, 147
- Photographs, 166
- Slate, 45, 297
- Watch-dials, 272

Encaustic, Paste for Polishing Photographs, 275
Engine, Chenifcal Fire, 116
-, Corliss Valve for, 103
—, Coupling Shackles, Forging * 67
—— Crank-shaft, Turning, *102
, Determining Power of, from
Indicator Diagrans, *92
Draw-hooka, *29?
-, Gas, Foundations for, 21
Locomotive, Action of
Steam in, 26
*67 , Coupling Slackles of, from, 228
, Re-painting, 228
—, Model Steam, Power of, 148
— for Pile Driving, ${ }^{*} 165,{ }^{*} 316$

- Rods, Forging, *84
-_Slide Valve, Lead of, 100
-, Steam Action in, 26
Consumption in, 101
Engineer, Electrical, Tool-chest for, ${ }^{*} 35$
English Brass, 354
\because Gunpowder, 346
- Konmaiss, 348
- Legal Standard Wire Gauge, 351
Lever Watch, Correctiog Barrel of, 346
- Oak, Strengih of, 150
———, Weiglit of, 150
Engraved Crest on Silver Jug, Obliterating, 121
Initiais on Watch-case, Erasing, 140

140

Ivory, Filling, 31, 226
Letters on Door-plate, Red
Filliug for, 102
—on Electro-plate, Whiten ing, 275

- Plates, Wax Fillings for, 288

Engraving Gems, 192

- Initials on Watch-case, 140
- I vory, 31
—— Lettering, 79
- Let Tools for, 79
——Stick Mounts, 255
Engravings. Cleaning, 38, 206
, Removing Damp Stains
from, 144
Engraving-tools, Sharpening, 79
Enlargement, Photographic, oo
Carbon Paper, 315
Enlargements, Bromide, 174 , -, Making Triad Pictores of, *75
Enlarging, Photographic, 117
- - Camera for, *275
—, ——, by Daylight, ${ }^{*} 127$
——, Lantern for, *31, *277
, —— Lens for, 104
with Fixed Focus
Hand Camera, *121
Hand Camera, *12

Enlargiog, Photogiaphic, with Pocket Kodak, *68
Entomological Pins Camera, 89
Entomological Pins, 226
Entomology (see Beetles, Butter flica, and Motha)
Wntrance Gates, Tenons for, *124
Envelopes for Freshly Caught Butterfies, *300
-Gumfor, 234
Erasers for Ink Marks, 90
Escapement, Clock, 122
Etching Alabaster, 240

- Brass, 86, 145
- Copper, 140,237
- Electrically, 237
- Glass, 308
- - in Gold, 339
—Ground for Alabaster, 240
Grounds for Metals, 11, 82, 140, 145
- Initation Alabaster, 240
- Kinfe Blades, 11
- Steel, 11, 82
———, Acids for, 11, 82
11,82 , Resists or Grounds for,
-

Ethereal Solation of Gold, 270
Ethyl Alcohol, 347
Everget Photographic Shutter, 93
Expansion Joiat, Plumbers', 247
Explosive Power of Gunpowder, 346
Extension Ladder, *241
Extract, Liquid Malt, 11
——, Logwood, 290
Eye-glasses, Watchmakers', 224
Eytelwein's Formula for 'Water
Discharge of Pipe, 69

Fabrics, Cleaning, 17, 90, 119, $124,164,165,203,306,315,348$ Cotton, Distinguishing Worsted from, 105
, Dyeing, Black, 91, 245
, -, Blue, 245

$$
\begin{aligned}
& \text { Firenroofing Ped, } 85.53 .2
\end{aligned}
$$

Freprooting, 35, 53, 27
Printing Photographs on 87
, Removing Ink Stains from, 165 , 203
, Waterproofing, 69, 80, 112 199
$\xrightarrow{\square},-$, Alumina Soap for, 80 cess of, 80
80
${ }_{80}$-, with Alnmina Soap,
-80
Face, Con position for Blacken. ing, 265
Facets, Cutting, on Stones, 337
Facework on Granite, ${ }^{*} 205,345$
Facing Bricks, Red, 261
Factories, Air Space in, 239
Fahrenheit Thermometer, 304, 305

- Degrees, Converting, to Centigradeaud Réaumur, 304, 305
Falls for Drains, 227
Fau for Forge, *319
-, Ivory, Repairing, 31
Farm Waggon, Painting, 308
Fascia, Varnisking 308
cias, Glass, Flat Grounds for; 241
Fat Amber, 339
-, Making Soap from (see Soap)
- Oil of Turpentine, 66
- for Soft Soap Making, 328

Feathers, Cleaning, 354
-, Curling, 354
—, Dyeing, 34
--, Ostrich, Bleaching, 257
Fe, -, Dyeing, 163, 255
Splitting Iron or steel, for Splitting Granite, *238'
I Hime and Node's Pro ss of, 80

Holfert's Process of,
-_Rubber, 80

[^5]\qquad

Feet（see Fool）
Fellng Higin Chimney Shaft， 115
Fellces，Whrel．Pattern for， 290
Fel，Putting on，＊81， 290
Felspar， 242
China Clay formed from，
242
——，Cutting， 337
－＿iu Granite， 242
－，Kanlin formed from， 242
－，Pink， 24
，Polishing， 837
Weatber－resisting Proper－ ties of， 242
Felt，Cementing，to Iron Rollers， 81
－aurl Corrugated Iron，Roof 01，＂225
－Hats，Cleaning， 286 ，Ronfing with， 260
Fender Stool，＊264，
Fermentation of Koumiss， 348
Furn Case， 201
Ferrotype Cameras， 252
－Pbotography， 252
－－Batis nsed in，＊307
Plates， 252 ，Dipper used in，＊307
－Black Enamel for， 223
Fibres，A＇sbestos， 303
——，Cotton，＊106
，Linen，${ }^{*} 106$
－，Silk，${ }^{1} 106$
－，Wool，＊106
Fielrl Glasses showing Doulle Image， 252
Figures，Clay，Preserving， 36
－，Hollow Sugar， 26
，Plaster，Giving Ivory Ap－ pearance to， 36
，－for Modelling， 36
－，Solid Preserving， 36
－，Solid Sugar， 26
Files，Sugar，Monlds for， 147
nes，Granite Catting Chisels made from， 323
，Polishing Brass Tuhes with，
illing for Blackboard Cracks， $\begin{array}{r}84 \\ \hline\end{array}$

324
－——Coffin， 40
226
Eugraved I rory，
Plates，102， 288
－Headstonc Lettering with
Lead， 323
－for Headstones， 164
－Joints in Bamboo
Work， 263
－Mandolines， 268
－Oak， 324
Sur Pine， 01
－Sult Snaps， 329
— for Stecl Castings， 296
－Teak， 324
－Vinlins before Varnish－
ing，18， 23
Fillings，Painters＇， 88
Filus，Gelatine＇Photographic， Colouring， 90
，Kodak，Developing， 57
Filter，Automatic Sewage，＊203，
－，Bacterial，for Sewage， 321
—，Oil，100， 275
——，Water， 348
Filtering Bleaching Fluid， 300
－Oil， 64
Finder for Heat， 125
Finder for Canera， 85 ，＊148
Fiuishing Wood，Metal，etc．（see Staining，Polishing，and Varnishing）
Finishing－irons，Shoemaker＇s， Cutting，＊53
Fir，Scoteh，＊315
－，Spruce， 315
－，一，Strength of， 150
Weight of， 150
No Cracko in Plaster Walls， 59
－Engine，Chemical， 116
，Gas，Cause of Roaring in，
Grates，Black Varnish for，
$\stackrel{\text { Firedamp in Coal－minc，}}{ } 254$

Fire－raters，Prcparation used by， 86
Fireguard，Construction of，＊71
Firclighters，＊268
Fireplace，Heating Two Rooms from， 285
Fireproohing Fabrics，35，53， 274
－Theatre Scenery， 58
F Wood， 85
Fires，T＇wo，Heating Cylinder from， 114
Firmer Chisels，Tempering， 310
Fish，Copper Pan for Frying， 198
，Fungoid Growth on， 276
 -188
T，Wax for， 183
，Keeping，in Tank， 276
，Mounting， 217
，Stuffing， 217
,$\frac{217}{}$ ，Preservative used in，
－Tank，Circulation of Water in， 276
Fishing Buit Manement of， 276
Fiohing Buit，Pastes for， 198
270 ，l＇reserving Roach as， 270
－，Landing Net for，${ }^{*} 157$
－CLines，Dsy，Making up，＊234 ＊234 for Eels，Making up，
－二－，Night，Making up，${ }^{*} 234$ ings for， 64,217
－Reel，Making，＊237
－＿Rod，Cycle， 303
－－is－feet Salmon， 303 ＇，Sea－trout， 303°
 ， 16 －foot Salmon Fly，
－＿一，，Nulit Csne， 160 Stool，Three－legged Folding， ＊21
－，Wood for， 303
Fitches used in Painting， 57
Fitter for Spoke l＇ongues， 290
Fitzroy Barometer， 274
———，Re－filling， 11
Fixing Indian Ink， 242
－Pencil Drawings， 130
Flac Mater－colours， 282
Flag Making， 851
Flagrteff Code，${ }^{*} 352$
Flagatsif Topmast，Fixing，to Mainmast， 260
Flake White， 194
Flams Lamplack， 250
－Soot－black． 250
Flash Glass， 207
－Point of Oils，Asccrtaining， 114
Flash－fiue Washing Copper，${ }^{*} 283$
Flashings，Lead，＂Burnt－in＂to Stone，＊220
－，Stepped，for Roofs，＊331
Flattening Buckled Copper， 106 （s88 also Straightening）
or Filling for Steel Castings， 296
Fleece Washing，Soft Soap for， 328
Flesh Tints，Pigments to produco， 10， 343
Flesh－tinted Grease Paint， 343
Fluttrge Watch Glasses， 344
Flint，Cutting and Polishing， 337
Tlint－acate 353 ， 161
Flint－agate， 353
Flirting or＇Hardening Drill， 300
Flitched Beam，Strength of，＊162
Flong，Stereotyper＇s， 111
Floor（see also Paving）
－of Assembly Room，Roller Joisto for，${ }^{*} 217$
－Blocks，Cutting，with Cir－
（4ular Saw，＊330
Boards，Bleaching， 81
，Mry Rot in， 26
－，Renoving Paint from， 31
out Doge，＂119？ ，Brick－paved，Conerete to Cover， 91
，Cement，Grooves in， 320

Floor，Coke－bresua Concrete， 145 －，Coloured Cement， 56
－，Conerete，86，91，145， 235
－－of Cowhouse，23fi
－—，Estimating Loud on， 191
——，Girder to Sapport，＊190
Granolithic Concrete， 235
Imitation Granite， 328
Mosaic，Cleaning， 182
Polishing， 148
—＇Space in Barracks， 239
－－Hospitals， 239 －Bchoola， 239
－of Stable， 235
—，Stable，Grooves in， 320
Stains，Mixing and Apply． ing， 200
－Tiles，Cleaning，152 White Cement， 181°
Wood－block，＂24．5
－Mastic Asplialt for
oring，Pavodilos Joint in， 98
Florence Marble， 292
－Metal Leaf， 253
Flower Box for Window，＊311
－Pot Stand，Design for，${ }^{* 246}$
Pots，Window Board for，
＊320
Flowere，Cat，Preserving， 305
Fluate，Treating Bath－stone with，
Flue，Heating Greenhouse from， 89
$-\quad$ of
－of Washing Copper，＊283
Fluoxspar，Catting and Polishing， 337
Flushing Cisterns，Repairing， ＊27\％
Flute，Spiral，Round Column， ＊323
Flute，system of Fincering for，
Flux（see also Soldering）
Wised in Joining Electric
Wires， 79
－－Melting Grild， 233 Barrels， 48
Vessels， 57
Fly－fishing，Rods for， 303
Fly－papers，Adbesive， 250
Fo，Poísonous， 281
Fog on Photographic Dry Plates， 74
Folding Fishing Stool，Three－ lerged，${ }^{21}$
－Hand Camera，＊220
－Stand for Baby＇s Cradle，＊41
－Table，＂ 143
Fontaine Moreau＇s Bronzes， 353
Food Bin for Poultry，Self－feed－ ing，${ }^{*} 130$
F－，Poultry，Rsek for，＊334
Foot（sce also Hoof）
－，Lamb＇s，Making Whip Stock from， 318
－－Solution for Preserv－
Footpaths（see slso Floor and Paving）
，Tar，Laying；77， 81
Foot－stool，Round，${ }^{2} 281$
Fnot－warmer，Copper，＊62
Forme，Blowing Finn for，＂319
Forging Coupling Shaekles，${ }^{*} 67$ for，＊67 T，Bending Block
——Engine Rods，＊84
Vehicle Axles， 66
Fortification Agate， 853
Fossil Copal，Distinguishing Am－ ber from， 839
－，Limestone，Polishing， 202 Fossil－finx Asbestos， 303
Fussid－paper Aobestos， 303
Foundations，Concrete， 98
－for Gas Engines， 21
－－Macadsin Roads， 291
Tall Chimney，14！1， 184
Fountain for Greenhouse，＂349
Fowls＇House with Susn Roof，
＊389

Frame，Carved，for Photograph ＊60

Circular，covered with Plush，＊108
Cork，Varnish for， 115
—，Cramping＊302
for Divan Chair， 214
Door，Elliptical Headed， ${ }^{4} 13$
Ebonissd，Repairing， 230
Ebony，Combined Stain and Poliah for， 35
，for ，Polishing， 38 for Embreidery Working
Mahogany，Darkening， 13
－，Oak，Green Stain for， 67
－，Oval，Run in Cement，＊221
－，Oxford，＊：247
Picture，Applying Gold Bronze to， 110
，Window，Futting Sash Lines in， 47
for Wire Window－blind，＊64
Framework for Punch and Judy Show， 329
French Black Marble， 202
－－Brass， 354
－Cellnloid， 262
－Cork Boot，＊17
Gunpowder， 346

- Method of Silvering Metals， $85=$
Polish， 261
－—，Black， 314
－，Brush， 233
－Revivers， 268 Shellac for Making． 13
——，Transparent， 314
－，White，13， 314
－for Yellow Pine 142
Polished Wood，Gilding， 314 Polishors＇Marquetry＇Trans－
fers， 39
－Polishing， 79
－－，Black， 814
－Decorated Wood， 299
－Ebony Fretwork， 44
－，Gums used in， 43
－———＇Painted Furniture＇， 79
－Planes． 311
Wood，Preparing End－grain
Woot for， 111
－－Printed Wood， 209
－，Recl Oil nsed in 41 －in Self Colomrs， 223
－Lurned Teak， 261
Silvering Metal， 85
－Ultramarine， 195
－Wbipping Top，${ }^{*} 286$
Fresco Buono， 289
－Painting， 289
－——，Basis for， 289
－＿－，Colours for， 289

\qquad

－－－－in Self Colours， 223
23

259 ，Plaster Coatings for， 259
Fretting Banjo，115， 216
－Guitar， 80
Fretwork，Ebony，Polishing， 44
－，Three－ply Wood for， 81
－，Warped，Straightening， 81
Frieze，Cordelova，Bronzing， 42 Tvory to， 42 Aving Appearsuce of
Fringe，Fjxing，on Mantelboard，
181 ，
Frost，Protecting Water Mains from， 95
Frosted Silvering＇of Mirror， Renorating， 41
Frosting Alumiuiam， 314
－Silver， 345
Fruit＂Stains，Removing，from Boat Sail， 216
Fruetum，of Right Cone，Pattern for， 45
Frying Fish，Copper Pan for， 198
FteI for Aluminium Furnaces，
218
Foluninate of Mercury，1S1
Fumigating Brass． 60
Fumigating Brass． 12
—— Mrhogany， 149
259 ，
－Secco， 289

Ivory to， 42

$$
2-1-
$$

Funigating Oak Frames， 196
－Silver， 55
Fur Silver－plate， 55
Fur Necklet，Moth－eater，Reno－ vating， 49
— Skias（see also Skins）
－——，Cleaning， 19
－——，Cutting， 266
－of， 142 Determioing Quality
Fur，Removing，from Kattle，258， 276
Furnaee for Aluminiun Casting， 215
——，Crucille Steel．＊39
－Cupola，Bricks for， 30
Electric，for Producing Calciuıu Carbide， 28
－for Melting Lead Ashes， 146
－Wagon Springs，＊59 niture，Bent－wood，Blacken－ ing， 316
－，Che，Renovating， 316
－，Oheap，Varnish for， 131
－－Coverings，Green Ćrocodile Leather，Renovating， 329 vating， 349
－，Silk，Cleaning， 306
－Decorating，with Marquetry Transfers，39，
，Dull Black Finisi for， 102 Enamelling， 147

Freach Polishing（see French Polishing）
－，Glaze fol＇， 271
51 Hand Cart for Carrying， 51
－Leathers，Renovating，207， 269,329
－，Mahogany Eoriching Colour of， 79 （see also Mahogany）
—，Mites in，120， 301
－，Oll Oak，Renovating， 184 Painted，Polishing 79
－，Polished，White Spots on， S1

Polishing（see Freach Polishing）
－，Removing Enamel Paint from， 79
，－Old Glue from， 227
－，一 Paint from， 163
－，－Stain from， 85 163
－，- Veneer from， 227
－，＇Re－polishing，219
－Revivers， 299
－，School，Yellow Finish for， 111
－Upholstered in VeIvet，Reno－ vating， 20 ＇
，Varnish for， 131
－，＇Veqeered，Renovating，227，
－，Worm eaten，120， 301
Furred Kettle，Cleaniag，258， 276
Fuis Pipes，Cleaning， 352
Fusee Chain，Watch，Mending， 260
Lever Wateh，Correcting Barrel of， 346
Fusel Oil，Alcohols containing， 347

Fusible Plugs， 42
Fusing Point（See Melting Point）

G

Gaffard＇e Indelible Ink， 238 Gaiters，Buff Lealier，Cleaning， 103
Galena an Ore of Lead， 352
Gallery，Aunt Sally， 145
，Shooting，Grotesque Target for，${ }^{*} 97$
Galls used in Ink Making， 211
Galvanised Iron， 335
－－Cones，Hollowing， 254 －－－－Tank Rusting， 309
Galvanising Iron and Steel， 174 －Wire Articles， 221
Galvanometer，Watch－case，＊6B

Ganister Bricks， 30
Garden Arbour，＂147
－Hoes．Tempering， 310
－Labeis，White Paint for， 270 —— Pump，＊331
－Tripod Stand for Telescope， ＊94
－Vase in Cement，＊228
Garments，Clenning 320
Garments，Cleaning（see Cleaning） Garnet，Cutting and Polishing， 307，337
Gas，Acetylene（sec Acetylene）
－，Afterdanip， 254
－＇Black， 313
－Biackdamp， 254
－Blackening Silver Goods， 42 Brackets，Bronzing， 61
，Dead Dipping， 61
，Dipping， 61
－－－，Finishing， 61
－Burners，Bray＇s Flat－flane Consumption by， 297
Comparat－flame and Bunsen Compared， 92
，Incandescent；Illumin ang Powers of， 301 \longrightarrow ，Self－lighting Incin－ descent， 269
－，Welshach， 23
297 ，Consumption by，
，Oarbonic Acid in Atmo－ sphere， 254
＇ 254
：329
－Oxide， 254
，Ooal，Hydrogea in， 269
Combustion，Prorlucts of， 239
－Consumption of Bray＇s and Welsbach Burners， 297
－Engine，Fouadation for， 21
－Fire Roaring，Cause of， 153 ，Firedamp， 254
—Fittings，Testing， 111 Hydrogen，Buraing Lead Seans with， 253
—，—— in Coal Gas， 269
— Liglit，Making Photograpbic
Priats by， 103
Mantle，Welsbach， 51
－Mantle，${ }^{-}$，Marsh， 254
－Meter Defects， 45
—，Muriatic Acid， 342
Oxygen， 43
，－，Wright＇s Method of
Preparing， 43
—Pipes，Testing， 111
——，Purifying， 42 Retort Reftrse，Artificial Emeralds made from， 76
—Station Meter，Reading， 83
－，Stiokdamp， 254
—Stove for Heating Laundry Irons，＊242
＊337 Rack for Drying Clothes， ＊337
——，Sulphuretted Hydrogen， 254
———Blackening Silver
Goods， 42
\square ，Whitedamp， 254
Gas－cocks，Brass，Casting and Finishing，＊51
Gases，Corl－mine， 254
，Injurious，from Gas Works， 187
Gash, Manare Works， 189 from Freezing，III
Gate，Wicket，＊320
Gates，Eutrance，Tenons of，＊124
Gaudin＇s Artificial Runies， 76
Gauge Boxes for Compo．，${ }^{\text {＊}} 67$
for Inlaying Purfling on Violin，＊：08
－—— Stringing，${ }^{*} 164$ ＊210 Studs in Upholsters， ＊210
－，Pencil Marking，＊133
Ganged Arch，Charging for， 235
－，Measuring for，＊235
－Stuff，Plasterers＇， 254
Gauges，Wire（see Wire Ganges）
Gauze Blinde＇（see Wire Blinds）
Gedge＇s Draw－hook，${ }^{*} 297$

Gelatine， 48
－－，Alcohnl Solition of， 228 －，Anerican Method of Mak－ ing， 48
Bolers or Pans used in Making． 48
——for Casting Trusses， 189 Liming Raw Materials for Making， 48
－Moulds， 130
－Photographic Films，Colour－ ing， 90
－，Raw Materials for， 48
－Syrup，Clarifying， 89
Gems，Artificial， 76
－，Colouring Matter of， 76
：Distingnishing Artificial from Real， 76
－，Engraving， 192
Genera Watch，Fixing Loose End－ stone in， 2.4
———，Putting，in Beat， 89
in， 59 ，Repairing Jewel Hole
$\frac{251}{25}$ ，Setting Jewel Hole in，
－Taking Apart， 119
Genoa Green Marble， 292
German Silver，Gilding Liquid for Dipping， 200
erties of 00 －electric Prop－ Yeast， 165
Gesso，250， 261
－－，Executing Designs in， 261
－Ingredients of， 250
Ghust Illusion for Amateur Theatricals， 54
Giallo Antico Marble， 292
－Arovio Marble， 292
－Canarino Marble， 292
Gig，Cushion for＇， 814 （see also Gusbion）
Gilcled Chaia，Stripping Gold from， 273
—Silver，Removing Gold from， 231
－Watch－plates，Oleaving， 23 个
Gilders＇Compo．， 250
－Putty， 353
－Stopping， 250
－Whiting， 250
Gilding（see also Gold）
－Black Freuch－polished Wood， 314
－Brass， 209
－Chains， 35 I
－Bronze， 209
－－Copper， 274
－，Electro（see Gold Plating）
－Figured Oak， 267
－Se，Size for， 267
－German Silver， 209°
—— GIass，125，I46， 339
－by Chemical Process， 297
－Leather， 30
－Lettering on Granite Head－ stone， 323
－Lines on Boat， 109
－Liquid for Dipping Metals， 209
－Metal without Battery， 351
－Oak， 267
———，Size for， 267
－Piano Fronts， 118
－Siano Poards， 152
－Silver， 209
－Ohains， 351
－Soldered Joints of Plated Goods， 114
－Solutions，154，274， 307
——Steel Pins， 77
－Watcl Plates， 259
—— Wire Blinds， 214
—— without Battery，Liquid．Gold for， 184
Gilt Bronze Ware，Oleaning， 341
－Chains，Deepening Colunr of， 150
Gin，Amonnt of Alcohol in， 347
Ginger Beer， 33 S
Girird Turbiae， 99
Girder to Snpport Floor，＊190
Girders，Comparative Designs of， 161

Glacé Kid Gloves， 286
－－Polishing， 286
－ Leather， 286
Glass Balls，Smoothing， 117
－Beads， 41
－Bevelling，Wheels for，＊314 ，Black Paint for Lettering， 130
－Blowpipes for Eggs， 311
Bottle，Cutting 233
Cells for Microscone，ヶร
，Cementing，in Aquarinm， 215
，—，to Celluloid， 236
，一，－Metal， 292
Slate， 232
Wood， 232
Xylonite， 236
Cements for，61，232，236， 353
Circles，Gutting， 133
Cuvers for Microscope Slides， 133
－Drilling，106， 294
—，Drilts for， 294
，Hardening Drills for
294
－一，Lubricanta for， 294
294 Embossed，Sun Printia on， 308
－Erahossiag， 243
－White Acid for， 107 ＇Etching， 308
——，in Gold， 339
Fascias，Backgrounds for， 247
，Fixing Tranefers on， 301
—，Flash， 207
，Gilding，125，146， 339
，－，by Chemical Process， 29
，Heat－resisting Cements for， 232
，Indelibk for， 273
，Indelible Ink for， 238
Inks for，238， 273
Lamp－reservoirs，Cementing， ＇253
－－－－，Removiug Rims to， 253 119 ，Removiog Rims from，
Lens，Distinguishing，from Pebble， 275
－，Lettering，by Sand－blast， 16 Letters，Cementing，to Win－ dow， 232
Louvre Ventilator for Shop Window，＊34
－，Matting， 155
－，Ohscuring，with Acid， 153
，Opal，Paint for Lettering， 251
－＿，Opaque Coloured， 91
，Paints for Marking，130， 261， 273
—，Plate，Bevelling， 119
Flat Grounds for， 247
Painting Lines on， 126
－＇Polishing，Wheela for，＊314 －Positive，Blocking out on， 319

Gopying， 158
－Putty or Cement， 353
－，Puttying，in Window Frame，
＊109
Removing Crystoleun Pic－ Removing Cr
，Oil－painted Letters from， 111 ，Porcelain Letters from， 220
－Roof，Preventing Condensed
Moisture Dropping from，＊299 ，Sand－blast Process of Let－ tering， 16
－Shade，Cracked，Cutting， 187 Signs，Rosewood Graining： on， 277
，Silvered，Renovating， 41
，Silvering，72， 108 ， 41
，$\overline{\text { Ske }}$ ，Table used in，＊72
，Sketching on， 148
－，Stencil Ink for， 273
－Tanks for Magic Lanterns， ＊GL

Gless, Transparent Cement for, 61, 292
Ware, Cementing Brass Collars to, 253
lars from, 119
Gloses EXC, for Watchmakers,
2. 2

Field, showing Double Image, 252

- Opera, Photngraphing with, *3:4
, Wntch, 844
—, ——, Cheves, 944
-, ——, Flettage, 344
Glass-faced Swinging Sign, *295
Glas- Tronted Hauging Cupboard, *232
Glaze for Finishing Furniture, 271 - Pottery, 18
-T Terracotta Tiles, 18
-, White, 29
Glazed Phr Earthenware, 18
Prints, Mnuntant for, 190, 228
Glazing Ciles, Cutting, 19, 244
Glazing Clay Pipes, 28,66
- Earthenware, 18

Knives, *343
-, Lead-light, 74

-, Gement for, 74 stopping for, 74
Photograplic Prints, 190, 280
Terra-cotta Tiles, 18
Window Frame, *109, 342
Glanber's Salt, 260
Glabe, Celestial, Cleaning, 251
\qquad Renovating, 251
Glossy Black, Plumber's 926
Gluve, Handkerchief, and Jewel Case, ${ }^{*} 140$
Leather, 78

- - Castor, 286
- -, Dyeing, 78, 164
-, Glace, 286
286
- --, Tanning, 78

Gloves, Black Kid, Polishing, 286 , Brown Kid, Cleaning, 198 , Cleaning, 811
, Kid, 286
-, -, Cleaning, 22
-, -, Dyeing, 169
-, 一, Polishing, 286

- —, Sizss of, 286
-,', Washleather, Cleaning, 311
Gloy for Labcls, 234
Glue, 48
-, Anerican Method of Making, 48
_- Boilsrs or Pans for Making, 45
${ }^{4}$, Liming Raw Materials for
Making, 48
, Lip. 236
, Liquid, 258
Mreservatives for, 290
Marine, $116,129,236,241$
Mouth or Lip, 236
-, Raw Materials for Making, ${ }^{-}, \mathrm{R}$

Removing Old, from Furniture, 237
-Syrup, Glarifying, 89
Gily, Waterproof, 241
Glycerine in Typewriter Inks, 74
Gneiss an Aluminium Compound, 341
Goat Homis, Pollshing, 65

- Skins, Chroms Tanning, 84
- - Curing, 89

Gold Alloye Softering, 169
Gold Alloye, Colouring, 20, 40, 54
-- Braid, Cleaning, 100
-, Brittle, 233
-, Bronze Powders, 115, 253 (For details gee Bronze Powders)

- C-, Applying, 110, 121
- Cardboard Mounts, 108
-, Cleaning, 350

Gold, Cementing Celluloid to, 236 Chain, Burnt, Restoring Colvir of, 264
Chloride, 297
Cyanide, 263Dissolved, Precipitating, 353
, 18 -carat, 239
Etehing Glase in, 839
-, Ethereal Solution of 270
 Flux nsed in Melting, 233 Lacquer Ior Brass, 268
-Tin, 256

- Leaf applied to Glass, 146
- Imitation, 253 , 30

Iettering on Wire Bliods, 175
, Liquid, for Gilding withaut Battery, 164

- Monnts,' Clsaning, aftsr Engraving, 255
- $\overline{\text { Pand }}$, Engraving, 255
- Paint, 106, 253, 254
—, Pickle ior, 40
Pilding) (6es also Electro-
--Aluminium, 300 263
-, Solutions for, 154, 274, 300, 307, 312
———— Steel Pins, 77 Printing win Bat
-, Refining, 180
Removing, from Gilded Silver, 231
-—, L- Lead from, 77
— Rings, Hard-solisring, 152
—, Separating, from Ashes, 04 Stain for Alabaster, 240 Stripping, from Plated Articles, 353
--., Testing Gravel for, 77
-, Value of, 115
-'Veins in Book Edge Marbling, 112
Golden Browo Paint for Castings 154
- Ysllow Varnish for Straw Hats, 50
Gold-lining Picture Mounts, 81, 110
Golf Balls, 21
Goloshes, I'atching, 296
-, Gernent for, 296
Goods Hoist, *919
- Lift, *320

Gothic Arch, Elliptic, *195
Gouges, Sharpeuing, 301
Gradient. Hydraulic, of Sewer or Pipe, ${ }^{*} 263$

- of Watercourss, Setting Out, *324
Gradients, 262
Grain Fillers, 18, 29, 40, 91, 324
Graining, Light Oak, 148 Mahogany, in Water-colour 150
- Millboard to Imitate Walnut, 197
, Rosewood, on Glass Sigos, 277
-, Walnut, 958
- - in Water-colour, 142

Grammont Marble, 242
Gramophone, Clockwork Motor for $* 58$
Grand Antique Marble, 292
Grandfather Clack, Striking Gear of, " 201
Granite, 242

- Axed, 205, 245
-, Composition of, 242
-, Corrosion of, 242
-Crystals, 242
Cutting Chisele made from Filea, 323
-, Dressed. 245
-, Facework on, *205, 245
—, Felspar in, 242
, For Marendain Roal, 201
- FIour, Iulitation, 328
- Flour, Hinitation, 328
- Hanmsr-blocked, 20.5
-, Hamm"r-dressed, 205
---, Hammer-faced, : ºi 0

Granits Heaciatone Letlering Cutting, 323 Lead, 323

Filling with
Horn, cilding, 823
--, Hornblende in, 242
Iron in, 242

- Macadam. 172
——, Marcasite in, 242
--, Mir'a in, 242
-, Origin of, 242
-T, Pateat-axed, 205, 245. 282
- l'avement, Scoring, 218
-, Picked Faced, 245
-, Pink Felspar in, 242
——, Polishing, 205, 245, 319
-,' Punch-faced, 245
Qnartz in, 242
Rockwork-faced, 245
Rustic-faced, 245
, Scabbled, 205
—, Single-axed, 245
Splitting Tools, *238, *282
-, Stumning, 245.
-, Syenitic, 242
-'Tar-paving, 81
Tools for Dressing, *205,
*298, *245, *262
-T, Tooth-axed, 245, 282 ' of, 242
Granalithic Goncrete Floor, 235 Graphs for Copying Written Matter, 180
Grass, Dyeing, 130
- in Models, 317
\square, Pampas, Dyeing. 12
Grats Arsa of Vertical Boilers, 15
Grates, Black Varnish for, 313
Gravel, Testing, for Gold, 77
Gravestone, Black Filling for, 164
Gravestackening Letters on, 213
, Blackening L
, Granite, Clisels for Lettering, 323

323

Lettering, Filling, with Lead, 323 , Gilding, 323
Removing Tar Paint from, 196
Grease, Bons, Bleaching, 152 , Cart, 107
-' Paiuts, 343

- Stains, Removing, from Engravings, 206
$315,-$ —— Cloth, 164,
$316,-$ Furniturs,
$\stackrel{32}{316}, \longrightarrow$ Wall-paper, 22
for Under-carriage of Victoria, 11!
Grcase-proofing Wooden Pill Boxes, 334
Green Billiard Chalk, 159
- Oloth, Dyeing, Black, 245
_ Crocodile Eeathsr, Restoring Colour of, 329
—, Emsrald, 194
——Glaze for Tobacco Pipes, 28
—— Lakes, 194
- Liquid for Chenists' Show Bottles, 18, 293
- Luminous Paint, 263
- Portland Cenient, 313
- Soft Soap, 320

Stain for Alabaster, 240
———Billiard Balls, 315 ings, 67
_- Varnish for Straw Hnts, 50
Varnish-paint for Vengtian
Blinds, 241
Grsenhoart, Strength or, 150

- Weight of, 150

Gresnhouss Fountain in Sheet Mstal, *340

- Heating, by Flus, So
-Toprail, Shaping, *11s
Greenstuff Poultry-food, Rack

Grey Lumionous Paint, 263
Grinding (see also Gutting and Polishing)
Moulding Cutters, Machiné for, *218

- Shells, 255
-, Speculnm, 153
Griotte d'Italie Marble, 292
Gris de Barse Marble, 292
Grocer's Hoist, *319
Grooves in Cement Floor, 320
Grooving Sashes, Machine for, *259
Ground Colour for Walnut Graining, 353
Group Photograph, Removing Figure from, 21
Grubes's Thiosavonal Soap, 300
Guard for Circular saw, *52
Guitar Fireplace, *71
Guitar Finger-board, Iniaying Raised Frets in, 89
Gum Bichronate Process of Photography, 19
- Copal, Dissolving, 127
- for Eivelopen, 234
-, Liquid, 169
-, Pr Preserving, 169
-'for Postage Stainps, 234
-, Preservative for, 240
Gumming Labsls on Iron, 234 Glung used in French lolisling,
Gun, Air, *256
- Marrels, Bluing, 192
-——, Boring, 336
- -, Soldering, 48 343
- - Flnx for, 48
- Springs, Tempering, 55, 191
- Stock, Walnut, Vainish for,

Gun-jnetal, Breaking Stress of, 163

- Oastings, Acid Pickls for, ${ }^{97}$
Gunpowder, 346
-, Explosive Power of, 346
-, Various Kinds of, 346
Gutters, Box, on Ronfs, 313 Cast-irnn, Fixing, 202
Lead, Repairing, 251
- Roof, Sizes of, 358

Gypsum, 17
, Action of, 17
-, Galcining, 17
-, Kilns for. 17
—. Mining, 17

H

Hair Mattress, 132
———, Blind-stitching, *207

- Wasll, 239

Hairing Skins, 78
Violin Bows, 214
Hairsprings, Lever Clock, Teating, 298
-, Watch, 137
$\square, —$, Fitting, 53, 135
-, --, Straighteniog, 283
, Timing, 56
Halation in Photographic Negatives, 313
Half-tester Bsdstead, Paint for, 59
--, Re-lacquering Brass. work of, 59

- Removing Lacquer
from Brasswork of 59
- - , Paint from, 50

Half-tons Process, 16159
Half-tons Process, 161
Hall Racks, *381,*346
Hall's Mstlod of Producing Alumioitum, 341
Hammer, Mash or Maul, 205,
—, Sesbbling, *61 *28, *282
Haniner - Cheaded Chisel for Granite, *238
Hammers for Hollowing Tinplate, 71

*298
 * 298

for, *38

Hand Camera (Bee Camera)

- Carts *338
- 51 for Carrying Furniture, 51 (2ll for Granite *238, *282
- Guards for Singlesticka, *308.
-Shaars for Sheet Iron *210
Hand-feed Electric Are Lamp, *3!4
Handkerohiaf, Glove, and Jewel Case, Combined, ${ }^{*} 140$
Handles, Bone, Ramoving Ink Stains from, 62
-, Comenting Knife Tangs into, 253
- Chisel, Polishing, 227
-, Walking-stick, Fixing, 43
Hanging Baby's Swing, *206
- Cupboard, Glass-fronted, 222
- Hall Racks, *331, *346

Hard Soldering (8ea Brazing and Soldering)
Hardening Alabaster, 240
-,Box (see Box-hardening)

- Cart Axle Arms, 183
--, Cass (see Case-hardening)
- Clock Pallets, 214
- Copper, 182
- Cyyle Cones, 198
——Drills, 294, 300
- Tape for Watchwork, 14, 87
- Zinc, 335

Bardness of Lens, Testing, 275
F-Water, 102
Farness Composition, Waterproof, 161, 307

- Oil, Black, 247
- Polisb, Black, 233

Harp, Double-action, Pedals for, 81.

Hatch Co, Principle of, 81
Hateh Covers, Water prooting, 199
Hats, Felt, Cleaning, 286
-,, Reviving, 286
-, Grey Felt, Reviving, 286
-, Rack for, $331,{ }^{3} 346$
——, -, Stiffening for, 145
-, -, Varniskes for, 50
Eausmann's Indelible Ink, 233
Hautefeuille and Perty's Artiticial Emeralds, 75
Heads, Modelling, in PapierMâché, 65
Readstones, Black Filling for, 106
-, Blackaning Letters on, 213

- Granite, Chisels for Letter. ing, 323
—, - Ontting Letters on, 323 - Lettering, Filling, with Lead, 323
- Removing Tar Paint from, 196
Heap of Material, Contents of,
Hearth, Curb for, *244
-, Removable Tile, *244
-, Tile, 302
-Tiles, 244
Heat, Filtration O 244,802
Heating Birdon of Oil by, ${ }^{*} 125$
——Brinirr-rom, ${ }^{2} 202$
_ Cunings by Hot Water, 146
- Cuncken Rearer, ${ }^{148}$
- Drying-room by Steam, 91, - Gre
-— Greenhouse by Flue, 89
- Laundry Irona, Stove for ${ }^{*} 242$
- Schoolroom, 89
—, Steam, System of, *228
-D Surface of Radiators, Cal. culating, 122
- Two Rooms from One Fireplace, *235
Heat-resisting Cements for China, 232
- -- Glass, 232

120 po. Sor Steam Boilers, 120
—— Paint for Glass, 273

Heelball, Filling Band boo Joints with, 263
Height above Sea Level, Determining, 336
Hok tograph or Graph, 180
Heliotrope, Cutting and Polishing, 337
Hemp Oil Soft Soap, 329
Herault Method of Producing Alumidium, 341
Herb Beer, 335
Hexagonal Nuts, Whitworth, 100
Hides (sae also Skins)
-, Raw, Making Rugs from, 184
Higging's Typewriter Ink, 74
Hime and Node's Waterpronfing Process, 80
Hinging Screen Frames, *94
Hip Rafter Bavele, *57
Hipped Eod of King-post Roof Truss, *328
Hippopotamus Ivory, 262
Historique Marble, 292
Hoes, Tenupering, 310
Hoist, Grocer's, *319
Hoiating Materials for Tall Chimney, 85
Holes in Bricks, Boring, 131 - Corrugated Iron, Panching, 229

- Glass, Drilling, 106

Holfert's Waterproofing Proceas, 80
Hollow Balla, Wooden, *325
Hollowing Cones in Sheet Metal, 284
-Kattle Bodies, 71
-Tops, 71
Saucepan Belly, 146

- Tin-plate, 71
- ——, Block for, 71

Honduras Mahogany, Strength of, 150
-, Weight of, 150
Hood for Camera Lens, *345
\longrightarrow Invalid Carriage, *290
Hoofs (see also Foot)
-, Cow's, Making Pin-
eurhions from, 309
Hooks, Draw-bar *olishing, 309
Hooks, Draw-bar, ${ }^{*} 297$
Hoop round Bucket, *46
Hoop-iron Band for Brickwork,
Horn blende in Basalt, 256

- - Granite, 242

Horns, Antelope, Removing Cores froin, 281
-, Goat, Cleaning, 65
-, $\frac{1}{O x}$, Polishing, 65
-, Ox, Polishing, 302
-, Skag, Monnting, ${ }^{\prime} 77$
Horse, American Breaat Collar for, 162

- Kicking, Stocks for Shoein 3 , 13
Horse for Mortising Wheel Naves, 135
Horse-poter and Man-power, 267
Hospitals, Air Space in, 239
-, Floor Space in, 239
Hot-air Oven, ${ }^{*} 132$
Hot-box for Negatives and Lantern Slides, *26
Hot-water Apparatus, *127, *146 - Cylinder System, *158, *258
- , Safety Valve on, 190 - Cenient to withstand, 146 - Cylinder with Two Boilers, 124
- Expansion Pipe, 117
——, Heating Buildings by, 146
—, - Greenhouse by, 173
One Five Rooms by, from One Fireplace, $* 235$.
- Pipes, Applying Asbestos Paste to, 286
———, Caulked Joints in, 321
-———, Camenting, 30
-———, Cleaning, 352
- - Clicking Noise in, 115
————, Joints for, $247, * 347$

Hot-water Pipes, Hemoving Lime Deposil froun, 352
System with Secondary Circulation, *258
Honse, Cueumber, Heating 85
——, Damp Walls in, 218

- Drain, Connectíng, to Deap Sewer, *23
—, Dwelling, Chooaing, 80
_-, Fowls', with Span Roof, *839
- for Pigeons, *219, *296
- Porch, *33
——, Re-painting, 20
——, Ridding, of Ants, 178
- - , Bugs, 226

Howe Sewing Machine, 261
Hylranlic Cement, 240

- Gradient of Sower or Water Pipe, *263
- Iifts, 71
- Lime Mortar, Distinguishing, 235
- Mean Depth, *68
- Ram, 163

Hydrochloric Acid, 342

- - Commercial, 34\%
- 342 , Specific Gravity of,

Hydro-extractor for Oxidising Oils, 253
Hydrogen Gas, Burning' Lead Seams witb, 253

- in Coal Gas, 269
- Parozide, 306

Hydrometer Degreas, Beaumé, compared with Specific Gravities, 150
-, Twaddel, compared witb
-, Twaddel, 68, 266
Hypersthene in Basalt, 256
Hypo, Testing Negatives for, 300

Iberian Agata Marble, 292
Ichthyol Soap, 300
Igneous Rocks, 242
Illusion, Ghost, for Amateur Theatricals, 54
Image, Reflected, 162
Imitating Dove Marble, 334

- Mabogany on Plaster, 68
- Walnut Wood, 353

Imitation Alabaster (see Alabaster')
—— Earth for Cases of Stuffed Birds, 173

- Gems (sbe Gems, Artificial)
- Granite Flooring, 328
- Grass in Mfodels, 317
——Plaster Frieze, 'Bronzing, 42
Appearance to, 42 Giving Ivory
Hopeance to, 42
- Hock, 218
- Sandstone, 218
- Tortoiseshell, 158

Imperial Yellow, 293
Incandescent Burner for Oil, *151

- Burners, Gas Consumption of, 297
of, 301
Illuminating Powers
of, 301
Self-lighting, 269
--, Welsbach, Using, 23
- Electric Lamps, Illuninating Powers of, 301
- Mantle, Welsbacb, 51

Incense, 336
Indelible Inks (see Ink)

- Writing, Bellando's, 238

Indian Ink, 238

- - , Fsxing, 242
- Ivory, 262
- Red, 194

Indiarnbber Cement, 52, 241
-., Cernanting, to Canvas, 283
-'Shoes, Re-soling, 275

- Shoes, Re-soling, 275
- Solvents for, 52, 141, 241

Indiarubber Stamp, Autograph Mould for, 89
——— Ink, 100,225

- Tublk-pad, 91
- Tubing, 136
—, Vulcanised, Utiliaing, 121
- Washera for Taps, 2S3
-, Waterproofing Fabrics with,
ndicator Diagrams, Determinin
Engine Power from, *92
Indigo, 194
- Colour, Dyeing Faatbers to, 34
- for Grain Soft Soaps, 329

Ingle Nook with Sanded Roof, *332
Ink, Artists' Black, 247
-, Bellande's Patented, 233
-, Black, 212
-, ——Drawing, 247
, -, for Rnbber Stamps,

225

—, ————Typewriter, 74
-, BIue, 213 , Waterproof Ticket, 137
——, Blue-black, 211
-, Branding, 35
-, Buebner'a Carmine, 223
-, China, 238, 247 (seealso Ink,
Indian, below)

- Close'a Indelible, 238
-, Copying, 220
—, -, for Typewriter, 74
-, Dressing Blackboards with, 211
Erasers, 90
-, Gaftard's Indelible, 238
for Glass, 238, 273
-_, Hauamann's Indelible, 238 ,'Heat-resistivg, for Giass, 273
, Higgins's, for Typewrite:,74
-, Indelible, 238
-, -, for Glass, 298
, ——Marking, 238
, $\overline{\text {, for Metal, } 238}$
-, Indian, 238
—, 一, Fixing, 242
-, - -, for Glass, 23 S
-, Invisible, 104
-, Marking, 108, 215, 238
- Pad for Rubber Stamps, 91
- of Typowriter, Fie.
charging, 97
- Paper, 266
—— Powders, 266
- Proesss of Copying Drawinge, 236
, Red, 223
—, - Copying, 220
-, Stencil, 37
-, Hubber Stamp, 100, 225
——, Secret 104
-, Shuttlaworth'e, for Typewriter, 74
Soluble Prussian Blue for Making, 41
Stains, Removing, from Boards, 165
-_ -, ——Bone, 62
$203,-$ - Cloth, 165 ,
Ivory, 203 , - Imitation
- , - Linen, 203

165

- —, ——, —— Marble, 233
-- -- - - Paper, 203 Parchent,
165
-

covers, 165
-
165
203
-, Stencil, 37, 218
-, - for Glass, 273
C, Sympathetic, 226
-, Ticket, 137

\qquad
\square
\square

Abstract

\qquad

> .

Abstract

\qquad

Ink, Typowriter (see Typewriter Ink)
, Violet Copying, 220
100, 205 for Rubber Stamps, 100,220
--, Waterproof Black Tict 137
——, White, 229 Writing, 212
Inking Typewriter Fad, 91

- - Ribbons, 307

Inlaying Pearl on Metal, 2 ro
Purfling on Violin, Gauge for, *30s

- Raised Frets on Guitar Fingerbosrd, 89
- Stringing in Cabinet Work, *164
Inlays, Beaumontage, 268
-, Black, for Mandolines, 268
-, Msrquetrie, Shadling, 172
- - -, Staining, 182

Insect Cases, Corklined, *306

- Envelopes, 306
lusects in Furniture, 120, 301
-, Killing, 72, 81,800
-, killing-bottle for, 81 Preventing, from Attacking
Clothes, 211
, Ridding Honse of, 176, 220
-, Setting, 226, 243
-, Setting-boards for, 213
Instruments, Brass Musical, Loosening Slides of, 22 S
from, 168, 251
ing. 200
——, Surgical, Oilstone for, 246
-, Wind, Tempering, 310
, Wind, Buehm System of Fingering for, *152
Insulator, Electrical, Miea as, 41
Inteusiiying Photograplic Negatives, 155, 306
Internal Doors, Height and Width of, 162
Invslid Carriage Hood, *290
Invalid's Bed-rest, *139
Tnvisible Inks, 104 Chair, *345
Invisible Inks, 104
livelute Curve, *226
Irish Black Marble, 292
- Fossil Marble, 292

Lroh Bedstond (see Bedstend)
—. Black Bronze for, 308
-: Blackening, 330
, Bazing, 60
, Cast, Spreaking Stress of, 163 Castings, Cement for Blowholes in, 58
———, Malleable, 326

- --,, Annealing, 320
- Cenient, 5 :
-- Censenting Felt to, 81
-- Cones, Heather to, 129
_Cones, Hollowing, 284
_., Corropper Lamp (seo Lamp) Tron)
- Curbs for Tile Hearths, 244
--, Galyanised, 335
-, Galranisine, 174
- in Granite, 242
, Oxide of, 149
-, I'nsting Labele on, 235
-- Peroxide as Plgment, 194 a9 - Polishing Medium, , R 59, 233
-, Rust from, 269
- Roller, Pattern for, 243 Rollers, Cementing Felt to, 81
- Roof, "180
- Risty, Cleaning, 269
- Sheet, Hand Shesrs for Cutting ${ }^{*} 210$
- Stains, Removing, from Marble, 143
-T Tank, Galvanised, going Iusty, 300
, Thermo-electric Properties of, 10

Iron Wire, Calculating Weight of,
\square -, Tinning, 214, 227
-, Wrought (see Wronght Iron) Iron-facing Electrotypes, 313 1ronfounding, Stump Monlding in, S6, ${ }^{*} 54$
Ironmould Stains, Removing, from Linen, 208
Irommoulding Machine, 86
Iron-plating, 318
Irons, Lanndry, Stove for Heating, 242
Iro, Shoemakers Finishing, ${ }^{5} 3$ ronwork, Carriage, Blackening, 801
ing, 301
Jspaps to: Blsckenng,

Tarnishing, 17, 301 Jaunting Car, Blackening, 302
, Ship's, Cork Paint for, 58
Isabelle Marble, 292
Istrian Marble, 292
l vory, 262
—, Africsn, 202

- Bark, 202

Billiard Balls (see Billiard Balls)
-—, Black, 194 , Bleacbing, 25l, 202, 2s0 be and Bon
-, Bone as Substitute for, 262 -, Ceylon, 262
—, Cutting, with Cylindrical
S:Lw, 306
-, Distinguishing, from Celluloid, 295
, Dyeing, 262, 318
—, Engraved, Filling, 31, 226
—— Engraving, 31

- Fan, Repsiring Broken, 31
—, Flexibility ol', 262
-, Hippopotamus, 262
Innitation, Removing Ink
Stsins from, 203
Indisn, 262
- Keys, Bleaching, 310
, Clesning, 310
, Preserving, 310
-, Mammeth, 262
-, Narwbal, 262
-'Piano Koys, Polishing, 295
Sciatches from, 295
Polishin, Renovating, 295
Polishing, 251, Grin Marks from, 249
- - Scratches from, 295
—, Siberian, 202
, Staining or Dyeing, 262, 318
——, Substituter for, 262
, Treating Articles to resemble, S6, 42, 157
Walking-stick, Straightening, 149
-, Walrus, 262
\checkmark
Jack Rafters, Fixing, *209
Jade, Cutting and Polishing, 337 Japan (6ee also Enamel) —, Air-drying, 301
——, Baking, 301
- for Carriage Ironwork, 301 Japanning (see Enamelling) Jar', Stoneware, Cutting, 51 Jasper, Cutting and Polishing, 337
Jasper-agate, 853
Janne Lanartine Marble, 292 ——Oriental Brown Marble, 292 -- Grey Marble, 292
- St. Beanme Marble, 292

Jaunting Car Marble, 292
Jeunting Car Ironwork, Blackening, 302
——, Staining, 302
Jenny, Ropemakur's, 502

Jewel Box and Scent Cabinet Combinerl, *189

- Case Combined with Glove sand Handkerchief Case, "140 * \quad with Secret Drawers, 86
Hole in Geneva Watch, Setting and Repairing, 59, 251
Jewelled Ring, Soldering, 325
Jewellers' Ronge, 29, 49
Jewellery, Gold, Colouring, 26, 46, 64
- Wire, 69

Jewelling Regulator Clock Pallets, 307
Joinery, Making Panelled Doors in, 285
Toininance used in, *0
Joining (see also Cement, Cementing, and Joint)
-Seven-strand Electric Cables, 79
Toin Tortoiseshell, 250
oint, Caulked, in Hot-water Pipes, 321
Cement Steam Pipe, 11
-, Copper Pipe Wiain Pipe, 191 for Hot-water Pipe 30 24 *347
-- of Kitchen Boiler Tsp Leaking, 202
for Lead Sail Pipe, 24
, Oblique Mortise-and-Tenon, ${ }^{*} 196$
——, Pavodilos, in Flooring, *98 , Pipe, Borings, Cement for, 11 , Plumber's Astragal, 172, 247 - Expansion, 247
-, - Slip, 24°
,- -— Uuderhand, *88
-, Socket, af Steam Pipe, 11

- in Waste Pipe, 247

66
Joints in Bamboo Work, Filling, 263
of Cooking Range, Cement ing, 75
*66 Oval Cask, Bevels for,

- Plated Goods, Re-gilding, 114
Joinville Marble, 292
Joists for Assembly-room Floor, *217
Jonval Turbine, 98
Jug, Silver, Obliterating Engraved Crest on, 121
Jumper for Dressing Granite, $* 238$

κ

Kallitype Photographic Process, 96
aolin, 32

- formed from Felspar, 242,
——, Impurities of, 32
-, Mics in, 32
-, Mining, 32
Kauri Pine, Strength of, 150
Keene's, Weight of, 150
Keene's Cement, Running Oval Frame in, *221
Kef or Kommiss, Russian, 348 Kennel, Dog, *55, *255, *352
Kerbing, Curved, 217
Kettle Bodies, Hollowing, 71
, Brass, Removing Dent from, 178
, Copper, Soldering Spout on, -89
——, Rennoving Fur from, 258, 276 - Tops, Hollowing, 71

Key Actions of Pipe Organs, 167 - Stems, Brazing, $\$ 11$

Keys, Piano, Cleaning, Bleach-
ing, and Preserving, 296, 810
from Cellulinguishing Ivory
from Celluloid, 295
, \longrightarrow, Polishing, 295
from, 205

Kid Boots, Polish for, 353

- Gloves (see Gloves)
- Leather, 78
- - Centor, 286 Dyeing, 78, 164
Glace, 289
Polishing, 78
, Tanning, 78
—, Undres6ed, 286
- Shoes, Staining, Brown, 169

Til, White, Cleauing, 22 Kilkenny Marble, 292
Killing Butterflies, etc., 72, 81, 306
Killing-bottle for Insects, 72, 81
Kilu for Burning Bricks, *175

- -- Gypeum, 17

Limestone, 120
Kilowatt: Meaning of Term, 142
King-post Roof, Scantlinge for, $-\frac{232}{328}$ Truss, Hipped End of,
Kip Work, Size for, 22 S
Kitchen Boiler, Preventing Rust in, 142
202 Tap and Joints Leaking.

- Chairs, Re-varnishing, 250
————, Varnishl Ior, 131, 259
-Chimney, Smoky, 83
- Range, Fastening Brass Tap to, 151
Fnifable, 171
Knife Blades, Etching, 11
, Boot Clicker's, Sharpening, ' 247
——, Glazing, *343
Handles, Bone, Removing
luk stsins frem, 32
-, Stopping, *343
Tangs, Cementing, into Haudles, 263
-_, Uimbrella-maker's, *164
for Woodcarving, ${ }^{2} 325$
Knives, Tempering, 310
Knotting, Psinters', 91
-, Treating Creosoted
Timber with, 154
Knots showing through White Ensmel, 152
Kodak, Enlarging witb, *68
- Films, Developing, 57
, Hints on using, 54
Kutter's Formnla for Water Dis
charge of Pipe 69

Labels, Gloy or Paste for, 284
--, Pssting, to Iron, 23
-, Plant, Wbite Paint for, 270
Lacquer for Brass, 27
-, Gold, for Brass, 258
-, Reloving from
, Removing, from Bedstead
Brasswork, 59
L, - Copper, 330
Lacquered Brass, Cleaning, 251

- Coperating, 251
- Copper, Clerning, 251
- Microscope, Renovating, 85
- Panels, Chinese, 37

Lacquering Bedstead Brasswork,
\qquad _Brass, 59, 103, 139; 20s, 277
———Candlesticks, 87

- - Stove need in, 277
- Oopper, 830
- Microscope 85

Lacrosse Rackets, Bending Wood for, ${ }^{1} 167$
Ladder, Extension, ${ }^{*} 241$
-, Stel, Setting out Sides of,
Lngos Oil Soft Sonp, 829
Lake, Ccimson, Applying, 305
Lainb Slains, Testing, 305
Leatiser, forming, for Glove
lasub's F'oot, Making Whip
Stock I'rom, 818

Lamb's Foot, Solntion for Pregerving, 318
Lamp, Brass Table, *212

- Burner, Cleaniug, 319
-, Copper and Iron, Blackening, 830
330 ———, Lacquering,

330
 330

Lacquer from 330, Removing , Electric Arc, for Portraiture, *344 , Carbons for, 264
-, Multiple Wick, Illuminating Power of, 301
Oil, Incandescent Burner for, 151
—, Paraffin Blow, *151
-, 73 - Air Pump for,
-for Photographic Dark Room, *189, *223

- Reservoirs, Cementing Brass Rims to, 253
———, Glass, Comenting, 253 119 , Removing Rima from, 119
Ruby, for Photographer's
Use, *189, *233
327 Stove for Vapour Bath, 327
- Street, Catch for Door of, *92
charring, 171
Lampa, Dark Room, Good and Bad, 334
Lampblack, 250
-, Calcined, for Paper Making, 250
-, Flame, 250
- for Lithographers' Use, 250 250 -making Printing Ink, 250
-, Qualities of, 250
Lancashire Boilers, Chimney Shaits for, 149
Lancets, Tempering, 310
Land, Sloping, Mreasuring, 32
Landau (see also Carriage and Brougham)
-, Fitting Head of, *18s
- Panels, Bending, 27

Landing Net, Fisherman's, 157
Languedoc Marble, 292
Lanseigns and-Leblanc's Aluminium Plating Baths, 300
Lantern for Enlarging Photographs, *31, *277

- Light, Semi-octagonal, Bevels for Hips to, *193
-, Magic, *3I
Ganerator for ${ }^{*} 67$
, 61 , Chemical Tanks for, 61
, —, Condenser for, 46
,-, Illuminants for, 301
, Slides, Lenses for, 46
-Slides, 11, 107
-—, Binding, 11
11, *95 Copying Nagatives for,
\qquad
——, Hot Box for, *26
*95,
inga, 11
Lap, Copper
, Lead, Hacking or Jarring, 337
- Pewter, 337

Lapidary's Work, 72, 258, 293, 337, 339 (For details, see Cutting and Polishing)
Lapis Lazuli, Cutting and Polishing, 337
Larch, Strength of, 150
Lath, Weight of, 150
ath, Blind (see Venetian Blinds)
${ }_{7},{ }_{56}$ Detachable, for Table Top,

Lathe, Beading Spindle for, ${ }^{*} 288$ -Chuck, Wooden, in Sectiona, ${ }^{*} 14$
--, Cylindrical Saw for use in, 300
, Overhead Arrangement for, *192

- Slide-rest, Tool-holder for, *191
, Spinning Copper in, 73
——, Silver Jug in, ${ }^{*}$ I4
—T Turning Amber in, 330
—, —— Ebonite in, 306
——, —— Ebony in, 27
Lat - Vulcanite in, 306
Latrines on Board Troopship, *341
Laundry Irons, Stove for Heat-- ing, *242

Lavatory Mirror, *186
Lavender, Oil of, 169, 176

- Water, 169, 176

Laxton's Prices for Gauged Arch, 235
Lead, 352
—Ashes, Furnaca for Melting, 146
——Bays for Ogee Roof, *280
-, Bronzing, 277
-Chlorides, 242
--, Covaring Octagon Dome With, *280
——Damp-proof Course, 259

- Dichloride, 242
-, Electro-coppering, 322
—, Filling Headstone Lettering with, 323
- Flashings "Burnt In" to Stone, $* 229$
- Foil in Chinese Lacquer Work, 37
Glazes for Clay Pipes, 28, ${ }^{86}$
- Gutters, Repairing, 251
- Lap, Hacking or Jarring, 337 -, Lining Wooden Tank with, 63
-, Melting Point of, 952
- Mill for Stones, 337
-, Molten, Preventing Oxida-
tion of, 137
- Ores, 352
- O, Reducing, 352
- Oxido, 16
-- Perchloride, 242
- Polishing Lap, Hacking or Jarring, 337 ,
- Pump, Removing Sucker-
valve of, 196
-, Removing, from Gold, 77
-, , , - ZZine, 294
- Rolling Machinery, 218

Seams, Burning, with Hydrogen, 253
, Separating, from Zinc, 99 , Sheat, 218, 352
, - Jointing, 352
-'Soil Pipas, Joints for, 247 -, Soldering Astragals and Tacks on, 172
-, Specitic Gravity. of, 352
-,., Step Turncr for Folding, 331
-Stepped Flashings for Roofs,
*331

- Sulphidg or Gslena, 352
-, Thermo-electric Properties of, 90
, Tool for Folding, 331
-Toys, Castings for, 185 Wator-pipea, Casting, 202 Leaded Lights, Leaky, Painting, 345
Lead - pencil Cases Colouring, 330
Leai Alumpliahing, 330
Leaf Alumtnium, 341
Leakage of Water, Instrument for Locating, 271
Leather, Attaching, to Band-saw Wheel, *262
-TIn Foil to, 30
Belt-pulleys, Oiling, 247
- Belts, Cements for Joining, 97, 253
, Power Transmitted by, *99

Leather Boot (sea Boot and Shoe)

- Brackets, Cleaning, 67 Case for Croquet Mallat *20
Cementing, to Iron, 129, 53
- Chrome Tanning, 34 , Covering Pullay with, 97
, Crocodile, Restoring, 339
on Furniture, Renoyating,
207, 269, 329
Gaiters, Buff, Cleaning, 103
Gilding, 30
, Glove, 78 , Dyeing, 78, 164
, 286 , Skins for Making, 78 ,
, - , Tanning, 78
, Kip Work, Boot Size for, 228
——, Paste for, 234, 235
-- Patent, Renovating, 102 Pursea, 261
Removing Mildew Stains from, 255
- Shoes (see Boot and Shoa)
-, Silvering, 30
——Trunks, Black Paint for, 38
- White Paint for, 36
—Work, "Cuir-bouille," 215
Leather-cloth, Soot-black used is Making, 250
Leather-covered Furniture, Renovating, 207, 269, 329
Leathers, Cup, for Pumps, 199
Leaves, Working, in Wrought Iron, 165
Lebau or Koumiss, 348
Leblano Process of
Making Glauber's Salt, 260
Leg Adjustinent of Lavels and Theodolites, 270
Leghom Hats, White, Cleaning, 338 (see also Hata)
Lege, Fastening, to Bamboa Tabla Top, *1.28
Lemon Chrome, 194
Leus for All-round Photography; 117
-, Aparture of Stops in, 186
, Camera, Hood or Sky Shade for, *345
, Distance of Stop from, 104, ${ }^{*} 173$
Distinguishing Pebble, from
Glass, 275
- for Enlarging, 104
——, Periscopic, *327
, Photographic, Anglea of, *324

Photograplic, Fungoid Growth on, 43
, for P Taking Apart, 43

- for Portraiture, 104, 281
, Rectilinear Photographic, 50, *327
——, Testing Hardness of, 275
Lenses for Magic Lantern, 46
Supplementary, in Photo-
graphy, 193
Lepidolite Mica, 41
Lepidomelane Mica, 41
Letter-bux in Tin-plate, *291
Lettering Glass, Black Paint for 130
16 , Sand-blast Procesa of, Opal Glass, Paint for, 251
—— Shop Blinds, 310
- Sign, 295
- on Wire Blinds in Ralief with Gold, 175
Letters, Block, Engraving, 79 Enamel, Cementing, to Window, 232

Glass, Cementing, to Window, 232
on Granite Headatones, Chisels for Catting, 323
-二-———, Cutting, 323 Lead, 323

- Headston, Gilding, 823 inga for, 164
- $\frac{\text { from, }}{\text { Inga for, } 164}$, Removing Paint

Lattara, Old English, Engraving, 79
-, Red, on Class, 16
-, Removiog Oil-painted, from
Window, 111

- 220 Porcelain, from Window,
—, Sharpening Tools for Engraving, 79

Level, *27

--, Cross in Teloscope of Dumpy, Taking Heights with, 336
-, Spirit, Setting Ont Watercourse Gradient with, *324
-, T, Tubes for, *207
, Surveyor's, Reading Distancas with, 330
--, Setting Up and Adjusting, 270,330
${ }^{*}$ *294, Walls' Apparatue for,
Levelling Shaet Copper, 106

- Stecl Plates, 339
- Thin Metal Plates, 208

Lever Clook (see Clock)

- Watch (see Watch)

Lift, Goods, *320

- or Hoist, Grocer's *319

Lifts, Hydraulic, 71
Light, Acetyleng Gas (see Acetylene)
al Gas (ses Gas)
Lights, Arc, Illuminating Powers of, 301
-, Leaded, Renovating, 345
——, Night, 140, 246
, Varinus, Illuminating Powers of, 301
Lilac Lituia Mica, 41
Lilas Marbls, 292
Lims, Carbonate of (see Chalk)
--, Chalk, Using, 35
-Concrete, 119

- Deposit, Removing, from Pipes 352
-, Hydranlic, 35
-, L, Distinguishing Mortar made with, 235
for Mortar. Kinds of, 35
—— Mortars, Mixing, 35
-, Proportion of, in Mortar
Sulphate of (aee Plaster-of Paris)
_ Weight of, 89
Linelight, llluminating Power of, 301
-, Mixed Jet for, 43
Limastone, Burning, 120 Fossils, Polishing, 202
Liming Raw Glue Materiale. 48
Lincrusta. Walton, Affixing, 148
Linen Blisds, Cutting, 47
- Fibres, 106
, Printing Photographa on, , Removing Fruit Stains from 17
17 Ink Stains from, 203
(see also lnk Stains)
,20s Irommould Stains from, , $\frac{1}{}$ Tea Stains from, 17
-, Transferring Drawinga to, 119
Lines, Gold, on Picture Mounts, 31, 110
-, Whits, on Picture Mounts, 31
-, Fishing (see Fishing Lines)
Lining Out Cart Wheels, 91 63
Lininge, Splayed, to Segmental Openings, *350
Linoleum, Paste for Laying, 113, 235
, Soot-black used in Making. 250
Linseed Oil, Bleaching, 328 , Boiled, for Dampproofing Walls, 86
from Raw, 243 (isting Boiled
- - Soft' Soaps, 328

Lip Glua for Joining Xylonite 236
Liquid Glues, 253

- Gold Preservatives for 290

Gold for Gilding without
Battery, 184
-- Guin, 169

- Craserving, 169
-. Malt Extract, 117
- Sulphur Soap; 300
--Thiosayonsl Soap, 300
Liyuids, Coloured, for Chamists' Show Rottles (sea Chemists')
List Mill for Polishing Stones, 33
Lithography, Lampblack used in, 250

Transfar and Re-transfar Papers for, 109
'Litmus Paper, 246
Lrobster Pot, *184
Lorkstitch Sawing Machine, 76
Locomotive, Action of Stam in, 26

Boiler, Model, Working Pressure of, 181
-- Draw-hooks, *297
-, Removing Old Paint from, 228
-, Reprainting, 228
-- Raversing Gear, Stephenson's, *213
Lodging-honses, Air-space in, 239
Log, Ship's, *159
Logwood Extract, 290
London Wira Gauge, 351
Louyra Ventilator for Shop Window, *34
Lonvred Sides of Thermometer Screen, " 71
Lowood Bricks, 30
Lubricant for American Organs, 299 graphs, 251

- - Cycle Chains, 197

Tul Drillidg Glass, 294
Lubricating Clocks, 117

- Vietoria Under-carringe, 119
- Watclics, 117

Lnbricators, Oil, Cements for, 106
Lncifer Matchea, Safety, 45 for, 45 -, Rubber on Box
_, Strike-anywhere, 45
Lucins and Brïning's Chromic Acid Process, 47
Loggage Elavator, Hydranlic, 71 Loma Marble; 292
Lumher, Artificially Seasoning, *167
Laminuns Paints, 150, 263
263 , Varnish for Making,
Lunel Fleuri Marble, 292

- Marble, 292

Lye, Potash, for Soapmaking, 247
Inyea for Soalumsking, $25,113,159$, 202, 245, 255
266 -, Hydrometer for,
Soft Soap Making, 329

Macarlam, Granite, 172
Made 291
Machipe, Aërated Water, *329

- Belt, Cementa for Joining, 97, 253
- Pulleya, Oiling, 247
- - , Softening, 247
- for Bending Brass T'ubes, *286, 316
Coal-weighing, Scoop for, - 342
-_ for Griading Moulding Cutters, *216
- Guooving Sashea, *259
- Guns, Gunpowder for, 346
-- for Moulding Sashes, ${ }_{2} 259$
Pressing Sliafts in
Mangle Rollera, ${ }^{*} 40$

Machina for Rolling Sleet Lead, 218
——, Sewing.(seo Sawing Machina) - for Sharpening Saws, ${ }^{*} 248$ -, Wiald's Spooling, 801

- for Withdrawing Axla Boxes from Whaels, ${ }^{*} 120$
Hackintrish, Patching, 49
—, Rubber Solution for Repair-
ing, 141 (see also Ind larnbber)
Magazine Back for Camera, ${ }^{*} 283$
Magenta Liquid for Chemisis'
Show Rattles, 13
Magic Lantern, *31
tor for, ${ }^{6} 67$
- Chemical Tanks for
- -, Condenaer for, 46

301
--, Lenses for, 46

- Slides, 11, 107
-_-, Copying Negatives
for, 11, ${ }^{*} 95$
-_, Making, by Con-
tact, 11
ing, $11,{ }^{*} 95$,———Cops-
Drawings, 11
- - Masks for, 11

Magnatic Maridian, 307
Needla, 307 (ses also Comspass)
Mahogany Carvings, Finishing, 296
, Darkening, 132, 149
, Enriching Colour of, 79Furnitura, Giving Chippen dala Appearanca to, 79
, Graining, in Water-colonr, 150
, Honduras, Strength of, 150 -, Pict Weight of, 150 Picture Frane, Darkaning, 132
Removing Enamel from, 108 , Spadish, Strength of, 150
, L, Weight of, 150
, Stain, 190

- for Baaketa, 315
, Staining Plaater Pazels in Imitation of, 68
105 Wood in Imitation of,
- Tabla Top, Removing'Ink

Stains from, 165

- - ——, Re-polishing, 214 , Warped, Straighten-
ing, 214
- Varuigh, 196

Mahogany-brown Varnialı for
Straw Hats, 50
Mail Cart, ${ }^{*} 183$
———, Re-painting, 825
-——, Re-varnisling, 325

- ——, Varuiah for, 325

Main Water, Protecting, from Frost, 95
, , Temporary Supply whilat Relsying, ${ }^{2} 230$
Mainmast, Fixing Flagstaff Topmast to, 260
Mainapring Barrel, Fitting, to Watch, 147
, Fitting, to Skaleton Clock
Malacea Cane, Colouring, 95
Malleable Brass, 354

- Irou Castings, 826 , Annealing, 326
-——, Colouring, 130 , Patterng for, 326
Mallet, Croquet, Leather Case for,
Malplaqnet Marble, 292
Malt, 187
Extract, Liquid, 187
Mammoth Ivory, 262
Mandolinas, Beamnontage Inlay for, 268
, Black Fillings for, 208
- - Inlay for, 268

Mandral Doll's, Metalworker's,

Mangla Rollers, Machina for Pressing Shafts in, *40 ———, Polish for, 33
Man-power and Horge-powar, 267 Mantalboarda, Fixing Fringe on 181
Mantelpiece, Marble, Cementing, 65
, Stone, Marbling, 172, 184
Mantelshalf, Slate, Enamelling, 247
——, _, Polishing, 297 fron, 297
Mantla, Walsbach lpcandescent, 51
Mannre Works, Injurions Gases from, 189
Manuacript, Copying, by Photogrepliy, 143
Map, Grdnance, *58
, Varnished, Cleaning, 32
Marble, Bleaching, 335
, Cement for, 65,146
Clock Case, *284
Rapairing, 10, 325
Polishing, 322
, Coloured, Cement for, 322
, Danp-atained, Bleaching, 67
——, Dove, Imitating, 334
, Fixing, to Brickwork, 67

- Mantelpiece, Camenting, 65
- Mosaic Pavement, 61
, Seabbling Hammar for
Laying, *61
, Polishing, 125, 246, 281
Removing Damp Stains
from, 67
, —— Iron Stains from, 143 233 335
Rubbera for, 240
Saws for, 246
, Various Kinds of, 292, 293
, White, Cement for, 322
, -, Cleaning, 160
, Restoring Polish of,
, Working, 246
- Working, Tools, Tempering, 246
Marblea, Playing, 190
Marbling Book Edgee, Gold Veins in, 112
- Stone Mantelpiece, 172, 184

Marcasite in Granita, 242
Mlare'a Milk. Konnise inade from,

348

Margarine, Sugar in, 343
Marine Glue, 116, 129, 236, 241
Mariner'a Compass, 33 (see also Compass)
Marking Gange, Pencil, 139

- Inke, 108, 215

Mar, Indelible, 238
Marlboro Easy Chair, *122
Maroon Repp Furniturs Covers,
Renovating, 349
Marquatry Inlays, Shading, 172
——Tranefors Fix, 182
Marsh Giers, Fixing, 39
Mish Gas in Coal-mmes, 254
in or Manl Hammers for Dress-
ing Granite, *205, *238
Masks for Lautern'Slides, 11
, Papier-máché, 173
Masonry (aee also Stone and Stonework)

Colnmn,
Diminished
Twisted, 99
Maat, Canoe, Poaition of *141 , Fixing Topmaat of Flagataff to, 260
Mastic Aaphalt for Laying Wood-
block Floora, 245
Matchboarding, Staining, to Imitate Plne, 202
Matchbox Rubbers, 45
Matchaa, Safety, 45
-, Strika-anywhere, 45
Matting or Frosting Alumininm, 314

- Glass, 153

Mattraaa, Hair, 132

Mattreas, Hair, Blind-stitching, *207
Maul or Mash Hammers for Dressing Granite, *205, *238
Measnring Buildinga, 209

- Diatances, Wella Apparatus for, *294
—— Ganged Arcb, *235
- Laud, 32
- Liquid in Taok, ${ }^{*} 203$
- Timber, 150

Mechanical Dental Platee, 249

- Drawinge, Colouring, 122
- Horre-powet, 267

Medicated Soaps (see Soap)
Medicine Cupboard, *139
Medium for Retonching Nega tíves, 98
Múdoux Marble, 292
Melting (see also Casting)

- Learl Ashes, Furnace for, 140
- Point of Aluminiund, 341
- - - Amber, 389
- Antimony, 351

Copper, 350
Lead, 352
Resins, 339
Saltpetre, 16

- Silver on Qpen Fire. 50

Mercurial Barometer, Reading, 226
-——, Re-filling, 11

- So, Regulating, 226
- Soap, 300

Mercuric Chloride, 189
Mercurous Chloride, 189
Mercury, Fulminates of, 181
Meridian, Magnetic, 307
Mcrlin Chair, Converting Wind. sor to, *345
Metal (see also Alumininm, Bismuth, Brass, Bronza, Copner, Gold, Iron, Lead, Nickel, Pewter, Platinum; Silver, Pewter, Plati

- Boring, Speed for, 109 , Breaking Stresses of, 163
, Bronzing, 24
Cementing Celluloid to, 236
-, Glasa to, 236
-Cones, Hollowing, 284
, Fixing Transfers on, 225, 301
Foil in Chinesa Laequer Work, 37
, Gilding Liquid for Dipping, 209
-,
-, Gold Solution for Coating, , Go
270
, Ind
——, Indelibla Ink for, 238
—, Inlaying Pearl ou, 279
, Muntz, 98
Plates, Thin, Levelling, 106, *205, 339
Polishing Bnffs, 24
- Compositions, 83, 112 -, Crucua for, 49, 83, 149

Reponsae Work, 214

- Reponsae Work, 214,214 Screan, Perforated, for Win-
- Screan, Perforated, for Win-
clows, 143
- Saparating, from Asbes, 64
, Saparating, from Asbes, 64
-, Stencil Ink for, 218
- Turning, Spead for, 109

Metals, Electro-hotiva Forces of, | 90 |
| :--- |

-, Tharmo-electric Properties of, 90
Metalworker's Mandrel Dolly, *113
Metar, Dry Gas, Defects of, 45
, Gas Station, Reading, 83
-, Gas Station, Reading, 83
Methyl Alcoliol, 347
Methylated Spirit, 347
Metronome, Clockwork, *95
-, Compound Pendulum, *19
Mica, Tape and Weight, 19
Mica, 41
-, Biotita, 41
——, Black; 221
-, Cemento for, 251
-, Composition of, 242 Electrical Uses of, 41

- in Granite, 242
- in Granite, 242

-

\qquad

Mica, Lepidolite, 41
-, Lepidomelane, 41
-, Lilac Lithia, 41
-, Mining, 41
, Muacoyita, 41
-, Phlogopite, 41
Pulverised, as Bronza Pow.
ders, 115, 221
—, Red Rose, 41
--, Sources of 41
-, Subdivision of, 41

- Uses of, 41, 221
- Waste, Utiliaation of, 41

Microscope, Basalt viewed in, 256
, Brass Lens-cells of, *48
-Calla, 73
$— —$ Built up, 73

- --, Ring, 73

Sunk, 78
Lacquer, Renovating, 85

- Rubies vicwerl in, 76
, Rusty, Clcaning, 85
—Slidcs and Cells, 73 133 , Thin Glass Covers for,
Middeu Slead, Covered, *269
Mildew Stains, Removing, from Leathar, 255
Milk, Condensed, 25
-, Cow's, Sugar iu, 348
Detecting Adulteration of, 191
-, Koumisa made from, 348 , Mare's, Sugar in, 348 Peptonicing, 230 Sterilising, 230
Mill, Lead, for Polighing Stones, 837
, List, for Polishing Stones, 897
—, Saw, *257
-, Slitting, for Cotting Stones, 337
-, Wood, for Polishing Stiones, 337
Millboard, Graining, to Imitate Walnut, 197
, Sticking Artists' Canvas to, 104
-Waterproofing, 111
Milled slueet Lead, 352
Mimetesite an Ore of Lead, 352
Mina Nova, Cutting and Polishing, 337
Mineral Sjecimens, Cement for Repairing, 259
Mincrala (see Asbestos, Mica, the respective metals, etc.)
Mines, Coal, Gases in, 254
Mining Aabeatos, 303
Gypaum, 17
Kaolin, 32
- Mica, 41

Minium, 16
Mirror (see also Glass)

- Back, Paint for, 34
-_ for Bathroom, *186
-, Dalup-apotted, Kemovating, 41
Frame, Black Polish for, 183 and Varuish Combi - - -, Polishing, 38 Frosted, Renovating, 41 , Silvering Glase to Form, 72, 108
-, Tell-tale, ${ }^{*} 177$
Mites in Furniture, 120, 301
Mitre of Cornice Moulding, *12, *122, *136
Acutc Augle ${ }^{*} 289$ meeting at Acutc Augle, *239 Angle, *239 Angle, 23 ,
Mitres, Picture Frame, Cramping *302
Model Boats,' Copper-plating, 53
- White Coating for, 97
- Brickwork Clock Stand, 149
——, Imitation Grass in, 317
- Locomotive Boiler, Working Pressure of, 181

Model, Plaster-of-Paris, 317 - Pumping Windnill, *310 - of Railroad, etc., 317 - Steam. Engine, Power of, 148

- of Tract of Country, 317
- Yacht Sail Plan, *168, *184

Modellers' Clay, Tonghening, 181
Mudelling in Gesso, 250
——, Materials for, 317

- in Papier-máche, 65
- Plasticine for, 317
——Wax, 317
Models, Plaster (sae Plaster Casts and Plaster Fignres)
Money Box, Brass, *42
Monochlorides (see Chlorides)
Mounlight Scencs for Djorama, 116
Mooring Bollarda or Posts, Fixing, 83
Mop, Drying, 102
Mope for Polisling Brass Tubes, 68
Moquettie, Re-covering Cushion with, 145
Mordant used in Dysing, 82
Mortar, Bumt Clay Ballast for, 59

6. Hydraulie Lime, Distin: guisling, 235
-, Mixing, 35
-, Lime for Making, 35

- for Pointing Brickwork, 30, 115, 117, 241
Pronortions of Sand and Lime in, 89
——, Sand in, 30̄̄
\longrightarrow, Substitutes for Sand in, 59
Mortise - and - tenon Joints, Oblique, ${ }^{*} 196$
Mortising Wheel Naves, Horse for, ${ }^{135}$
Mortuary Bier Stand, *73
Mosaic Floors, Cleaning, 182
- Pavements, Laying, 61
- Pavements, Laying, Hanmer used in Laying, *61
Moss Agate, $3 \overline{5} 3$
Moth-eaten Fur Necklet, Renovating, 40
Mother-of-pearl, 279
-, Inlaying with, 279
orking, 270
Moths, Cork-lined Cases for, *306 , Killing, 72 , 81,306
——, Killing-bottles for, 72, 81
-, Paper Envelopes for, 306
-, Preventing, from Attacking
Clothes, 211
—, Preserving, $\mathfrak{7 2} 213$
-, Relaxing, 72
-, Setting, 72
-, Setting-boards for, 72, 213
-, Tweezers for Holding, 72
Motars' (see Clockwork, Engine, Turbine, and Water Motor)
Mould forming on Glue, Gum, Paste, etc., 169, 290
Moulded Stone Cap, Circular, *236
Moulding Golf Balls, 21
- Papier-màché, 65, 88
- Saahes, Macline for, *2 26

Monlding-cntters, Machine for Grinding, *216
Moulding - machine, Vertical Spindle, for Bevciling Frames, 270
Mouldings on Arches, Working, *146
—, Circular, * 78
-,,$\frac{78}{}$, Router for Working, ${ }^{*} 78$
, Cornice, Mitring, *12, *122, *136
, Intersection of, *197
, Meeting at Acute Angle, Mitring, ${ }^{*} 239$ - Obtuse Angle, Mitring, *239 Right Angle, Mitriog ${ }^{*} 230$
Oak Picture, Green Stain for, 67
Picture Frame, Facing, 112
$—$, - Staining, 112
——for Railway Carriages, *191

Mouldings, Raking Cornice, Mitring, ${ }^{122}$
Scratel Plane for Working, "168
Shelf Bracket, Working, *78
Moulds, Autograph, for Rubber Stamps, 89
for Brass Casting, 60, 271, 307

- Cement Vase, 228
- Composition Rollers, 217
, Copper, Tinning, 155
, Gelatine, 130
for Grease Paint, 343
- Lead Toys, 185
- Night Lights, 246
- Papier-manché, 65, 88
, Plaster, Casting in Cement with, 228
for Priuters' Rollers, 217
- Pump Cup Leathers, 199 Stone, 247
- - Sugar Toys, 147
-, Wax, Depositing Copper on,
51
196
Mountain-leather Asbestos, 303
Momitain-wood Aebestos, 303
Mountants for Glazed Prints, 190, 28
Photograplic, 116
Monuted Photograph, Copying 141
Mounting Antlers, *77
- Bromide Prints, 217

Photographic Panorama
Views, 303

- Photographs, 21, 97, 303

Pictures to resemble Oil
Paintings, 245
——Stereoscopic Prints, *53

- Stuffed Fish, 217

Mounts for Antlers, ${ }^{*} 7$
\longrightarrow Gold Cardhoard, 108
-, Picture, Gold-lining, 31, 110
, White-lining, 31
-, Silver, Burnisher for, *29 *ing-, for Tohacco Pipes, 29

- for Stag's Antlers, *77
-, Walking-stick, Engraving, 255
Mouth or Lip Glue, 236
Mulberry Staima, Removing, from Boat Sail, 216
Municipal Water Supply, Filter Beds for, ${ }^{*} 215$
Muntz Metal, 98
Muriatic Acid, 842
- -Commercial, 342
- - Gas, 342 Specific Gravity of,

Muscovite Mica, 41
Music, Metronome for Beating
Time in (sse Metronome)

- Shelf for Piano, *33s

Musical Box connected to Strik. ing Clock, 836
Instruments: (sea under respective headinge, American Organ, Piano, etc.)
——, Brase, Loosening Slidea of, 228
from, 168, Removing Dents -, Solder for Brazing, 200 Wind Instruments, Boehm System of Fingering for, *152
Musk, Artificial, from Oil of Anuber, 334
Myrohalans, Preparing Tannic Acid from, 17

\mathbf{N}

Nails Rusting in Wood, 76
Name Brooches, Gold Wire, 69
Napoléon Marble, 292
Narwhal lvory, 262
Naves of Whecls, Horse for Mortising, *135

Necklet of Fur, Moth-caten, Renovating, 40
Needles, Adjusting; in Sewing Machine, 76

- Breaking in Sewing Machinc, 267
-, Fixing, to Compass Carils, 49 -, Magnetic, 307
Negatives (seie Photographic)
Nessler's Reagent for Testing Water, :456
Net, Fancy, tor Supporting Large Egg, *254
, Eqg, Fishernan's Landing, *157
--, Rourd, $2 s$
Nets, Purse, for Catching Rabbits, 108
Nettle Beer, 338
Neville's Formula for Water Diacharge of Pipe. 69
New' Englaud Marble, 292
Newspaper Rack, Bamloo, *123, *134
Nickel, Blackening, 288
—, Causa oi Bline Colour in, 210
-, Depositing, on Wax Monlds, ${ }^{51} 1$
Oxidising, 288
- Plated Surfaces Rusty, 267 Plating Aluminiun, 300
, Black Streaks in, 52
-, Removing, fro 11 Cycle, 301
- Bolution, 229, 300 229 , Correpcting Acidity of,
- -, Working, 220, 353
, Thermo-electicic Properties of, 90
Night Fishing Lines, *234
Night-lights, 140, 246
Nitrate of Soda, 16
Nitre (see Saltpetre)
Nobbling Picks for Working Granite, 282
Nordhausen Acid, 343
Northern Pine, Strength of, 150 , Weight of, 150
Nuts and Bolt-hearls, Square, 102
—————, Whitworth, 100

0

Odk, Baltic, Strength of, 150
-, -, Weight of, 150
-Branches, Converting, to Charcoal, ${ }^{*} 109$

- Carvings, Finishing, 296
- C, Removing Vamish
from, 38
-, English, Strength of, 150
-, -, Weighti of, 150
- Finish for Yellow Pine, 142

Furniture, old, Renovating, - 184
, Gilding, 267
-, Size for 267
-, Grain Filler for, 324

- Graining, 148
- Panel, Warped, Straighten. iny, 201
Picture Frames, Funnigatirg, 196
————, Green Stain for, 67 - Shingles, 302

302 , Covering Roofa with,

- Tan for Rabhit Skins, 285
-, Wainscot, 224
-, Yellow Stain for, 85
Oblique Mortise - and - tenay Joints, *196
Oboe, Boehm Systam of Fiogering for, 152
Octagonal Dome, Cuvering, with Sheet Lead, *280
Fountain for Greenhouse, *340
Odoatograph, Willis's, 31
Office Pastes, 294
Ogee Roof, Lead Bays for, 280
Oil of Amber, 334
made from, Artificial Musk
made from, 334 .
- - , Distilling, 334

Oil of Amber Distillates, Bleaching, 834
334 334

- Blowpipe, Per ${ }^{4} 323$
- Boiled, Damp-proafing Brick Walls with, 80
-, C
Cod-liver, Emulsion of, 27 , 90
Colouring, with Alkanet Root, 41
-Colours, Box for, *190
- - , Mixing, 25

Cottonscedi, Soft Sosp made with, 328
-, Warthnut, Soft Soap made with, 328
Filter, 100, 275
Filtering, 64
-Flash-poist, *125 114
Fusel, Alcohols contsin. ing, 347
—, Harness, 247
-, Hemp, Noft Seap msde with, 399
-, Hydro-extractor for Oxidising, 263
, Incandescent Burner for, 161
, Lagoa, Soft Sosp made with, 329

- Lamp Burner, Cleaning, 319 minating Power of 301 , Iluminating Power of, 301 of Lavender, 169, 176
-, Linseed, Bleaching, 328 Brick Walls with, 86 , -, Distinguishing Boiled trom Raw, 243
328,329 , soft Soap made with, 328, 329
-,]ubricstors of, 328 106 dubricstors, Cenients for, 106
- Neat'sfoot, for Oilstones, for
for Oilstone, 215, 246
—, Olein, 268
with, 323 , Soft Soap made with, 323
-, Olive, for Oilstones, 246
- Psint 25

111 , Removing from Glass, 111

- Paintings (see Psintings)
-, Paraffin, Ccments to withstand, 113, 253
- 5 , Removing, from Barrel,

SRed, used in French Polishing, 41
for Soft Soap Making, 32s, 329
, Soluble, for Finishing Cotton Goods, 251
Soods, 251
-, Sperm, for Oilatones, 246
Stone 172 Removing, from Stone, 172
-, Swect, for Oilstones, 246

- of Turpentine, 66
- of Vitriol (eee Sulphuric Acid)
Oilcloth, Paste for Laying, 113, 235
- Roof for Porch, ${ }^{*} 33$
-, Sootblack used in Msking, ${ }_{2} 550$
-, Tsble, Cresm-coloured Psint for, 91
Oiling Clocks, 117
- Machine Belt Pulleye, 247

Oil-palnted ${ }_{2} 117$
Oil-palnted Letters, Removing, from Glase, 111
Oilskins, 69, 112
-, Colouring, 69, 112
-, Stickinege of,' 206
Oilstone, 246
, Action of White Lead on, 246
-
-, Arkanass, 246
-, Artificial, 294

Oilstone, Cementing, in Box, 246 -, Charnley Forest, 246
-, Cutting, 2416
——, Hard, Caise of, 246 ,246-, Traatment of, 215,
\qquad -, Ueing Emery on, 240
Oils for, 215,246
, Sharpening Oonges on, 801
-, Soap for use with, 246
—— Sof tening, 215, 246
for Surgical Instrumente, 246
——, Turkey, 246
-, Vaseline for use with, 215
——, Wsshita, 246
Oily Battles, Clesning, 314

- Barrels, Cleaning, 58

Old English Wire Gauge, 351
Olein Oil, 268

- Soft Sosps, 828

Oleo Oil, 123
Oleogrsphs, MakingTriad Pictures of, "75
Oleomargarine, 125
Olivine, 256
Omnibus Trade 266
Omnibus Under-carriage, *231
Onyx, Cutting and Polishing, 337 -Marble, 202
Opal, Cutting and Polishing, 337
-Glass, Paint for Lettering, 251
\square Printing Frame, *236
Opslines, 73
Opera Glass, Photographing
with with, *3es
Optical Square, *114

- Work, Cells for, * 4 S

Optics (see Camera, Lens, Microscope, snd Telescope)
Orange Chrome, 194
Orange - erlnured Liquid for Chemists' Show Bottles, 13, 293

- Luminous Paint, 263

Orange-yellow Stain for Billiard Balis, 318
Ordnance Datum, *58
—— Map, ${ }^{2} 58$
Ores, Alumininm, 341
-, -, Reducing, 341
-, Antimony, Reducing, 351
—, Oapper, "204
-, Rin, Reducing, 350
—, Zinc, 335
Organ, Anterican, Brush Polish for, 109
,299-, Cleaning Reeds of,
-, -_, Dust in, 299
-, Lubricant for, 299
-—, -_ Preservation of, 299
—, ——, Reed Hook for, 299
—, —, Reeds of, 299
—, ——, Reviving Case nf, 299 -, Taking Apart, 209

- Blowing, Water Mator for, 312
for, 187 Electric Key Action for, 167 for, 167
-, Pipes, Reeds of, 89
Ormolu Clock Case, Clesning, 311
Ornamental Brscket, *278
Ornaments, Bronze, Renovating, 347
——, Relief, Compasition for Csating, 166
Ostrich T'esthers, Bleaching, 255 - - , Dyeing, Black, 168,

Otto of Roses, Perfuming Powder with, 29
Oval Baskets, Repalring, *809

- Cask, Determining Bevels for Joints of, *68
- Frame, Running, in Cement, * 221
——, Netting Out, ${ }^{*} 68$
-Tin-plate Worls, Hollowing, 71
- Tap Wood Box, *266

Oven, Baker's, Steam-hested, *37
-, 一, Steaming, 217

Oven for Csee-hardening Cycle Parts, ${ }^{*} 10 \dagger$
-, Hot-air, 132
Overalle, Waterproofing, 69, 112
(sea sleo Watcrpronting)
Ox Horns, Polishing, 302
Oxford Picture Frame, *247
Oxidation of Molten Lesd, Yreventing, 187
Oxide of Hydrogen, 306

- - Iron, 149
- - Lesd, 14
- - Potassium, 170
- - Tin, 149
- Z-Zinc, Red, 335
-Psint for Brickwork, 170
Oxidised Silver, Clesning, 352
Oxidising Brass, 55
- Niectro-plated Goods, 35
- Nickel, 288
- Oils, Hydro Extractor for, 253
- Silver, 55, 150
- Steel, 150

Oxygen, 43
, Wright's Method of Prepsring, 43
Oxy-liydrogen Jet for Limelight, 43
Light, Illuminsting Power of, 301

Packing for Plunger of Pump Piston, 262
Pad, Ink, for Ruhber Stamps, 91 , of Typewriter, Re-
charging, ${ }^{\text {ch }}$
Palding Skins, 78
Psil as Photagrsphic Print Washer, 1̄̄t
Painswick Stone, Whitening, 821
Paint for Bedstesd, 59
—, Blsck, 126
-, 一, for Leather Trunks, 38
130 , —. Lettering Glass,

- for Black board, 68, 230
-- Blistering, 20, 30, 83
- Bronze.green, 62
- for Calico, 262
——, Cork, for Ship's Iron wark, 58
—, Distemper, for Calico, 252
—, Drying Qualities of, 250
-, Ensmel, 22
-, - Brush for Applying, 57 .
for F'srin Wargon, 308
Glsss, 130,273
——, Gold, 106, 253, 254
- , Bronze, Powders for

Msking (see Bronze)
, Golden Brown, for Castings, 154

- Gresse, 343
—, Green Varnish, for Venetian Blinds, 241
- for Lettering Opal Glsss, 251
——, Luminons, 150, 263
, - , Varnieh for Making,
- for Mirror Beck, 34
-, Oil-colour, 25
-, Oxide, for Brickwork, 170
-, Oxide, for Brickwork, 170
- ' for Plant Labels, 270 ,
—, Primary, for Wood work, 30
- for Railway Wsggons, 12
-, Red, 126
, Removing, from Iron, 59, 228, 233
172, 237 Weod, 20, 31, 163,
- for Tahle Oilclotha, 91
\longrightarrow,Tar', Removing, from Gravestonea, 196
-, Testing Drying Qualities of, 269
- for Wsterproofing Shed, 822 , White, for Leather Trunks, , 88

Painted Can Plant Labels, 270
Painted Canvag, Keeping, Plisble,

Painted Letters, Removing, from Olass, 111

- Wall Drying Patchy, 183

Painter's Fililinge, 88

- Knotting, 81
—, Treating Creosoted
Paintinber with, 154
Painting Bath Stone, 59
- Bedstead, 59
- Blackbodards, 230
- Blind Laths, 1 nie, 241
- Blinds, 308, 810
- Brickwork, 170
- Canvas Carioe, 141
- Cardboard for Slate Pencil Writing, 58
——Clock Dials, 129
- Compo. Work on Building 143
-Concrete, 32
- Creosoted Tinher, 154
, Crystoleum, 223
, -, Msterials for, 223
-Dog-csrt, 269
-—Door, 30°
- Farm Xhaggon, 308
—, Fitches used in, 57
-, Fresco (see Fresco)
- Front Door, 30
- Hntse, 20
-Leaded Lights, 345
- Lines on Glass plates, 120
- Locomotive Engine, 228
- Mail Cart, 825
- Mantelpiece to represent Marble, 172, 184
- Ontdoor Woodwork; 337
- Phaeton, 54
- Phatograplic Barkgrounde,

112, 203

- Pony Cart, 176
- Railway Wagrons, 12
- Rust-stained Woad, 76
- Rhust-stained woad,
-, Sign, Pigments used in, 194 - Signs, 295
- Staircase, 32
- Stone Mantelpiece to repre-
sent Marble, 172, 184
- Venetian Bliuds, 162; 241
- Waggon, 308

Fgintre Blinds, 214, 308
Paintings, Oil, Cleaning, 150, 159, 163
ance of, 245
——, - Plotogrsphing, 123
—, , Removing Varnislir
from, 163
——,—, Rennvsting, 159
Pallets, Clock, Hardeni, 150
—, -, Jewelling, 307
—, ——, Testing, 242
Pampas Grass, Dyeing, 12
Psh, Copper, for Fryiug Fieh, 198
, , Re-tinuing, 57
Panelled Dog-kennel, *352
——Doars in Cabinet Work, *285
Joinery Work, *286
Psnelting with Veneers, ${ }^{*} 128$
Psnels of Broughsm, Polishing, 109
-_, Cart, Boxing out, 248
, 243 , Router for Boxing out,
, Chinese Lscquer, 37

- of Lendsu, Bending, 27 Plaster, Canvassing, to resemble Mahogany, 68
, Warped Osk, Strsightening,
anoramic Viewe, Photographic,
Mounting, 308
Pans used in Olue Making, 48
Paper, Albumenised, 46
, Applying Bronide Solution to, 186
, Calcined Lanpblack need in Making, 250
. Calomel, for Indelible Writing, 238
-, Carbon, 78 Phntngraphic Eniarge.
ment on, 316
for Cailing, 342

Paper Envelopes for Freshly Caught Butterflies，＊306 ，Ink， 266
，Lithographic， 109
－，Litınus， 246
－Parchinent， 81
，Photographic Albumenised， 45
，－
－Bromide，${ }^{*} 166$
二，二 Printing out， 47 ，Washiog， 220
： 233 ，not requiring＇roning，
${ }_{-}{ }^{2} 2331 \mathrm{pu}, 33$
－，Flaxible， 33
＿——，Working， 149
Removing Damp Stains
rom，144， 206
206 Grease Stains from， 22,
\qquad Ink Stains from， 203
－，Re－transfer，for Litho－ Igraphy， 109
，Sensitisiog，for Ploto－ graphic Purposes，45，47，＊166， 233
Stratching，on Drawing Board， 236
，Strip ping，from Wall， 20
－，Toughening， 81
－，Tracing，lncreasing Trans． parency of， 264
Transfor，for Carbon Pro－ cess， 330
，＇Turmeric， 246 Lithography， 109
－，Turmeric， 246
Wall．Removing Grease Stains from， 22
－－，－－，Siziug，137， 291
－，－＿，Varnishing，137， 291
Fapered Ceiling，Sizing， 291
，Varnishing， 291
－—，Whitening， 72
－Wall，Whiting for， 72
－Wall，Sizing， 291
Paper－hanging， 148
Papering Ceiliing， 72,342
Papars，Fly，Aduesive， 250
Papisr－máclié， 65
－Masks， 173
－，Modelling Animal Heads in， ${ }^{6} 5$
——Monldings， 65,88
Paraffin＇Barrsl，Cleaning， 58
－Blow－lannp，＊151
－
－Oin，＇Cements to withstand， 113， 253
Paragonite Mica， 41
Parclunent，Collotype Printing on， 216
－Paper， 81
－，Reluoving Ink Stains from， 203
Parian Cement for Patching Plastering， 325
Paxis White， 329
Pariaian Diamonds， 76
－Phaeton，＊197
Party Walls，Deadening Sound coming through， 134
Passenger Lifts，Hydraulic， 71
Paste．183， 234
－fur Anaglypta， 148
－，Asbestos，Applying， 286
－－，Billposters＇， 234
－，Concentrated， 234
Blacking 332
－Blacking， 333
－－；Bookbinders＇，234， 235
－，Bootmakers＇， 235
Crocus，for Polishing Metals， 83
，Encaustic，for Polishing Photograplia， 275
－Fishing 198
－Gems，Cutting and Polish－ ing， 337
－for Labels，234， 235
－Leather， 235
－Lincrusta Walton， 148
－Linoleum，113， 235 116，Mount 2288
－－Office Use， 234

Paste for Oilcloth，113， 235 78 Poiiahing Brown Boots， 78
－ Metals，83， 112
，Treservatives for， 290
－，Resin， 320
－，Shaving， 45,250
－－，Shommakers＇， 235
－，Watarproof，for Labela， 235 White，for Canvas Shoes， 354
Pastenoard Tube Umbrella Stand， ＊252
Pastiug Cloth to Carriage Frames， 205
Patching Goloahes， 296
－Mackinitosh， 141
Plaster Work，Cement for， 325
Patchwork，China， 294
－，－，Cement for， 294 294
—，Putty for， 294
Patent Brass， 354
Patant－axed＇Granite，205，245， 252
Patent－axes for Granite，＊205， ＊238
Patent－leathge sharpening， 24 ， across Toes， 50
－—，Renovating； 102
Paths（see also Paving）
－－Red Tar， 81
—，Tar，Laying， 77
Pattern for Aquaring Top，＊118
－Cast－iron Rollers， 243
－－Column， 200
————Содя，＊37
——— Conical Rim，＊45
－${ }_{*} 45$＇Frustum of Right Cone， ＊ 45
－${ }_{* 340}$ Greemhousa Fountain， $*$ Saddle－shaped Boiler， ${ }^{*}{ }_{56}$
————Ship＇s Ventilator，＊157
－－Tuyere Bend，＊284
$\overline{\text { Paving（see also Floor）}}$
－．，Concrete，86，91， 145,235
－of Cowhouse， 235
－，Granite，Scoring， 218
－－，Granolithic Concrete， 235
—，Marble Mosaic， 61
for Laying ，Scabling Eamincr for Laying，${ }^{*} 61$
—，Red Tar， 81
——，Tar，Laying， 77
,- ，Repairing， 7 ？
Pavodilos＇Joint in Flooring，＊98
Pavonazetto Marble＇， 292
${ }^{\text {Pavonazetto }}$ Pavazo Marble， 292
Pavonazzo Marble， 292
Pear Wood Carvings，Finishing，
296
Pearl，Aurora， 279
－，Cuttiag， 279
－，Green Snail， 279
－－，Inlaying，on Metal， 279
三－，Muther of， 279
Pebile Working， 279
Pehble Lens，Distinguishing， from Glasa， 275
Pedal of Douhle－action Harp， 81
－Pneumatic，for Piano， 210
Pedeetal．for Tahie，＊120
Pen，Draughtsman＇s ．Ruling， Setting，＊47
Peucil Drawings，Fixative for， 130
－Marking Gange，＊133
－Slate，Painting Cardboard for writing with， 58
Pencils，Carbon，for Electric Lamps， 264
－－，Lead，Colouring， 330
－，－，Polishing， 330
Pendnlum，Clock，Leagth of，91， 178
178 ，Weight of， 91 Clock， 77 ，

Penknives，Tempering， 310 Penmon Marbla， 292
Pendanta，Sigual，＊351
Paptonising Milk， 230
Perchloride of Lea．d， 242
Parfumi Platinum， 269
Perfuming Powder with Otto of Roses， 29
Perid at，Cutting and Polishing， 337
Pariscopic Lenaes，＊327
Peroxida of Hydrogen， 306
－－Iron as Pigment， 194
Medium， 29
Persoectiva Drawings，Archi－ tects＇，＂138
Petershurg Standard of Timber， 155
Petrifying Liquid， 85
Petrolatum（see Vaseline）
Petroleum，Malking Vaseline from， 211
Pettit Tor Marble， 292
Pewter Articles，Repairing， 184
— Polishing－lap， 337
——，Soldering， 184
，Teapot，Cleaning， 278
Pswterers＇＇solder，184， 276
Phaeton，Painting， 54
—，Parisian，${ }^{*} 197$
－，Re－painting， 54
Phlngornishing， 54
Phlngopite Mica， 41
Phonograph，Clockwork Motor for，＊58
Phosphats or Potassium， 262
Phosphorescent or Luminous Paints，150， 268
－Paint，Varnish for Making， 263
Phosphorua，Red， 45
－，Yellow， 45
Photo Autocopyist Process， 216.
Photograph（seealao Photographic
Prints and Photographa）
－Frame in Carved Wood， 60 ，Group，Removing Figure from， 215
－，Monnted，Copying， 141
，Reproducing，by Half－tone
Process， 161
Photographic Actinometers， 295 －Backgrounds， 211
－，Painting，112， 203
－Bromide Entargenents， 174 －Paper，＊166

- Plates，Sensitometer for， 295
－Caniera（sea Camera）
－Carbon Process，Transfer Paper for， 330
－Carbon Tissue，136， 270
Collotypa Printing Process， 216， 249
Dark Room，＊213
\ldots Lamps，＊189，＊233， 334
，Vontilating，＊181
－Developers， 171
17－，Keeping Qualities of， 171
－－，One－splution， 129 －Pyro，＊263， 334
Doubles，Shutter for taking， ＊212
Dry Plates，Fog on， 74 354
Enlargenent on Carbon Paper， 315
Enlargements，Bromide， 174
－in Oil， 162 of，＊75
Enlarging， 117
－Camera，＊275
——by Daylight，＊127
—— Lentern， $\operatorname{sor} 104$
－一一 with Fired Focus Hand Camera，＊121

＊68

－without Canera， 89
Exposures，Times for， 95
Ferrotype Plates， 252

Photographic Filma，Developing， 57
00 — Gelatine，Colouring，
${ }^{90}$ Glass Positive，Copying， 158
－Lantarn Slides（sce I＿antern Slides）
Lens（see Lens）
－Mountant for Glazed Prints， 190， 228
－Mountants， 116
－Negative，Bleaching， 306
－，Converting，to Positive， 206

Copying，to make

Lantern Slides，11，＊95
－，Enlarging， 160
－，Hot Box，${ }^{2} 26$
－，Intensifying，155，8e6
－＿，Pinholes in， 61
from，Plaster Religfs mado from， 112
170 ，Printing Qualities of，
170 ，Removing Silver Stains from， 167
from， 170 －Yallow Stains
－．．．，Retouching，4in， 262
$46-9 \mathrm{~S}, \ldots$ Mediun for，
－T，Tool for，＊262
－D，＇Testing，for Hypo， 306
－＿，Thin，Cause of， 218
，＇， V ，Inproving， 306
－，Varnishing， 46
Negatives，Halation in，＊313
－Opalines， 73
Panoramic Viswa，Mounting， 303
＿Plastar Reliefs，112，30 ${ }^{\text {K }}$
－Plates，Anti－halatiou Back－ ing for， 313
－，Backed， 813
Camer Changing，in Hand
Camera，＊175
——，Development of， 334
——，Dry，Fog on， 74 －，Ferrotype，Black Enamel for， 223
－Water－developed， 354
Portraiture，Backgrounds for，112，203， 211
＊338．Camera Swiug Back in， ＊338
－Electric Arc Lamp for，＊3 44
Positive，Blocking 281
319 ，Converting Negative to，
206 ，Copying， 158
Printing Frama，Half－plate， ＊203
＊236
${ }^{* 236}$ Printing．out Paper， 47
，Albuyunenised， 45
Bath for，ib8 Platinum Toning Toning ＊233 $^{\text {not }}$ requiring Po－，Washing， 220
Prints，Bar Burnisher for， 298
217
$\stackrel{217}{\square}, \frac{\square}{\square}$, Mounting， 217
－，Burnishing，217，251， 298
for， 275
Encaustic Pasta
$298, —$ ，Lubricant for， 251 ，
－Embossing， 166
－——，Euamellers for， 298
——，Encaustic Paste fol
Polisbing， 275
Mon，Gelatine Adhesives for
Mounting，190， 228
190， 298 Glazed，Mountant for， 190， 228
————，Glazing， 190,228 Dull Light， 103

06
6

Photograplic Prints, Matt Surface on, 02

- -, Monnting, 21, 97, 303 116 116

Parmanenca of, 24
Polishing (see Photo graphic Prints, Burniehing) -, Starboscopic, Mominting, ${ }^{*} 53$
——, Testing, for Hypo, 24
*275 , - Permanence,
-, Toned snd Untoned, Permanenca of, 275
for, $* 1+44,109$ -126, 154
Reliefs, 112, 307
-- Sensitometers, 205

- Shutter, Correct Speed of, 130

$$
25,128
$$

Detarmining speed of,
Eversat, 93

- for Quarter-plate Stand Camera, *169
——, Silent, *18
*212 for Taking Doubles, 2 ons, *187
$— —$, Unicum Type, *79
- Silhouettes, 78
-Stủdio, *274
- - Blinds, 323
- ${ }^{*}-\frac{}{345}$, Temporary Outdoor,
-Transfer Paper, 330
--of Printad Pietures, 302
Photographing, All-round, Lens for, 117
Colonred Pictures, 87, 123
Cyclista, "33"
- on Emhossed Glass, 308
-Oil Paintings, 723
— with Opera Gluss or Tolescope, "336
- Pencil Drawings, 255
- Procession Instantaneouely, 84
Several Objects on One
Plata, 23
Photographs (see also Photograph and Photographic Priuls)
-, Blua, '140, 201
-, Crystoleuin, 123
Enlarging, by Daylight, *127
C, Quantity of, 117
, -, without Camera, 89
-, Postage stap, 305
-, Printiog, on China, 94
-..' in Rélief, 112, 307
-, Steraoscopic, Mounting, *53
,
ongraphy, Arehitectnral,
Camera Swing Backin, 338
Carhon Process of, Sensi-
tomater for, 290
-, Copying Mrnuscript by, 143
-, Dusting-on Procass of, 70
for, 295
-, Ferrotype, 262
-, B, Bath for, *307
-, D, Dippar for, *307
64,252 nimata Procass of, 64, 252
, Kallitype Procese of, 96
-, Pinhole, 211
Platinotype Process of,
Sansitometer for, 295
-, Stereoscopic, 22, 105
-, Call Moumting Prints in,
Use of Supplementary Lenses in, 193
187 - Zine Diahes in,
, Wet Collodion Procass of,
64, 252
-, Wet-plate, 64
- $=100$, Wire Retts used in,

Piano Cases, Finishing, 111

- Front, Gilding, 118
—, Insarting Wrest-plank in, 21
Koyz, Bleaching, 310 , Claaning, 810
Distingnisling Cellu-
loid, from Ivory, 295
- -, Polishing, 295
- -, Preserving, 310 from, 295
- , Renovating, 295
-, Music Shelf for, *338
-, Pnaumatic Perdals for, 210
—, Reviving Polish on, 139
Pickle for Colouring Gold Alloys, 36, 46, 34
- - Gun-metal Castings, 97 - to ramove Silver Bolder, 29

Picks for Soldared Watch Case, 66
Picks for Dressing Granite, ${ }^{2} 205$,
*238, *282.

Picric Acid, 96

Picture, Cleaning, 38, 206
, Colonred, Treated to Re. aembla Oil Paintiug, 245 ,123—, Photographing, 87,
-,Crystolemm (sca Crystaleum) Frame, Applying Gold Bronze to, 110
-, Berelling, *270
Cramping, * 302

- Ehonised, Compo. for

Repairing, 230
132 ahogany, Darkening,

- Mouldiugs, Facing, 112

196
for 67
-———, Staining, 112
———, Oxford, *247

- Mounts, Gold-lining, 31, 110 , White-lining, 31
Printad, Tranaferring, Removing Damp Stains
from, 144, 206
- Stretcher, 245

Pig, Crata for Carrying, *97
${ }^{\text {Pig, Crata 1or Carr }}$
$\xrightarrow{\text { Pleon Cote, } 219}$ House, Front for, *296
Pigments : Burnt Sienna, 194
: Barnt Umbar, 194
-: Chinesa Red, 195

- Chineae or Zinc White, 195
- Chroma Yellow, 297
-: Crimeon Laka, 305
-: Emarald Green, 194
-: Flaka White, 194
—, Flasl1-tinted, 19
—: French Ultramarina, $19{ }^{\circ}$
-; Grean Lake, 19*
- : Imperial Yellow, 293
-: Indian Red, 194
- : lndigo, 194
- : Ivory Black, 104
- : Lemon Chrome, 194
-: Oranga Ohronne, 194
-: Paria White, 329
- : Prusaisn Blae, 195, 300
-: Raw Sienna, 195
- - Raw Umber, 195
——: Spanish White, 329
-: Últramarine, 195
- : Vandyke Brown, 195
-- : Vcgetable Black, 195
-: Venstian Red, 195
- : Vermilion, 195
-: Varmilionette, 300
- : White Lead, 195
- : Whiting, 329
-: Yellow Ochre, 105
- : Zine White, 195
-: Zinc Yellow, 291
Pile-driving Engine, *165, *316
Pilea, Driving, on \& Batter, ${ }^{*} 34$
Piles, Thermo-electric, *90
Pillar, Turned, Cutting slot in
Top of, *65
Pill-boxas, Wooden, Grease-
proofing, 934
Pilla, Ensinel for Casting, 142

Pin and Shackle Drsw-bar Hook * 297

Pinchlicek Brass, 354
Pincuahions mada from Cows' Hoofs, 309
Pine,'Ameri'an Red, Strength of, 150
—, Ebonising, 91
filler for, 41
, French Pollsh for, 142
Kanri, Strength of, 150
, Weight of, 150
-, Northern, Strength of, 150 , - , Weight of, 150 , Piteh, Strength of, 150 -, Weight of, 150
—, Polìsh Yor, 91
-, Staining, to Imitate Chippendala, 127
tate, 202 Matchboarding to Imitate, 202
--, Varniahing, 82
-, White, Strength of, 150 —, Waight of', 150 Yellow, 315
—, —, Onk Finisl for, 142
Pinlule Camera, *211
Pinh Photography, 211
Pinholes in Photograllic Nagative, 61
Pinione, Watch, Drilling, 237, 300
Pink Liquid for Chemists' Show Bottles, 13

- Stain for Billiard Balls, 318

Pins, Brass, Blackening, 354
, Entomological, 256
, Scrif, in Gold Wire, 69
, Steel, Gilding, if
Pipe, Caulked Juints in, 11, 321
-, Copper, Bending, 185
——, Tinning, 62, 140
Draio, Cement Joints on, 191
, Elfects of Bands in, 202
-, Gas, Testing, 111
for Heating Drying-rooul hy Steam, 91
, Hot-water, Applying As-
bestos Pasta to, 2310°
, ——, Caulked Jis.nt on, 321
-, ——, Cennenting, 30
, _, Clasning, 3:\%
, ——, Clicking Nuise in, 115
, - Joints for, 217, *347
josit trom, 352
Hydranlic, Mean Depth of
Watar in, *68
, Lead, Casting, 202
, - Soil, Joints for, 247
and Tacks on, 172 AolderingAstragals
Organs, Flectric
of, 167

+ , Pheumatic Kay Actions of, 167
———, Reeds of, 89
Orifice, Effect of, on Valocity
of Efflux, 201
-Rack, *168
, Steain, Applying Asbestos
Paate to, 236
Jointing, 11
, _., Csulked Joint on, 11
, D, Determining Super-
ticial Suriace of 25
Compo. for, 65 Insulating
,
, Tobacco (sea Tobacco Pipe) Waata, Jointe for, 247
, Water Discharge through, 31
of Formula , Comperison
of Formulas for, 69
*263 Hydranlic Gradient of,
Pipeclay, Whitening Stone with, 321
Pipa-eya Scroll-irone, 56
Pit Sawa, Tempering, 310
Pitch, Soot black Hade from, 250

Pitcling Tool for Granite *238
Piteh-pine Loga, Cutting Figured Boards from, 15
——, Strength or, 150
-, Varnishing, 82
Pivot Haight of, 150
Pivot Hola, Watch, Repairing, 80
in

- in Watcli Balance Staff, 258

Pivots of Drum Clock Balance, Re-pointing, 285
-, Watch, Polishing, 332
Plagioclase Feldspar in Basalt, 256
Plane Irons, Tempering, 810
\longrightarrow Ronter, 243
-, Scratch, Por Working Beada
aud Mouldings, *168
Planes, French-polishiog, 311
, Preserving, 311
Plasma, Cutting and Polishing, 337
Plaster Bronzes, Renovating, 129 - Bust, Cleaning, 144

- Castings, Wax Moulds for, 190
- Casts, Giving Ivory appearance to 36,157
——Coatinga for Fresco Painting, 289
- Cornice, Repairing, 71
- Figures, Giving I vory appearance to, 36, 157
- for Modelling Figures, 30
- Mould for Canent Vise, 228 - Making Cement Caatings from, 223
Panels to imitate Mahogany, 68
-R
- Raliefs made from Photographic Nagatives, 112, 307
- Statua, Wlectro-coppering, 254
Walls, Fira or Air Cracks in, 59
, White Wall, 254
Plasterers' Gauged Stuff, 254
Plastering, Cenent for Patching, 325
Plaster-of-Paris, 17
- Action of, 17
-, Calcining, 17 Kilus for', 17
—, Mining, 17
- Model, 317
, Retarding Setting of, 317
Plasticine, 317
Plate-casting in Cockfounding, 36
Plated Articlas, Removing Ink Stains from, 165 - Rusty, 267 231, Stripping Gold from, 231, 353 357
Wira, Cleaning, 861
Plate-glass, Bevelling, 119
——, Mat Grounds for, 247
——, Painting Lines on, 126
--, Silvering, 72,108
\ldots, Tabla used in, *Ta
Plates, Collotype Printing, 216, 249
-, Copper, Straightening, 100
, Ferrotypa, 262 ${ }_{22} 2$
——. Meclanical Dantal, 249
--, Photographic (saa Hotographic)
, Steel, Setting or Striightening, 339
, Thin Metal, Levalling, "208 Silver, etc. (soo under re

Vulcsnito Dental, 168
Watch, Cleaning, 237
, Gilding, 289
-, 一, Softaning, 289
Plata-stand, Trìpod, *344
Plating with Brass, Gold, Nickel, spective metals)
Platinum Ammonia-chlorida, 269 - Perchloride, 269
——in Selp-ligitinn Incindescent Burnars, 269

[^6]namel for

[^7]-

Platizuin Toniag Bath, 168
Playiog Bowls, Wooden, Claan ing, 234
-—,一, Re-staining, 234 - Marbles, Staining, 234

Pleated Back Squab for Car riage, 308
Plotting Surveys, *185
Plough, Saow, ${ }^{*} 72$
Plug and Feathers for Splitting Granite, *238
Plum Wood Carviags, Finishing, 296
Plumbago Crucible, 46
Plumber's Astragal Joint, 1'\% 2 247

- Expansion Joint, 24 '
-Glossy Black, 326
- Slip Joint, 247
——Soil or Smindge, 347
- Solder, Removing Zinc from, 147, 263
Underhand Joint, *88
Plumbiag Work Aboard Trooṕ ship, ${ }^{*} 341$
Pluagar of Pump Piaton, Packing for, 262
Plush, Covering Circular Frames with, *10s
Pneumatic Kay Actions for Pipe Organs, 167
- Pedals for Piano, 210
- Test for Drains, 175

Pocket Compass and Magnetic North, 307
Pointillnge Watch Glasses, 344
Pointing Brickwork, *115, *127
-241 , Mortar for, $30,115,124$, -
-
Poles, Brass Curtain, Bending, 14 (see also Bending)
Polish, Black Frencl, 814
—, -, for Harness, 233

- 183 - Mirror Frames, , 183 , - Shop Fittings,
, Brush, for American Organs, 109

French, 233
-' for Calf Kid Boots, 353
-, French (sea Franch)

- for Mangle Rollers, 33 Pine, 91
Turned Wood, 29, 227
- on Fiano, Reviving, 139
- Rovivers, 130, 263
- and Stain Combined, 38
-, Transparent, 314
-, Whita French, 13, 314
-on White Marble, Restoring, 323
Polished Furniture, White Spots on, 81
Wood, Removing Soda-water Stains from, 46
Polishing Alabaster, 154, 240
- Alumininin, 314
- Amber, 339
- Artificial Gems, 337
- Batb Top, 194
-- Billiard Balle, 318
- Birch Chairs, 199
-, Black French, 314
Kid Gloves, 286
Marble, 281
- Brass, 83, 251
- Clock Diala, 345
———Tubes by Hand Floating, 58
58 - on Emery Wheel,
-
- Brongham Panels, 109
- Brown Buots, 190
- Bullock Horns, 302
-Carnelian Stonea. 72, 337
- Carvings in Wood, 296
- Celluloid Keys of Piano, 295
—Chisel Handles, 227
- Coffia, 41
- Copper, 141, 251
———mand lrou Lamp, 330

P
Polishing Cornelian Stonea, 72 , 337
Cow's Hoofs, 309
Curling Stones, 14

- Decorated Wood, 299
- Diamonds, 293
, Turn-table for, 293
- Ebonite, 306
- Ebony, 27

Fretwork, 44
Mirror-frame, 38
Enamellad Slate, 297
Flooring, 143
-, Freach (see French Polishing)

- Furniture, 199, 210
- Glacé Kid Gloves, 286
- Glass, Wheels for, *314
- Goat'a Horns, 65
- Granite, 205, 245, 319
- Handles of Tools, 227
- Hoofs, 309
- Horns, 65, 302
- Horns, 65,302
- Billiard Balls, 818
- Kid Gloves, 286

Laps, Copper, 337
Lead, 337
Lead Pencil Csses, 330
Limestone Fossils, 202
Mahogany, 214
Marble, 125, 246, 281
Clock Cases, 322
Metal, Buffs for, 24

- Compositions for, 49 , 83, 112

Crocus for, 49, 83, 149
Ronge for, 29, 49
Millboard to Imitate Walnnt, 197

- Ox Horas, 302
- Panels of Brougham, 109
-Paste
— - for Metals, 49, 83, 112
- - Photographs, 275
- Pedcil Cases, 330
, Peroxide of lron for, 29
-Pewter, 337
Photographs (see Photographic Prints, Burnishing) Piano Keys, 295
- Pipe Mounts, 29
- Planes, 311
- Printed Wnod, 299
- Razors, 112
- Repoussé Metal Work, 214
- Roller of Lever Watch, 334
-, Rouge for, 29, 49
- Rubies, 307
- School Slates, 330
——Shells, 258
- Slate, 45, 297, 330
- Stalactites, 105, 181
- Stones, $14,72,105,181,307$, 337
- Taraished Copper, 141
——Teak, 261
- to resemble Rosewood, 139
_—In-plate, 67
-Tool Haudles, 227
-. Tortoiseshell, 250
——Turned Wood, 29, 261
- Vulcanite, 306
—— Watch Pivots, 332
- Roller, 334
-_, Wax, 295
- Wood Carvings, 296

Pom-poms, Upholsterer's, 36
Pony Cart (gee also Carriage and Cart)
*16, *96
-_ Cushions, Making, 303
-——, Painting, 176
Poplar , Varnishing, 176
Poplar, 'Stainiog, to Walnut
Colour, 269
Porcelain, 125
—, Fixing Transfers to, 801
Letters, Removing, from Glass, 220

- Potter's Clay for, 185

Porch for Doorway,*33
Porphyrites, 242
Porphyry, Cutting and Polish-
ing, 337
orterin's Process of Copying Drawings, 236
Portiera Rod, *125, *145
Portland Cement, 240

- -, Brown, 813
-——, Cracking, 344
- -, Green, 313
- - used Noat, 344
work, 344 Por Pointig Brickwork, 344
———, Red, 313
- —, Sand in, 305
- —— Wash; 153
-——, Whiteniag, 821
- Stons, Yello

Portrait (see also Photograpiy)
Por Enlargements in Oil, 162:-
Purtraiture, Backgrounda for, 112, 203, 211
-, Camera Swing Back in, *338
——, Electric Arc Lamp for, *344
-, Lenses for, 104, 281
Positive, Photographic, Blocking ont on, 319
to, 206 Coavertiog Negative

$$
[0,20
$$

, Copying, 158

- - Phot oraphe *305
——Stamps, Danper for, *276
Potash, 170 Gum for, 234
- Binoxalate, Remoting

Stains of, from Clothes, 338°,
Lye, 247 (see also Soap)

- Soft Soaps, 328, 329

Potassinm Chlorate, 327

- Cyanide, 137
——Oxide, 170
- Phosphate, 262

Potato Spirit, 347
Pots, Flower, Window Board for, *326
Potters' Clay for China and Porcelain, 185

- - Tunghening, 181

Pottery Glazes, 18
Poultry Food Transferring Designs to, *38 Poultry Food Bin, Self-feeding, *130

Rack for, *334
Powder, Crocus, 49, 83, 149
—, Dry Sosp, 21
——, Ink, 266
,P Perfuming, with Otto of Roses, 29
-, Putty, 149
-, Salol Soap, 300
Powdering Brass Spelter, 175

- Flint, 161

Power of Engine, Determining, from Indicator Diagrams, *92
-Transinitted by Leather Belts, ${ }^{2} 99$
Prawn Trap, *180
Preciona Stones (aee Gems and under respective names of stones)
——Artificial (see Gems) - 76 , Colouring Matter in, 76
Precipitated Chalk, 331
Pracipitating Dissolved Gold, 353

- Silver, 337, 350

Prepared Chalk, 331

- or Whiting, 329

Preserviag Berries, 68

- Blown Eggs, 91
- Butter, 202
- Butterflies, 72
——Clay Figures, 86
- Fish, 217
- Flowers, 305
- Gnm 169
- Horns, 65, 281
- Iosects, 72
- Lamb's Foot, 318
- Liquid Glue, 290
- Moths, 72
- Paste, 290
- Piano Keys, 310
- Plano Keys,
- Plaster Figures, 36
- Roach for Bait, 270
- Sheapskins, 24
- Shell of Tortoise, 316

Press for Mangle Shafts, *40
Pressed Yeast, 154
Pressed Yeast, 165
Pressurs on Retaining Wall, of Water, 29
Priming Outdoor Woodwork, 337 Printed Pictures (see Prints) Wood, French Polishing,
Printers' Ink, 18
———, Black, 18
-———, Browa, 18 Varnich, 18

- Converting, to Typewriter Ink, 74
250
- Varnish for making, 18 - Rollers, 217
———, Composition for, 217
-C, Using old, 217
Printing, Collotype Process of, 216, 249
- in Gold, 277

Printing - frame, Photographic Half-plate, *20
, Quarter - plate, for Opals, *236
Printing-out Paper, 47
-———, Albunenised, 45
for, I'68 Platioum Toning Bath for, 168

*233

Prints, Bromide (seo Photographic)
-, Cleaning, 38, 206
Coloured, resembling Oil Paintings, 245 123 graphic) , Removing Damp Stains from, 144, 216
Transferring, Photographicslly, 302 ${ }^{7} 75$ Triad Picture made from,
Procession, Photographing, Iastantaineously, 84
Proof Spirit, 347
Propyl Alcohol, 347
Prussiaa Blue, 195, 300
T- Gu, Soluble, 41

- Gunpowder, 346

Pulley Beits, Cements for Joining, 97
——, Covering, witl Leather, 97 -, Deternining Diameter of, 272
Pulp (see also Papier-mâché)
-, Cane, Bleaching, 213
—, Cardboard, 233
-, Flexible Paper, 33
—, Paper, 33
Fur, Working, 149
Pulpit, *131
Pulsometer, *74
Pump, Air, for Blow-lamp, */3
-, Air-vessels on, 97
-, Contrifngal, *28
-Cup Leathers, 199

- , Garden, *331
-_, Lead, Removing Suction Valve of, 196
——Piston Plunger, Packing for, 262
Pumping Windmill Model, *310
Punch or Pnachean for Working Granite, *205, *218, *238, 282
for removing Watch Cylinder Pluga, *152
Punch-and-Judy Show, Framework for, 329
$-\frac{1}{55}$, Producing Squeak for,
Punching Designs on Coppar, 237
Holes in Corrugated Iron, 229
Punt, Flat-bottomed, 170
Purbeck Marble, 292
Purfling Gauge for Violia Work, *308

Purple Liquid for Chemiets' Show Bottles, 13, 293
Purse Nets for Catohing Rabbits, 108
Purses, Leather, 261
Push, Double-contact Electric,
Putty, Gilder's, 353

- for Glacs, 853
-_, Glazing with, *109, 343
Kaives, *348
Removing Loose, after Glazing, 343°
Pyro Davelopar, 263, 334
*263 , Apparatus for Making,
Pyromorphite an Cre of Lead, 352

Quartz, Cutting and Poliabing, 337
Queen --post Roofs, Scantlings for, 232

R
Rabbit Skins, Curing, 105, 285

- - , Tanning, 285
bbits, Pursc Nets for Catclıing 108
Rack, Banboo, for Newepapars, *123, *134
-_, Reit, on Tent Pole, *260
-, Book, ${ }^{229}$
-, Boot, ' 313
-, Brush, *206, *331
——, (lo thes, *331, *337
-, Greenstuff, *33
-, Hall, *331, *346
——, Hat, *331, *346
-, Newspaper, *123, *134
-, Pipe, *163
-, Poultry Food, ${ }^{*} 334$
-, Rifle, on Tent Poie, *260
-, Stick, *346
-, Tumbler, *111
Rackets, Lacrosse and Tennis, Bending Wood for, * 167
Radiators, Circulating Heating Surface of, 122
Rafters, Bevels for, ${ }^{*} 165$
—, Hip, Bevels of, ${ }^{* 57}$
--, Jack, Fixing, *209
Rail Valley, Trixing, *209
Rail, Steel, Tempering Sett for Cutting, 130
${ }_{\text {I }}$ Swinging Curtain, fitted to Iron Bedstead, 104
Railroad, Model of, 317
Railway Carriage Doors, Sliding Saylues in, *349
-- Mouldings, *191
-TTunncl, Boring, from Both Ends, 94
- Wagon Brake Blocks, *303
- - Draw-hook, *297
-——, Painting, 12
Rainfall on Roof, 158
Rainwater Tank, Lioing, with Irbad, 63
Ram, Hyd Underground, 208
Ram, Hydraulic, *163
Range Boilers, Copper, 96
"Boot" Boilere, Safety Valves of, 240
——Joints, Cementing, 73
- Tap, Fastening, 151

Raw Linseed Oil, Diatinguishlng, from Boiled Oil, 243

- Sienns, 195
- Umber, 195

Razor Stropa, Crocua for, 49
Razors, Polishing, 112

- Tempering, 310

Rearer, Chicken, Heating, *148
Réaumur Thermonıeter, 304, 305

Réaumur Thermometer Degrees,
Converting, to Centigrade and Fahrenheit, 804, 305
Rebating Sashee, Machine for, *259
Reciprocating Water Motor, *208 Rectangular Tank, Determining Contenta of, 19
Rectifled Spirit, 947
Rectilinear Lenses, 60, *82i
Red Bottle-waxes, 16

- Brass, 354
—— Copying Iak, 220
Facing Bricks, 201 102
- Glaze for Terra-cotta Tiles, 18
- - Tobacco Pipee, 28
——Grease Paint, 343
——, Indian, 194
-Ink, 223
Marble, 233
- Lettars on Glass, 16
_-Liquid for Chemists' Show
Bottles, 13, 293
—— Iuminous Paint, 263
——Ogwell Marble, 292
——Oil, French Polishers', 41
- Oxide of Zinc, 335
- Paint, 126
- Phospborus, 4
- Pine, American, Strength of, 150
————Weight of, 150
- Portland Cement, 313
——Sandal-wood, 247
Sandera-wood, 247
Stain for Alabaster, 240
-- Stencil Ink, Billiard Balla, 318
- Steacil Ink, 37
- Varnish for Straw Hate, 50 -, Venetian, 195
Red-roae Mica, 41
Redwood, Baltic, 815
Reed Hook, *299
Reeds of Annerican Organ, 299
Dust from, 209 , Removing
Dust from, 209
Reel for Tishing Rod, 23
Reels; Winding Cotton on, 301
Machine \longrightarrow, Wield'a
Refining Impuro Tin, 156
Ref Scrap Gold, 180
Reflected Image, 162
Refrigerating with Chemicals, 200
Register Stoves, Blowers for, 114
Regnault's Air-weighing Experiments, 348
Rcgulator Clock (zee Clock) for Reciprocating Water Mator, ${ }^{*} 842$
Ralaxing Bird Skins, 168, 156
- Butterflies, entc., 72
- Squirrel Skins, 186

Relief Photographa, 112, 307
Repoussé Work on Copper, 214
, Polishing, 214
Repp Furnitare Cover, Reaovating, 349
Reservoir for Paraffin Blowpipe, *323
Resin in Amber, 392
—, Distillation of, 161

- Paste, 320
- Soit Soap, 329
- in Spirit Varnish, 101

Resist for Sun Printing on Glasa,
Reat, Portable, for Booka, ${ }^{*} 172$
Retaining Wall, Pressure on, *166

Retort tort Refose, Gas, Artificial Emeralde from, 76
Retouching Nagativea, 46, 262
———, Medium for, 46, 98
———, Tool for, *262
Reveraing Gear for Locomotive, Stephenson's, " 213
Revivers for Felt Hata, 286

Revivers for French-poliahed Work, 268, 209
Revolver Springs, Tempering, 55
Rhinoceroo Hide, Making Walls ing-sticks from, 247
Riblon Agate, 853
Ribbone, Typewriter, Re-inking 807
Ridge Roll, Hollowing Under Side of ${ }^{*} 117$
Riffler *325
Rifle Rack for Tent Pole, *260
Rifles, Guupowder for, 946
Rim, Cooical, Pattern for, *45
Ring Weigbts, on Safety Valve,
Ringa, Brass, Making, 816
—, Gold, Hard-soldaring, 152
-, Jewelled, Soldering, 325
River, Taking Cross Sections of - 265

- Water, Impurities in, 327

Riveting Corrugated Iron, 229
Rivats for Boiler Plates, 167
, Determining Diameter and
Pitch of, 37
Roach Fishing Paste, 198
-, Preserving, as Bait, 270
Road, Macadsm, 291
-, -, Granite for, 172, 291
Roadway, Sunk, Retaining Wal for, *204
Rock, Cement for, 259
Rock-cork Asbestos, 303
Rocking Chair, Bamboo, *237
Rock-leather Asbestos, 303
Rock-wood Aabestos, 303
Rod, Fisbing (see Fisking Rod)
\rightarrow, Portiere, *126, *145
Rods, Eogine, Forging, *\$4
Roebling Wire Gauge, 351
Rolled Brass, 354
Joists for Assembly.room Floor, 217

- Sheet Lead, 852

Roller, Cast-iron, Pattern for, 243
-, Watch, Fitting, 334
Rollers C, Polishing, 334
llers, Composition, for Branding Sacks, 219
, —, Moulda for, 217, 219
Iron, Cementing Folt to, 81
, Mangle, Machine for Press-
ing Shafts in, *40

- Polish for, 33
-, Printera', 217
-, Printera, 217 , Composition for, 217
——, Uaing Old, 217
Rolling Sbeet Lead, Machinery for, 218
Roll-top Desk, Roll-ahutter for, *291
Roof, Box Gutter on, 313
-, Collar, Scantlings for, 232
Columas for Carrying, *226 , Corrugated Iron and Felt, *285

Method of Cooling Shed which has, 216 densing on, 47 , gles, 302 , Cutting Corrugatad Iron Plates for, 229 -into Side of Dome, *25 Dome, Octagon, covered with Sheet Lead, *2S0

-,, Girders for Carrying, *226 -, Glass, Preventing Coudenzed Moiature Dropping from, *299

- Gutters, 158
- Hip Rafter, Bevels of, *57 -, Iron, *180
, King-post, Scantlinge for, 232
, Lead Stepped Flashings for, 331
, Ogee, Lesd Baye for, 280
-, Oilcloth, for Porcl, ${ }^{*} 83$
, Queen-post, Scantlinge for, 232
, Rainfall on, 158
Ridge Roll, Hollowing

Roof, Sanded, for lngle Nook, -332

- Slates, Replacing Broken, *281
${ }_{4}{ }^{2}$ Span, Fowls' Hoyse with,
——, Timbex, Scantlings for, 232
Irusa, Kiog-poat Hipped End of ${ }^{*}$ *32
Roofing with Felt, *235, *260
Room, Atmosphere of, 230
——, Dark, *213
,, 一, Lamp for, "189, *233 , Drying, Heating, $9 \mathrm{I}, 208$
- Floor, Rolled Joikts for, *217 Papered, Sizing and Varnishing, 291
, Proportioning, for Sound, 95
-, Window Areas for, 164
Rooms, Two, Heated from One Fireplace, *235
Ropemaker'a Jenny, 309
Ropea, Straw, 309 309
, 309 , Twisting Hook for,
Rosa Carnagione Marble, 292
Rosa Colour Grease Paint, 343
Rose Marble, 292
- Enjugeraia Marble, 292

Rosewood Graining on Glass Signs, 277
, Polishing Teak' to reaemble, 139
Rosso di Levanto Marble, 292
Rotary-hook Lock-stitch Sewing Machine, 76
Rouge Acajou Marble, 292

- Antique Marble, 292
- du Var Marble, 292
- Etrusque Marble, 292
- Fleuri Marble, 292
- Griotte Marble, 202
- Rose Marble, 292
- Royal Marble, 293

Rouge, Jewellers', 29, 49
Rough-casting Walls, 115
Router Planes, 243
Moulfor Working Circular
Rubber Goode' (eee Indiarubber)
Rubber used in Tinning Vessels, 57
Rubbers for Marble, 24 G
Rubble Wall, Cement Readering on, 148
Ruby, Artificial, 76
-, Gaudin's Process for Making, 76
, Colouring Matter in, '/6
——, Cutting, 307
-, Distinguishing, from Artificial Gem, 76
Ruby Lamp for Photographer'e Use, *189, *233
Ruge, Making, fropn Raw Hides, 184
__, Sheepskin, Removing Salt from, 68
Ruling Pen, Setting, *47
Rum, Amonit of Alcohol in, 347
Rush-bottomed Cbairs, Re-seat ing, *174
Russet Marble, 293
Russian Gunpowder, $3 \neq 6$

- Kef or Koumisa, 348

Rust on Nickel-plated Surfaces, 207

Preventing, in Kitchan Boiler, 142
——, Rewoving, from Iron, 269
—, —, ——Microscope, 35
Rust-marked Wood, Painting, 76
Rusty Galvanieed Iron Tank, 809

S

Saccharometer, Bate's, 161
Sacks, Composition Rollera for Branding, 219

Sacka, Stencil Ink for Marking, 261
Sedde Soat Itee for Marking, *82 Saddle-shoped

$$
\text { for, } * 56
$$

Safety Matchee, 45

- Val, Rubber on Box for, 45 Valve on Hot-water Appa. ratua, 190
Boiler, 240
- —, Ring Weighte on, 285

Saffron Colour, Dyeing Feathers, 34
Sail, Converting: to Boat Cover, 169
_Plan for Model Yacht, *168, *184
-, Removing Mulberry Stains from, 216
St. Amaude Marble, 293
St. Amna's Marble, 293
t. Beat Marble Polishing, 125

St. Béat Marble, 293
St. Sylvester Mar'ble, 293
Saline, Etrervescing, 209
Salinometer, 119
Salmon Fishing Rods, 303
Salol Shaving Soap, 300

- Soap Powder, 300

Salt, Extraeting, 'rom Sbeepskin Rng, 68
, Glauber's, 260°
Saltpetre, Impregnating Charcoal with, 251
\qquad Making Soda Nitráte from, 16
T, Melting Point of, 16
Salts of Lemon Stains, Removing, from Clothes, 388
Sample Case, Traveller's, *63
sand in Mortar (see Mortar)

- Weight of, 88

Sanảal-wood, 247
Sanil-blast Process of Lettering Glass, 18
Sanded Roof, Ingle Nook with, *332
Sandstone, Groy, Imitation of, 213
-, Red, Imitation of, 218
Sanitary Arrangenents of Troopship, "341
Santo Crimp's Formula for Water Discharge of Pipe, 69
Saponifying Oil, 329
Sapphires, Artificial, 76 Making, 76
-, Colouring Matter in, 76
Sard, Cutting and Polishing, 337
Sardonyx, Cutting and Polishing, 337
Sarrancolin Marble, 293
Sarsaparilla Beer, 91, 338
Sash Bars and Rails, *198 Linee, Putting, in Window Frames, 47
Sashes, Double, for Deadening Noiae, *287
Machine for Grooving and Moulding, 259

Sliding, in Railway Carriage Doora, *349
Satin, Printing Photographs on, 87
Saucepan Covers, *112
Saucepans, 140
Saucer, Transferting Design to, *38
Sarings Bank or Money Box, *42
Saw jor Alabaster, 68
Saw Band, Attaching Leather to Wheels of, *262
-, -, Brazing, 100, *272
-, Using Broken, 160
-, Circular, Bench for, 285
-, -, Cutting Floor Blocks with, *330
—, —, Safety Guard for, ${ }^{*} 52$
-, Cylindrical Cutting
, Cylindrical, Cutting Ivory, Ebonite, etc., with, 306 Fastening, to Tuol-chest Lid, ${ }^{*} 187$

- Files, Granite-cutting Cbisels made from, 323

Saw for Marble, 246

- Mill, Small, *257
— Sharpening Macline, *248
- for Soft Stone, 68
——, Tempering, 310
- Vice ${ }^{*} 60$

Sa wing Amber, 339

- Ebony, 27

Scabbled Gine Logs, ${ }^{*}$ 15
Scabbled Granite, 205
Scabbling Hainmer for Laying
Marble Mosaics, *61
Picks for Granite, *205,
$+282$
Scales on Thermometers, Reblacking, 37
Scalpels, Tempering, 310
Scantlings for Collar Roofs, 232
————King-post Roofs, 232
————Qucen-post Roofa, 232 - - Timber Roofs, 232 Scarf-pins, Gold Wire, 69 Scenery, Theatre, Fireproofing, 58
Scenes for Diorama, 116, 137 Scent Cabinet and Jewsl Box Combined, *199
Scenting Powder with Otto of Roses, 29
Schatte's Varnish for Malsing Luminous Paint, 263
School, Air Space in, 239
-, Floor Space in, 239

- Furniture, Yellow Finisl for, 111
--Slates, 330
——— Cutting, 330
\rightarrow - Polishing, 330
Schoolroom, Heating, 89
Scissors, Tempering, 310^{-}
Scoop for Apples, $* 47$
*S42 Coal-weighing Machine,
Scoring Granite Pavement, 218
Seotch Fix, *315
Scraper, Cabinet-maker'e, Sharpening, *134
Scratch Plane for Working Beads and Mouldings, ${ }^{168}$
Screed for Cement, *244
Screcn Frames, Hinging, *94 , Perforated Metal, for Window, 143
Stephenson's Thermometer, ${ }^{*} 71$
Vestibule, Removing, *101
Screw Gange, Swiss, 81 (see also Screw)
Screws, Brass, Polishing, 310
-, Worm, fitted to Banjo, *11s
Screw-threads, Britialı Associa-
tion, 81
, Watch, Taps for, 14, 87
Scribing Block, *144
,
Sea Level, 336
\longrightarrow Determining Height
Above, 336
Seal Engraving, 192
Sealing Wax, 853
-—, Black, 353
- -, Blue, 353
- or Bottle Wax, 15
- Fillings for Engraved

Plates, 102, 288

- ——, Red, 353
- —— With Wick, 353

Seasoning Small Lumber Artificially, *167
Seat, Chair, Upholstering, 204 -, Spring, in Armehair, *330
Seating Cord-bottomed Chairs, 174

- Rusb-bottomed Chair; *174

Sea-trout Fishing Rod, 303
Seats, Double, for Shop, ${ }^{*} 144$
Secret Drawers attached to Jewel
Case, *86
Segmental Opening, Splaycd
Linings to, *350
Seleninm, 20

- Monochloride, 20

Seltzogene Charges, Ingredients for, 159

Sensitising Photographic Paper, 45, 47, *166, 233
Sensitometers, 295

- for Bromide Printing, 295
\qquad Carbon Printing, 295
-—— Dusting on Process, 295
- 295 Platinotype Printing,

295
Serpentine in Basalt, 256
-, Cutting and Polishing, 337
Set-square, Bevel, *160
Settee, Divan, *335
Setting Beatles, 226, 246

- Boards for lnsects, 72, 213
- Butterflies, 72
——Moths, 72
——Ruling Pen, *47 339
Sewage, Bacterial Filters for, 321
-, Treatment of, 321
- Filter, Automatic, *203
- Irrigation, *283

Sewage-polluted Water, 327
Sewer, Connecting House Drain
to,${ }^{*} 23$
-, Hydraulic Gradient of, *263
Sewing Machine, Adjusting
Needles in, 78

- - Adjustment op 76
- - Chain-stitch, 76
——, Howe, 251
- -', Lock-stiteh, 76

267 , Needles Breaking in,
stiteh, 16
Shackles, Railway Coupling, *67 , - in Bending Block used in Forging, *67
Shade, Cracked Glass, Cutting, 187
Shaft, Chimneý, Felling, 115
Shafts, Mangle, Press for, *40
Sharupooing, Dry, Liquid for,

345

Sharpening Axes, 245

- Band Saws, 185
- Boot Clicker's Knife, 247

Cabinet-inaker'sSteeIScraper, *134

- Circular Saws, 277
- Engraving Tools, 79
- Gouges, 301

Patent ' Granite' - dressing Axes, 245

Pivots of Drum, Clock Balance, 286

- Saws, Machine for, ${ }^{243}$
- Wood-carving Tools, 301

Sluaving Paste, 45,250

- Soap, Salol, 300

Shears for Cutting sheet Metal, *210
--, Tempering, 310
Slueaths for Hand Camera with Changing Bag, *343
Shed, Paint for Waterproofing, 322
for Storing Cyclea, * ${ }^{*} 70$

- use as Saw Mill, ${ }^{*} 257$
with Corrugated Iron Roof, Cooling, 216
Sheep Bones, Making Apple Scoops from, *47
- Feet (see Lamb's Foot)
- Skin Ruga, Extracting Salt from, 68
Skins, Chrome Tanning, 34 --, Curing, 24
—, Currying, 24
-———, Dyeing, 169 Preservative for, 2
-——, Removing Fat from,
83

Flesh from, 24
Tawing, 24
Sheet Aluminiug, 341

- Brass, 354
- Copper, 350

Lead, 352
Lead, ${ }^{3}$ Cone, *284
house, *340
-, Hand Shears for Cutting, *210

Sheet Metal Letter Box, *291
——, Levelling and Straight oning, 106, 208

- Metal-worker's Brass, 354

Sheirer's Bottle-capping Mixture, 15
Shelf Bracket Mouldiugs, *78
Music, for Piano, "33s
Shell, Tortoise (see Tortoiseshell) Shellac (ses alao Varnish)
——, Precautions in Storing, 13

- Uaes of, 43

Sbells, Aquarium, Cleaning, 65
Grin, Growth on, 05
-, Grinding and Polishing, 258
Sheraton Easy Chair, 99

- Inlays, Shading, 172
--, staining, 182
Shields for Mounting Antlers,
Shinglea, Oak, 302
302 , Covering Roof with,
Shir, Three-decked, Tonnage of,
Ship'a Gross Tonnage, 258
- Ironwork, Corlk Paint for 58
Limber Holes, 59
- Log, Working, ${ }^{1} 159$
- Net Tonnage, 258
- Tonnáges, 258
- Under-deck,Tonnage, 258 Ventilator, Pattern for, *157
- Watertight Sliding Door, Well, Taking Soundings of, 59
Shoeing Kicking Horses, Stocks for, *43
Shoemakers' Finishing Irons, *5s - Paste, 235

Shocmaking: Attaching Bristle to Waxed Thread, *104
Shoes (see also Boot)
-, Black Canvas, Re-dyeing, 255
, Brown Leather, Darkening, 117
, $\overline{\text { for } 78}$ —, Polishing Paste , Indiarubber, Re-soling, 276
-, Kid, Staining, Brown, 169

- Patent Leather, Cracining across Toes, 50 $\xrightarrow[\text { Sno }]{257}$, Renovating, 102 White Canvas, Cleaning 233
-, Kid, Cleaning, 22
Shonting Gallery, Grotesque Target for, ${ }^{*} 97$
Shop Blinds, Lettering, 310
- Counter, *312
- Door, Electric Alarm for, *181
—, Double Seats for, *144
Fittings, Black Polish for, 183
Window, Glass Louvre Ventilator for, *34 Preventing Steam Condensing on, *34
Show (see Punch-and-Judy)
Show Bottles, Chemists', Coloured
Liquids for (see Chemist's)
Shutter, Photograplic (see Camela)
Shuttieworth's Typewriter Ink, 74
Siberian Ivory, 262
sicilian Marble, 293
Sidot's Artificial Sapphires, 76
Sienna, Burnt, 194
Sisnna, Burnt,
,- Raw, 196
Sienna Marble, 293
Sign, Swinging Glass-faced, *295 Signal Flags, 351
-Sounds, Far-reaching, 142
Signboard, Preparing, for Gild. ing, 152
Sign-painting, Pigwents used in (see Pigments)
Signs, Glass, Rosewood Graining on, 277
\qquad

Sign－writers＇Material for Sketel． ing on Glass， 148
Sign－writing， 295
silhouettes，Photographic， 78
Silicate of Zinc or Wlectric Usla－ mine， 385
Silk Fibres，＊106
－Fishing Lines，Waterproof Dressings for，64， 217
Furniture Coverings，Clean－ ing， 306
${ }_{87}$ Printing Photographs on， 57
Tapestry Covers，Cleaning， 306
－T＇assels， 274
Siils，Concrete ${ }^{*} 111$
Silver，Annealing， 352
－Blackened by Burning Gas， $4:$
Blarkening，55， 150
Bronze Powder，115， 253
－Manca Mis， 115
，Stripping Gold from， is
，Cleaning，851， 352
Coins，Cleaning， 351 Dissolved，Precipitating， 337， 350
Foil in Chinese Lacquer
Work， 37
，Frosting， 345
－，Fumigating 55
German，Gilling Liquid for Dipping， 209
from， 231 ，Reonoving Gald from，231， 273
，Gilding Liquid for Dipping， 209
－，Withont Battery， 351 Obliterating Engraved Crest on， 121
Le，Spinning，in Lathe， 14 ${ }_{30}$ Leaf，Applying，to Leather， 30
，Melting，on Open Fire， 50
，Oxidised，Restoring Lustre of， 352
，Oxidising，55， 150
，Pickling， 352
Pipe－mounte，＊29
－，Burnisher for，＊29
Polishing， 29
－Pisted Surfaces 29
－Plated Surfaces Blackened by Burning Gas， 42
Stain－Removing Ink
Stains from， 165
Plated Ware，Cleaning， 351
－Plating， 243
———Aluminium， 300
－—，Bright， 243
－Copper， 274
－－Solutions，152，243， 300
$233 \longrightarrow$ ，Deterioration of，
$20-$ ，Striking Solutions for，
243
Prinin Teapot， 264
－，Printing in， 277
，Renoving Ink Staing from， 165
－Salder，60， 63
－，Converting Ordinary Solder to， 63
275 ，Hard Soldering with，
\qquad
in ，Pickle to remove， 29
in Solntion，Preeipltating， 337， 350
Stains，Removing，from Negatives， 167
－Stick－mounts，Cleaning． after Engraving， 255
－Holding，whilst Engraving， 255
，Stripping，from Plated Ar－ ticles， 820,387

Sulplonrised，Restoring Luatre of， 352
$—$ Thermo－escetric Properties of， 90
wat
Watch－case，soldering， 363 103
Silvering（see albo Silver Plating）
－Bruss， 85

Silvering Brass Clock Dials， 340 º
－Conneir， 85
－Glass，í2， 105
－I，Table nsed in，＊72
－Leather， 30
Metal，Freneh Merhod of， 86 －on Mirror，Paint to Proteet，

$$
34
$$ 34

－———，Renovating， 41
Breaking Machine，Needles
Sewing Ma， 267 （see also
Single－stig Machine）
Guards，＂308
Sinks，Slop，Fixing， 200
Size， 48
AmericanMethod of Making 48
\qquad ，Boilers or Pans for， 48
－for Ceiling， 72
－Gilding Osk， 267
Kip Work， 228
－Materials，Liming， 48

- Raw Materials for， 48

Sizing Wall－paper，137， 291
Skeleton Clock，Fitting Main－
spring to， 145
Skeletonising Animals＇Hieads， 23， 286
Skin Rugs， 184
B8－，Extracting Salt from，
Skins，Badger，Cleaning， 244
，Bird，Preservative used in Curing， 44
Calf，Relaxing，168， 186
，Calf，Chrome Tanning， 84
inm from，Prepar
，Chrome Tanning， 34
Cleaning，19， 181
——，Dyeing，78， 164
－，Fur，Cutting， 266
and Bad， 142 Distinguishing Good
－Tor Glove Leather，78， 286 －，Goat，Chronne Tanning， 34 ，—，Curing， 89
－，

Softening， 169
，Hairing， 78
—，Paddling， 78
－，Polishing， 78
－，Rabbit，Curing，105， 285
，Tanning， 285
－，Sheep（see Slıeep）
－，Snake，Softening， 269
，Squirrel，Relaxing， 186 Staking， 78
－，Tanning，for Glove Leather， 78
－，Tiger，Cleaning， 216
Skull，Washing， 78
Skulls，Animala＇，Bleaching， 286
－，Skeletonising，23， 286
Sky Shade for Cainers Lens，＊345
Skylight，Preventing Condensed
Moisture Dropping from，＊299
Slate，Cementing Glass to， 232
－Dainp－proof Course， 259
—，Enamelled，Polishing， 297
－，
from， 207
，Enamelling，45， 207
－Mantelpiece，Enamelling， 297
－Pencil Writing，Painting Cardboard for， 58
－，Polishing， 45
－on Roof，Replacing Broken， ＊281
Slates，School， 330
－，一，Cutting， 330
Sledge，＊st
Slide，Cornet，IJoosening， 228
Valve of Steam Enginc，Lead of， 100
Slide－rest，Tool－holder for，＊191
Slides，Magie Lantern（6ee Magic Lantern）
，Microecope（вee Microseone）
liding Sathes in Railway Car－ riage Doors，＊849
Slip Joint，Plumber＇s， 247
Slitting Mill for Stones， 387
Slop Shoots on Board Troopship， ＊341
－Sinks， 200
Slopes， 262

Slot，Cutting，in Top of Turned Pillar， 65
Smoke Test for Draing， 175
Smoker＇s Companion，＊168
Smoky Chimney， 118
－Kitchen Chimney， 83
Smudge，Plumber＇s， 347
—，一 Glossy， 326
$\underset{\text { Snake }}{ },-\quad$ Skine，Softening， 269
Snips for Cutting Corrngated Iron， 229
Snow Plough，＊T2
Soap，Alumins， 8
Soap，Alumina，，，80
with， 80
－，Ammonia， 202
－，Arsenical， 217
－Bar， 25,121
－，Bu，Mould for， 25
－，Blue Mottled， 245
－，Boracic， 300
——Borax，${ }^{-}$Bon and Tunbler Rack，${ }^{*} 111$
－，Caniphorated Sulphur， 300
－，Carbolic， 300
－，Cocoanut Oil Paste， 300
——，Cocoanut Oil Paste， 300 to， 113
—，－Fat to， 159
－for Dry Shamponing， 345
－－，Grube＇s Thiosavonal， 300
——，Hard and Soft， 80
－，Ichthyol，300
－, Liquid Snlphur， 300
－，Thiosavonal， 300
－Lyes，25，113，159，202，245， 250， 255
－—，Hydrometer for， 266
－，Medicated， 300
—，——，Bases for， 300
－－，Mercurial， 300
－for Oilstone Use， 246
——，Potash Lye for， 247
－Powder， 21
－ ，Salol， 300
－，Removing，from Sponges， 344
－Saddle， 39
－：，Salol Shaving， 300
－，Sliaving， $45,250,300$
—，Soft，255， 328
－，－Boracic， 200
－，－，Bleaching Oil for， 320

- ，一，Crutching， 329
- ，一，Filling，Fleece Washing，
－，
－，－，Green， 329
－，－＿，I adigo for， 329
－，－，Lagos Oil， 329
- ，一，Liuseed Oil， 328
- ，一，Lyes for， 329
－，－，Oleine， 328
－，—，Pale Amber， 229
－，－，Potash， 329
————，Tallow Oleine， 828
－，－－，Textile， 328
Grsin， 328
—，—，Well Filled， 329
White， 255
－－，Sulphur， 300
－Tablets， 121
－，Tar， 300
－，Thiosavonal， 300
Vory s Paste， 300
Socket Joints in Steam Pipes， 11 Soda， 256
－A6lh， 255
－，Bicarbonate of， 818
－Nitrate， 16
－Stannate， 25
－Sulphate， 260
Soda－water Stain，Removing； from Polished Wood， 46
Sodilini，Castner Process of Mak． ing， 217
Soffit of Eplayed Framed－up Linings，＂ 350
Soft Soap（bee Soap，Soft）
Softening Copper， 182

Eoftering Fitches， 75
－Goat Skin， 160 ．
－Leather Machine Belt， 247
－Oilstone，215， 246
－Snake Skins， 269
Soil Pipes，Lead，Soldering
Astragals and Tarks on， 172
－，Plumber＇s， 347
－－，－－Glosby， 826
Solder for Aluminium，164， 174
－－Brazing Brass， 60
－－－Iron， 60
－－Musical Instru．
ments， 200
－Coperr， 89 Stel， 236
Fusible in Boiling Water， 272.
—，Pewterers＇，184， 276
，Renuoving Zine from，147， 263
－，Silver，60， 63
Solder ，Converting Ordinary
－
29， 275 Hald－soldering with，
29
Soldered Joints of Plated Gools R－gilding， 114
－Watch－case，Pickle for， 60
Soldering Aluıninium，164， 174
－Astragals on Lead Pipes， 172
－Britannia Metal， 276
－Brooch Catches，163， 177
－Catch on Gun Barrel， 343
－，Difference Betweeu Hard and Soft， 311
－Gold Riogs， 152
－Gun Barrels，48， 343
－，Hard（see Brazing） 48
－Jewelled Riug，325
－Pewter， 184
－Seconds Disl of Watch， 252
－Silver Pipe－monnts， 23 Spout on Copper Kettle，
－Watch Case，66， 103
Sulub．e Oil for，Finishing Cotton Guods， 251
－Prussian Blue， 41
Sointions（see sepaiate headings）
Soot Black， 250
－Oil， 250
－，Rensoving，Chemically from Chimneys， 166
Sound coming through Party Walls，Deadening， 134
，Proportioning Roome for， 98
Soundiag Tube and Stopcock Key Combined，${ }^{2} 271$
Sounds，Far－reaching Signsl， 142
Spall or Spaul Hammer for Dress ing Granite，＊238，＊282
Span Roof Fowls＇House，＊339
Spanish Mahogany，Strength of， 150
Weight of， 150
Spanish White， 329
Spar，Adamantiae， 187
Spaul or Spall Hammer for Dress－ ing Granite，$* 238,{ }^{*} 282$
Specific Gravities，Comparion of Beaumé Hydrometer Degrees with， 150

Twaddel
Hydrometer Degrees with，
68， 206
－Gravity of Aluminium， 341
－Anber， 839
————— Antimony， 351
－ 342 －Hydrochloric Acid， 342
－－Sulphuric Aeid， 243
－Zinc， 385
pecimen Woods，Fitting up Se of，${ }^{*} 271$
Speculum Manufacture and Grinding，82， 163

Spelter (see aiso Solder)

- for Brass, 60
- - Powdering, 175
—, Brazing, Brass Wire as, 311 - Musical Instruments, 200
- - Steel, 286

Sphere, Determining Contents of, 173
Spill Cutter, *156
Dpinning Copper in Lathe, 73
Spiral Carves, Projection of,

- Flute, Developing, on Cohnmn, 328
Spirit (see slso Alcohol)
-, Corn, 347
-, Methylated, 347
-, Potato, 347
- of Salts, 342
————, Commercisl, 342 of, 342
Stove for Vapour Bath, 327
- of Turpentine 66
——Varnish, 214, 219, 233
-_一, Colouring, 232
-———, Wnamnel, 221
- for Violin, is

Spirit-level, Settiog ont Water-
conrse Gradient with, *324

- Tubes, ${ }^{2} 207$

Swayed, Fixing, *207
Splayed Linings to Segmental Openiog, *350
Spoke Tongues, Fitter for, 290
Spokes (see also Wheel)
-, Carriage Wheel, Dressing 4p, *103
-. Cart Wheel, Making Tongues on, 81
, Cutting down Shoulders of, 290
Spouges, Cleaning, 344
Spooling Machine, Wield's, 301
Spont, Soldering, to Copper Kettle, 89
Sprains and Bruises, Embrocation for, 247
Spring Seat, Puttiog, in Armchair, *330
Conch, $\overline{10 \%}$, to Cushion-seat Water
r, impurities io, 327 191
\square Hair, 137
185
, - Straightening, 283
——, T, Timing, 56
, Main, Fitting Barrels of, 147
-145 , - to Skeleton Clock, 145
, Railway Wagoy, Furnace for, ${ }^{2} 58$.
-, Revolver, Tempering, 55
——, Tempering, $5 \overline{5}, 191,310$
-, Vehicle, Strength of, 100
Spruce, 315

- Fir, *315
- - , Strength of, 150

Weight of, 150
Squab, Pleated Back, 308
Square Baskets, Repairing, *309
——, Carpenter's, Testing, *50
-, Optical, *114
Squeak for Punch-and-Judy Performances, 85
Squirrel Slkins, Relaxing, 186
Stable Floor, Grooved, 320
Stables; Paving for, 235
Stain for Alabaster, 240

- Bamboo CaDes, 34
-, Black, for Wood, 164
- for Cane, 34

Dragon's Blood Making, 210

Ehony, combined with Varnish, 195
——for Edges of Brown Boots, 85
— for Elm, 123

Stain for Floors, 200
Green, for Oak Picture
Mouldings; it 7
-, Wood, 103
-, Maloganay, 210
—, - for Paskets, 315
Varnish, combined with

- and Polish Combined 38
—, Purple, for Wood, 115
- for Tonquin Canes, 34
- Towel Rail, 136
and Varnislı Combined, 195, 200
- Walnut, Removiag, 240
alnut, 163
——, Yellow, for Oak, 85
BB, ——Venetian Blínds,
Stained .Stucco Worlk, Wesh for, 88
Staining (see also Colouring and Dyeing)
Alabaster, 240
- Bamboo, 34
-

Baskets to Mahogany Colour, 315

- Billiard Balls, 318
- Bowls, 294
- Floors, 200
- Ivory Billiard Balls, 318

Kid Gloves Browa; 169

- Shoes Brown, 169
- Jeunting Car Body, 302
- Marquetry Inlays, 182
- Mateliboarding to Imitate Pine', 202
Millboard to Imitate Walnut, 197
Picture Frame Mouldings, 67, 112
Pine to Imitate Chippendale, 127
Plaster to Imitate Mahogaoy, 68
- Playing Bowls, 234
- Poplar to Initate Walnut, 269
- Stair Margin, 200

Tonquin Cances, 34
White Wood to Imitate Teak, 124
Wood to lmitate Mahogany, 68, 105
Woodcarvings, 296
Wooden Playing Bowls, 234
Stains, Remoring Binoxalate of Potash, from Clothes, 388
67, 335 Damp, from Marble, 67, 335
144, 206
, - from Engravings, 206
-, - Fruit, from Linen, 17 , - Grease, from Cloth, 315 206
, - - Furniture,
316
22
\longrightarrow —— Wall-paper,
_Ink.'(see Ink Stains,
Removing)
143 Lrun, from Marble, 143
,203 - Ironmould, from Linen,

- Mildew, from Leather,

255
216 Mulberry, from Sail,
216
II, from Stone Steys,
, - Red Ink, from Marble,
233
—, —— Rust, from Iron, 269
85
, - Salts of Lemod, 76 Clothes, 338 167
Polished Wood, 46
348 , Tar, from Black Cloth,
348

Stains, Removing Vaseline, from Brown Boots, 215
-, Weather, from Marble, $\frac{1}{70}$ Yellow, from Negatives, 170
Staircase, Balanced or Danciag Steps of, 3177

- Balusters, Finishing; Green and Bronze, 62
Painting, with Wall-paper, Painting, 32
--Margin, Staining, 200
- Wall, Paintin: 158
- Weal Developnent, *IS7
stairs, Stone, Whitinning, 321
Staking Skins in preparing Glove Leather, 78
Stalactites, Polishing, 105, 181
Stamp Photographs, * 805
Stainps, Indiarubber, Autograph Monluls for, 89
, —— Ink for, 100, 225
—,
-, Postage, Damper for, *2 6
-, -,'Gnm for, 234
Stand for 'Baby's Cradle, *41
-, Bamboo, for Camera, ${ }^{* 3} 33$
-, Bier, for Mortuary, *T3
- for Flower-pot, *246
-, Model Brickwork, for Clock, ${ }^{*} 149$
- for Telesconpe, *94
- - Togst, *344
-,' Trípod, for Plate, *344
-'for Umbrellas, *252
Standard Lamp (see Lamp)
St Wire Gange, 351
Stannate of Soda, 25
Stannous Chloride, 25
Star Agate, 353
Starch, Converting, to Sugar, 347
- Paste for Mounting Photo-
graphs, I16
Starling, Cage for * ${ }^{*} 169$
Statuary Bronze, 358
- Marble, 293
- Vein Marble, 293

Steam, Action of, in Locometives, 26

Condensing on Windows, Preventing ${ }^{*} 34$ Coosumption in Engines, 101
Cookiog, Boiler System for, 174
, "Boot" Boiler for, *174 , Heating Dryiog Rom by, 91, 208 Pipes, System, *228
Pipes, Applyiag Asbestos Paste to, 286
, Borings Cement for Jointing, 11
, Heat Insulating Compo for, 65
——, Socket Joints in, 11 25 , Superficial Surface of, , Velocity of, 105
Steanl-beading Wrod, *16
Steam-heated Baker's Oven, ${ }^{3} 7$
Steaming Baker's Oven, 217
Steaming B
Stesrin, 228
Steel, Brazing, 236
-, , Solders for, 236 Cast, Breaking Stress of, 163
for Castings, Breaking Stress of, 163
Castinge, Flatting for, 296
, Crocus for Polishing, 49, 83, 149
, Crucible Furnace for, *39
Diee, Cuttiag, 87
Drills, Hatdening, 294, 300
——, Tempering, 294
Etching, 11, 82

- - , Acids for, 11, 82
, Resists or Grounds for, 11,82

$$
-\frac{10 r, 1, \text {,Tool used in, } 11}{}
$$

Frames, Cementing Lead Lights to, 74
, Galvanising, 174
-, Gilding, it
Mild, Breakiog Stress of, 163

Steel, Oxidising, 150

- Pins, Gilding, 管
- Plates, Setting or Straighteling, 339
- Hails, Temperiog Setts for Cutting, 130
- Scraper, Cabinet-maker's, Sharpening, *134
-, Tempering, in Lioseed Oil,
310 _ Metallic Baths,

310

-Type, Cuttiag, 87

- Watch-piaions, Drilling, 237, 300

Steel-facing electrotypes, 313
Steel-plating, 313
Steel-red Crocns, 49
Stemp's Patent Wick, 171
Stencil Ink, 37, 218
——— for Glass, 273

- Metal, 218 , Red, Sack
——— Plates, Rinc, *82
Step Turner for Folding Lead, 331
Stephenson's Reversiog Gear for
Locomotive, *213
-Thermometer Screen, *71
Step-ladder, *30
Stepped Flashings for Roofs; *331
Steps, Balanced or Dancing, *177
, Stone, Removing Oil Stains from, 172
, -218, Repairiog Worn, 209, *218, 232, 237
Stereoacope, ${ }^{2}$, Wh
Stereoscopic Camera, *22
- Photographs, Monoting, *53
- Photography, 22, 105

Stereotypers' Flong, 111
Sterilising Milk, 230
Stewlians, Copper, Re-timing, 57
Stiboite an Allimony Ore, 351
Stick and Umbrella Rack, *3t6
, Walking (see Walking. stick)
Sticks, Single, Baskets or Haod Guards for, ${ }^{1} 308$
Stiffening Solutions, Damp-proof, 100
for Straw Hats, 145
Stills (see Distilling)
Stinkdamp in Coal-mines, 254
Stock Hoops, Bevelled, *252

- Knife, Umbrelia-maker's,
*164
Stockholm.Tar, 222
Stockings, Thinning, 261
Stockiogs, Dyeing, Black, 228
Stocks for Shoeing Kicking
Horses, *43
Stone, Bath, 309
-, —, Painting, 69
$59-$, Preserving Colour of, 59
——, Treated wit
59
Liquid, 59
- Beer, Saws for, 68
——, Blackening Letters on, 213
- Cap, Circular Monkled, *236
- Cement, Artificial, 221
-, Cements for, 89
-, Craigletth, 309
-Danp-proof Courses, 259
- Granite (see Granite)
-, Grave or Head (see Gravestone or Headstome)
${ }^{*}$ Lead Flashings Buirnt into, ${ }^{*} 229$
- Mantelpieces, Marbling, 179, 184
- Marbles, Making, 190
-, Painswick, Whiteniog, 321
—, Portland, Selecting, 108
-, P-, Whitening, 321
-, Preserving Colour of, 59
——, Suft, Saws for, 68
-Steps, Removing Oil Staius from, 172
-, Repairing Worn. 209,
*218, 232,237
- - , Whitening, 321
stone, Weatharing Propertias of, 309
-, York, 309
Stones, Cinc Mualds for, 24%
Stones, Cornsliun, Grinding, 72
-, C, Polishing, 72
- Curling, Composition of, 14
-, Cutting Polishing, 14
-, Cntting, 337
Polishing, 105, 181, 337
Procious (ses Gems, Diamonds, etc.)
Stome ware Jar, Cutting, 51
Stonework, Interior, Cleaning, 231
-, Repairing Damaged, 89 --, Tracery Window in,":2si
Etool, Angler's Three-legged Folding, *21
Stopcock Key and Sounding Tube, ${ }^{271}$
Stopping, Gilder's, 250
- Kinfe, *343
- Knots in Wood, 91
- for Lead-ligbt Glazing, 74 Wood, Painter's Fillings for 88
Stops, Leas (see Lens)
Stove, Black Varnish for, 313
- for Heating Lsundry Irons, * 242
- or Lamp for Vapour Bsth, 327
_ Rack for Drying Clothes, ${ }^{*} 337$
-, Register, Blower for, 114
used in Lacquering Brass, 277
Stove-enamelling Bedsteadi, 59
Stoving Enamel, 263
-——, Black, 268
Straightsning Buckled Copper, 106
- Irory Waiking-stick, 249
- Steel Plates, 339
-Thin Metal Plates, 208
Warped Fretwork, 81
Oak Panel, 201
-———Table Top, 214
Watch Hailsprings, 283
Strain, Meaning of terin, 130
Straw Baude or Ropes, 309
Twisting, 809 , Jenny for
, Twisting Hook for, 309
, Bleaching, 23
-Hats, Stiffening for, 146
———, Varnishes for, 60
--, White, Cleaning, 338
Street: Lamp Door, Catcl2 for
Fastening, ${ }^{*} 92$
Water Main, Temporary
Supply whilst Rolaying, *230
Strensth of Materials (see |separate headings)
Stretcher, Picture, 245
-, Trousers, 84
Striking Clock, Musical Box Connected to, 336
Stringing, Inlaying; in Cabinet Work, 164
Strops, Razor, Crocus for, 49
Strut, Strength of, 170
stubb's Wire Gauge, 351
Stneco, 250
-, Cement, Wash for, 327
-, Damp Preventive for, 34 Stained, Wash for, 88
Studding Edges of Uphoistered Chairs, " 210
Studio Canera, ${ }^{*} 267$
——, Photogrsphic, *274
-, ——, Blinds of, 323
-, Temporary Outdoor Photographic, ${ }^{*}$ 346
Studs in Upholatery, Gauge for Marking Position of, ${ }^{2} 210$
Stulfed Bird Casee, Initation Earth for, 173
- Fish, Mounting, 217
- White Birds, Cleaning Hcads of, 186
Stuffing Cart Cushions, 303
- Fish, 217
ing Fish, Preservative used in, 217
Stump Bench, *54
-Moulding in Brass and 1ron
Fonbuing, $36,{ }^{*} 54$
Succinic Acid in Amber, 339
Suceinite Oil of Amber, 334
Succinite (zee Amber)
Sucker-valve of Lead Pump, Re-
luoving, 196
Sugar, Alcohol matc from, 346
--, Ainount of, in Cows' Milk, 348

548
, Convering Starch to, 847

- Figures, Hollow, 26
- -, Moulds for, 147

Sulky, Trotting, 26
Sulphate of Ammonia, 187
Paris) Lime (see Plaster-ofParis)

- Sods, 260

Sulphide of Arsenic, 291

- - Lead, 352

Sulphur Sosp, 300
Sulphuretted Hydrogen, 254

- Blackening Nilver Goods,

Sulphuric Acid, 343
-, English Method of Making, 343
Castings 97 for Gummetal Castings, 97
hsusen, 343 reparing, at Nord-
-——, Specific Gravity of, 343 Making, 343
Sum Printing on Emboseed Glass, 308
Sun-hlinds for Doars, 83
Surgical lnstruments, Oilstons for, 246
Survey, Tempering, 310
Survey, Plotting, 185
Surveyor's Box Sextant, *92

- Level, Adjusting, 270,330
with, Reading Distances with, 330
- -, Setting up, 270

Wells Tescope, Cross in, 69
Wells Distancs Measurer, *294
Swedish Pitch, 222
SwinmingBath,CulouringBottom of, 204
Swing, Bahy's, *205
Swiss Screw Gauge; 81
Swords, Tempering, 310
Syenite, 242
Syenitic Granite, 242
Sympathstic Inke, 226
Syrup, Gelatine, Clarifying, 89
-, Glue, Clarifying, 89
Szerelmey Liquid, T'resting Beth Stone with, 59

Trble, Bedroom, *36 -, Billiard, Corner of, *153

- Book-rest, "114, *172
-Cloths, Dyeing, Turkey Red, 82
- Cover, Removing Ink Stains from, 165

119

, Folding, 143

- Frame worlk, *223
- for Glass silvering, *72
—, Kitchen, *171
- Lamp, Brsse, 212

Oilcioths, Cream-colourgd
Paint for, 91

- Pedestal, *120
- stand for Toast Plate, stc.,
${ }^{2} 3.4$
I'np, Bramboo, Fastening
Legs to, ${ }^{128}$
- $\frac{156}{}$, Detachable Lath lor,

Table Top, Mahogany, Removing lak stains from, 105
214 - -, Rc-polishing, 214 Warped, 214
——Trestles, *289
Tab, Writing, * 105
Tableaux, Thestrical, 54
Tables: Brassos, 3 a 4
-: B. A. Screw Threads, 81
-: Broazes, 353
-: Comparison of Besumé Hydrometer Degrees with Spocitic Gravities, 150
: Conversion of Thermometer Degrees, 304
-: Current Csrrying Capscities of Copper Wires, 81
: Gas Consumption of Burn. ers, 297

- Gunpowder Compositions, 346
: Hydrouneter Degrees, 150
: Illuminsting Power of Gss Burners, 297
-: Marbles, 292, 293
- Measurement of Timbsr, 150
-: Metallic Bsths for Temper. ing Steel, 310
: Metronoms Lengths, 19
-: Pinhole Photography, 211
:' Scantlings lor Timber Roofs, 232
-: Strength of Timber, 160
-:- Vehicle Springs, 100
-_: Swiss Ecrew Gange, 81 - : Therta-electric Properties of Melals, 90
-: Thermometer Scales, 304
-: Timber Values, 208
-: Twaddel Hydrometers, 68 : Waddel Hydrometers, 68 Water Compoeition, 327 : Weiglit of Air, 348
-: W——Timber, 150
- Whitwarth Nuts and Bolt. bcad $\varepsilon, 100$
- : Wire Ganges, 351
: Woods, Hard and Soft, 165
Tablets, Sosp, 121
Tacks, Brass, Blsckening, 354
Tallow Oleine Solt Soap, 328
Ts, for Glove Leather, 78
- Rahbit Skins, 285

Tan-colour Dye for Glove Lesther, 78
Tangs, Knife, Cementing, into Hsndles, 253
Tank, Chemical, for Magic Lantern, *61
Cylindrical, Contents of, 98, 718, 275
, Fish, Circulation of Water inl, 276
-, -, Msnagement of, 276
, 5 -gailon, Boiling Water in,
, Galvanised Iron, going Rusty, 309
, Hot-water, Noise in, 28
-, Lead-lined Wooden, 63 Measuring Liquia from,
, Rectangular, Contents of, -19
, Sheet Iron, Strength of, I16
${ }_{208}$ Underground Rainwater, '208

Waterproofing, 331
Trannic Acfd, 17
Tanning, Chrome, 34

- Rabbit Sking, 285
- Skins for Glove Leather, 78

Tap, $\begin{gathered}\text { Cold - water, Renswing }\end{gathered}$ Washer in, 283
——, Kitchen Rango, Fixing, 151
Tspering Ve, Leaking, 202
Tspering Vessele, Contents of, 140
Tapsstry Oovers, Silk, Cleaning, 306
Tapping Amber, 339
Taps, Watchwork, Hardening and Tompering, 14, 87

Tar, Benzene made from, 330

- Distillation, 152
- Forodnets, 183

Footpath, Laying, 77
, Repairing, iT?
Paint, Removiog, from Gravestones, 196

- Paving, Red, 81
--, Removing, from Cloth, 348
Soap, 300
-, Stockholm, 222
--, —, Thinning, 261
larget, Grotesque, for Shooting Gallery, ${ }^{* 97}$
Tarpaulins, Dressings, 24 (see
also Wsterproohing)
Tartaric Acid, 22
Tartar's Komniss, 348
Tartrste of Annuonium, 262
Tassels, Small Silk, ${ }^{* 274}$
Tawing Shespskins, 24
Taxinierny (see Auinal, Bird, Fibli, Horns, Skins, stc.) Preservativea used in, 44, 217
Tea Stains, Removing, from Linen, 17
- and Sugar Case, *240
- Táble Trestles, *289

Teak, Grain Filler for, 324 Polishing, to resemble od, 139
—, Staining White Woad to resemble, 124
-, Strength of, 150 Turaed, French Polishing 261
-, Weight of, 150
Teapot, Pewter, Clcaning, 278
-, Tin, Electro-silvering, 264
Teeth, Artificial, Mechanical Plates for, 240
-, Vulcanite, Plates for,
Telescope Cells, Brass, *48
—, Garden Tripad for, *04
-, Levelling, Wells' Ápparatus for, *294
——, Photographing with, *336

- of Surveyor's Level, Adjusting, 270, 330
Telescopic Beam Coross in, 69
Telescopic Beam Compass, 321
Tell-tale Mirror, 177
Tompering Augers, 310
- Axes, 310
- Cold Chisels, 310
- Setts, 130
- Cycle Cones, 198
- Dsggers, 310
- Drills for Glass, 204
- Firmer Chisels, 310
- Gun Springs, 65, 191
- Hoss, 310
- Knives, 310
- Iancets, 310
- Marble-Working Tools, 246
- Penknives, 310
- Pit Sswa, 310
- Plane Irons, 310
- Razors, 310
- Revolver Springs, 55
- Saws, 310
-- Scalpels, 310
- Scissors, 310
- Springs, 55, 191, 310
- Steel, Colours in, 310
- - in Linseed Oil, 310
- - , Metallic Baths lfor, 310
-Surgical lnstruments, 310
-Swords, 310
- Tups, 14, S7
- Watch Spriugs, 310

Tonnis Rackete, Bending Wiod for, ${ }^{*} 167$
Temon Saw, Fastening, to Toolchest Lid, *137
Tenoned Joints, ${ }^{*} 196$
I'cnons for Entrance Gates, "124
Tension, 130
Tent Pols, Riffe and Belt Racks' for, *260
Terra-cotta, Red, Clays for Msking, 87

- Tiles, Glaze for, 19

Test, Pusumatic $\frac{\text { Glazing, } 18}{}$
Test, Pneumatic, for Drains, 175

Test, Smoke, for Drains, 175
Tester Head to Bedstead, *198
Tasting Amber, 339

- Brougham Under-carriage, *79
——Carpenter's Square, *50
- Clock Hairspring, 298
- ——Pallets, 242
- Crimson Lake, 305
- Drains, 175, 265
—— Gas Pipes and Fittings, 111
——Gold, 124
- Gravel for Gold, 77
- Hardness of Lens, 270
- Negatives for Hypo, 306
-. Paint for Drying Quadities, 259
——Prints for Hypos 24
-- ———Permanence, *275
—.Try-square, ${ }^{* 50}$
- Watcli Depth, *200
——Water, 256 256
Tetrachloride of Selenium, 20
Textile Soft Soap, 328
Textiloid, 98
Theatre Scenery, Fireproofing, 53
Theatrical Bald Wig, 19, 307
-Grease Paint (see Grease Paint)
-Tableaux, 54
Theatricals, Ainateur, Ghost lllusion for, 54
Theodolite Leg Adjustment, 270 Thermo-electric Piles, *90
- Properties of Metals, 90

Thermometer, Centigrade or Celsius, 304,305
-, Clínical, 126

- Degrees, Conversion of, 304, 305
—, Falhrenheit, 304, 305
-, Rérumur, 304, 306
-, Re-blackening Scales of, 37
Thining Screen, Stephenson's, 71
Thinning Plumber's Soil or Smudge, 347
-Stockholto Tar, 261
Thiosavonal Soap, 300
Thread, Waxed, Putting Bristle on, ${ }^{104}$
Thrush, Cage for, *169
Ticket Ink, Dead Black Waterproof, 187
Thides, Power from, 141
Tiger Skin, Cleaning, 216
Tile Floor, Cleauing, 152
- Hearth, 302
-.- Removable, *244
- Hearths, Curbs for, *244

Til Mosaic Floor, Cleaning, 182
Tiles, Cutting, 19, 244, 302

- for Hearths, 244
- T, Terra-cotta, Glaze for, 18
-, —, Glazing, 13
Tinnber (see also Wood)
——Building, Sham, *142
-, Creosoted, Painting, 154
-, Cutting up, ${ }^{2} 15$
-, Measuremeot of, 53,150
-, Petersburg Standard of, 156
- Roof'e, Scantlinge for, 232
-, Round, Cubing, 53
-, Standiog, Estimating Value of, 208
-, Strength of, 150, *208
--, Weight of, 150
Timber-framed Buildings, 128
Tin Crystals, 25
——, Deoxidising, 320
- Foil in Chinese Lacquer Work, 37
- Fixing to Leather, 30
-, Gold Lacquer for, 268
-' Oxide, 149
-., Retining, 155°
-, Removing Zinc from, 263
- Teapot, Silver-plating, 264
-, Thermo-electric Propertiea of, 90
Tinmen's Workshop, *34
Tinning Brass, 140
- Copper Moulds, 165
- Copper 62, 140

Vessels, 57

- lron Wire, 214, 227
- Sheet Copper, 103

Tinning Vessels, Rubber used u2, 57
Tin-plate, Cutting, 60
-, Hollowing, 71
\square ——, Blocks for, 71
Let, Hammers for, 71
Letter-box, *291
, Polishing, 67

- Saucepans, 146

Tissue, Carbon, 136, 270
Toast Stand, Tripod, ${ }^{3} 34$
Tobaceo Pipe, Cementing Amber
Mouth piece of, 156

Burnisher for, ${ }^{2} 29$ Polishing, 29 Sold cring, 29
—— Pipes, Glazing, 28, 86 - Rack for, 163

Toilet Crean for Chapped Hands, 244
Tombac Brass, 354
Tonnage, Co-efficient, of Vessel, 258

- for Three-decked Ship, 258
— of Vessel, 258
————, Gross, 258
- - -- Net Register, 268
- - -, Under Deck, 258

Tonquin Canes, Staining, 34
Tool Chest, Coach Maker's, *60

- Cupboard, Carpenter's, *317 for Electrical Engineer, *35
- for Folding Lead, 331
- Haudles, Polishing, 227
- Holder for Slide-rest, *101

Lid, Fastening Tenon Saw to, *137
Tools (see also reapective names)
-, Alabaster-working, 240
-, Ebonite-working, 806
——for Fingraving Letters, 79
——, Granite-working, ${ }^{*} 205, * 238$, *245, *282
-, Marble - working, Tempering, 246
——. Vulcanite-working, 306
, Wood-carving, Sharpening,
Top, French Whipping, 286
Topaz, Artificial, 76
-, Cutting and Polishiog, 337
Topmast of Flagstaff, Fixing, to Mainmast, 260
Tortoise, Preserving Shell of, 316
Tortoiseshell, 250
-, Cements for, 260
-Combs, 250
———, Knobs on, 250
—, Finishing, 250
—, Imitation, 168
-—, Polishing, 250
-—, Welding, 250
Toughening Paper, 81
Tunrnette or Diamond Compass, 344
Towel Rail, Staining, 136
Toys, Lead, Castings for, 18
-, Sugar, 26
-, -, Moulds for, 147
Tracery Window, *287
Trachyte an Aluminium Compound, 341
Tracing Paper, Increasing Transparency of, 264
Traminel Compassea, *32

- Heads nada from Dunlop Tyre Valves, 218
Tranefer Paper for Carbon Procesa, 330
- -, Lithographic, 109

Transferring Drawings to Linen, 119

- Printed Pictures Photographically, 302
Transfers, Fixing, to Cycles, 225 -, -, - Glass, 301
-, -, - - Mastal, 301
$\square,=\square, \square$ Worcelain, 301
-, Marquetry, 39
—, Pottery, 38
-, Varnish for Fixing, 225
Transparency of Tracing Paper,
Increasing, 264

Transpareat Cements for Glass and China, 61, 232
Trap, Pony, *16, *96
Traveller's Sample Case, *63
Tray, Washing, *206
Trees, Estimating Value of, 203 Trellis Work, *145
Trestle, Builder's, *314
Trestles for Tea-tables, *2S9 Triad Pictures, *75
Trinitrocellulose or Collodion
Cotton, 249
-, Solvents for, 249
Tripod Camera Stand, *94

- Plate Stanc, *344

Troopship, Plumbing Work Aboard, "341
Troouship's Latrines, *341
——Slop Shoots, "341
Trotting Snlky, *318
Trousers, Cleaning, 164
—— Press, ${ }^{*} 154$

- Stretcher, ${ }^{3} 4$

Tront Fishing, Paste for, 198
-, Rods for, 303
Trunks, Leather, Black Paint for, 38
Truer Tin White Paint for, 38
uss, King-post, Hipped End of, *328
Trusses, Gelatine for Casting, 189 Tiy-square, Testing, *50
Tub or Trap for 13 -hands Pony, *16 (see also Cart)
Tube Washing, *206
Tube Chimes, 148

- Drill for Glass, 294
- Microscope Cells, 73
- Wall through Chalk, 87

Tubes, Brass, Bending, 14, 276, 316
${ }^{\mathrm{j}}-\mathrm{F}$, Determining Thickness of, 254
*286, Machine for Bending, 68
Floating, 5 S

58

, Indiarubber, 136
, Pasteboard, Umbralla Stand madie from, *252
—, Spirit-level, *207
Tuck Pointing Brickwork, *115, -127
Tufting Upholstered Chair Backs, 244
Tumbler Rack and Soap Box, *111
Tuning Piano, 85
Tunnel, Railway, Boring, 94
Turbine, Girard, 99 ,
-, Jonval, 93
Turkey Oilstones, 246
Turkish Lebau, Yaourt, or Koumiss, 348
Turmeric Paper, 246
Turned Pillar, Cutting Slot in,
\qquad
-Teak, French Polishing, 261
——Wood Case for Clock, *52 - ——, Polish for, 29, 227 ———, Polishing,'29
Turning Ebonite, 306

- Ebony, 27
——Engine Crank-shaft, *102 Metals, Speed for, 109
- Vulcanite, 306

Turns, Watchmaker*s, 42, 262
Turn-table for Polishing Diamonds, 293
Turpentine, Crude, 66
-, Fat Oil of, 66
—, Oil of, 66
\longrightarrow Spirit of, 66
Turret Clock, Small, 222
Tuyère Bend Pattern, *284
Twaddel Hydrometer, 68, 266 \rightarrow Degrees, Converting, to Specific Gravities, 68, 266
Tweezers for Holding linsects, 72
Twisted Column, Diminiahed, 99
Twisting Straw Bands, 309

Twisting Straw Bands, Hook for, *309

Type, steel, Cutting, 87
Typewriter Ink, 74

- —, Black, 74
- -, Copying, 74
- - , Glycerinc in, 74
———, Printing lnk as, 74
\longrightarrow ——, Higgin's, 74
-——, Shnttleworth's, 74:
——, Violet, 74
——Par, Re-inking, 97
Tyre Ribbons, Re-inking, 307
Tyre, Single-tulue, Repairing, 198
Valve, Dunlop, Trainmel
Heads made from, *218
Tyring Cart Wheels, 347

\mathbf{U}

Ultramarine, 195
Umber, Burnt, 194
Umbrella Covers, Cutting out, *82

- Handles, Fixing, 43
- Maker's Stock Knife, *164
- Rack, *346

Stand of Pasteboard Tube, * 252

Under Deck Tonnage of Vessel, 208
Underground Water-tank, Waterproofing, 331
Underhand Joint, Wiping, *s8
Underpinning Chimuey Breast, *260
Unicuın Camera-shutter, *79
United States Gumpowder, 346
Universal Cements, 250
Upholstered Chair Backs, But toning, 244

- - - Cl, Tufting, 244

Upholsterer's Studs, Gauge fo
marking Position of, *210
Upholstering Chair Seat, 204

- Fender Stool, *264

Upholstery, Blind-stitch used in 207
: Gushion for Gig, 314
—, Leather, Cleaning, 209
-, T, Renovating, 207, 209
-: Pleated Back Squab for Carriage, 803
—, Pompoms used in, 36
——, Velvet, Renovating, 191
Utensile, Tinning (see Tínning)

Valencia Waistcoat, Dry-cleaning, 90, 124
Valentine's Sulphuric Acid Process, 343
Valley Rafters, Fixing, *209
Valve, Carliss, for Engines, 103 , Safety, on Hot-water Apparatus, 190 Boiler, 240 Range "Boot" , -, Ring Waights on, 285 , Slide, of Steam Engine, 100
Valves, Danlop Tyre, Trammel Heads made from, *218
Vad (see also Cart, Carriage; etc.)
-Sheets, Waterproofing, 139 (sea also Waterproofing) , Varnishing, in Natural Wood, 17, 121

Vanadium, 89

Vandyke Brown, 195
Vapour Bath, Stove for, 327
Varniah, Amber, 323
-, Black, 50, 314
-'Blooming, 317
-, Celluloid, 249

- for Chairs, 131, 259

Colouring, 50, 259

Varnish, Combined Ebony Stala and, 195 196
for Cork Frame, 200

- Elm 123
- - Fire Grates, 319

183 Fish Hook Bindings, 130
130

- Transfers, 225
- Gumstock, 77

Kitcheu Chains, 131, 269

- Luminons Paint, 26 Mail Gart, 325
for Mangle Rollers,
, Printers', is
-, Removing, from Boots, 22 163
-, O, Oak Carving, 38 Remov
ing, 163
, Selatte's, for Making Luminous Paint, 263, Spipirit, 214, 219, 233
-, -, Colouring, 50, 232 Resin for Making, 101 for Violin, 18
- for Stoves, 313
- for Straw Hats, 60
- Towel Rail, 136
- Turniag White, 317
, for Venetian Blinds, Green, 241
- for Wall Papar, 291
arnish Walnut Gnustack, 77
vating, 251
- Map, Cleaning, 32
— Smiti. \&. Dulling, 260
Varaishins curriage, 17
- 1roawork, 17
- Celestial Globe, 251

Dog Cart, 269

- Farın Waggon, 308
- Gunstock, 77
- Jaunting Car, 302
- Kitelen Chairs, 259
- Latern Slides, Hot Box for, 26
Mail Cart, 925
Oil Paintings, 142, 160
Papered Ceiliag, 291
Whall, 291
Plotographic Negativea, 46 Hot Box for, ${ }^{2} 26$
- Peny Cart, 176
- Railway Wagon, 12
- Transfers, 225
- Violia, 18, 23
- Waggon, 308

Vase, Grazy Chinawork, 294
Vase, Garden, in Cement, 228
Vaselina, 211
-, Imitation, 211

- for Oilstone, 215

Spots, Reinoviag, from
Brown Boots, 215

- ia Typewriter lnka, 74

Vegatable Black, 106
Velicle (see also uader names of vehicles)

- Axles, Case-hardening, 60
————, Forging, 66
- Spriaga, Strength of, 100

Vain Marble, 293
Vellum, Dreparing, from Calf Skia,
Velvet
344
Chair-beat, Renovating, 191
Velvet-pile Table Cover, Clean. ing, 119
Vencer, Panelling with, *128
-, Remo ving, from Forniture, -227
Veneered Furaiturc, Renovatiag, 227
Venetian Blluds, Colouring, 241

- - Paintiag, $1 \mathbf{4 2}, 241$
-, llemoving Old Paint from, 172

Yanctian Blinds, Varnish Green for, 241

- Red, Yellow Stain for, 00

Ventilation, 28

- of Dark Room, *181

Vontilator, Glass Louvre, for Window, *84
—, Ship's, Pattern inr, *157
Verda Aátique Marble, 293

- di Levanto Marble, 293 Pegli Narbla, 293
Vermilios, 105
Vermilionette, 300
Verona Red Marble, 293
Ver't d'Arriege Marble, 203
- Isahelle Marble, 293
- Mauria Marble, 293
- Moulins Marble, 293

Vertical Boiler Grate Area, 14

- Spiadle Mouldiag Maehine, *270
Vessel (see Ship)
Vessel, Tapering, Contents of, 140
Vestibula Screan *101
Vice, lmproved Saw, *60
Vice, lmproved Saw, $* 60$
Victoria Red Marble, 293
Victoria Uader-carriage, Greasa 1or, 119
Vienna'Regulator Striking Clock, *123
View Finder for Camera, 86, *] 48 Vighetting Photographs, *14, 44, 109
Vinegar, 2665
Violat Copying Ink, 220
- Liqnid for Chemists' Show Buttles, 13
- Luminous Paint, 203
- Typewriter Ink, 74
_- Varnisli for Straw Hsts, 60
Yiolio Bow, Re-hairing, *214
-', Filling in, 18, 23
-, lulaying Purtiog on, "308
-, Re-vamishing, 18
, Spirit Varnish for, 18
Varnishing, 18, 23
Vitríol (see Sulphuric Acid)
Voiry's Pasta Scap, 300
Vulcanised Rubuer, Utilising, 121
Vuleanite or Ehonita (see also 1ndiarubber)
-, 169
-,' Boring, 306
-, Cemants for, 236
Calouring, 168
Catting, with Cylindrical Saw, 306
-Plates for Artificial Teeth, 165
Polishing, 306
,' ''oola for Working, 306
-, Turning, 306

Waggoa, Brickinaker'a Side-tipring, 354
Covers, Waterproofing, 199
, Farm, Painting, 308
-, Varnishing, 308
Railway, Brake Block for, "303
, Draw-hnok for, *297
Painting, 12
, Varnishing, 12
——'Springe, Furaace for, *69
—— Wheels, Setting Out, ${ }^{*} 178$
Waggonette Head, *279
Wainscot Oak, ${ }^{2} 24$
Waistcoat, Valencia, Dry-cleaning, 90,124
Walking-stick, Ebony, Polishing,' 100
-Handles, Fising, 43
-, lvory, Straightening, 249 Mounts, Holding, whillst Engraving, 255

- Rack, Rinoceros Hide, 247

Wall, Battar of, 262
Concrete, formed under
Water, 200
-, Curved, Sctting out, "217

Wall, Gurved Wing, Projection for, "264

- Damp in Basement of House, 218
-, -, Remedies for, 318
-, Damp-procting, 262
--, Hanging Anaglypta on, 148
-148 Lincruala-Walton on,
148
-, Painted, Drying Pately, 183
Prier, Removing Grease Staine from, 22
———,Sizing, 157, 291
——, Varnisll for, 291
Varnishing, 137, 291
- Party, Deadening' Sound
coming through, 134
——, Plastar, Cracks in, 69
- Racks White, 254
- Racks (sas Rauk)
-, Retaining, Prasaure on, 166
-, , for Sunk Readway,
—, Roughcasting, 115
-, Rubble, Cement Reoderiag on, 148
-, Staircare, Paiating, 32, 158
Wa, Stripping Paper from, 20
Walnut Graining, 142, 353
- Guastock, Varmish for, 77
- Stain for Light Wood, 163
-, Staining Peper to resamble, 269
-, Treating Millboard to re, Bemble, 197
Wood Carvings, Finishiog, 296
Walrus Ivory, 262
Warc, Biscuit, Uaderglaze Colours for, 158
Warner Wheels, 30
Waruing Buildings (see Heating)
Warped Fretwork, Straighteaing ${ }_{81}$
${ }^{81}$ Oak Panel, Straightening, 201
_Trable Top, Straighteaing, 214
Wash, Hair, 239
-, Portland Cement, 153
- for Stucco, 88, 327

Washer for Phatographic Priats, 164
Washers for Callipara, 331
, Reoewing, ia Cold-water Talls, 283
Waah-haod Basio, Cemeatiag Broken, 232
Washhousas on Troopahip, *34I
Washing (see also Cleaning)

- Crocess, 49
- Flaeee, Soft Soap for, 328
- Plotographic P.O.P., 220
- Skins in making Glove Leather, 78
Waabing-copper, Flash-flue ${ }_{2}$ *283
\bar{W}, Wheel-inc,283
Washing-eoda, 255
Waahing-tray, *206
Washita Oilstooe, 246
Washlaather Gloves, Cleaning, 811
Watch, Adjusting, in Poaitions, 62
- Balance, Poiaing, 302
- Bulaace-staff, Putting New

Pivot in, 258

- Barrel Arbour, Fítting, 332 - Bonchona, 80
-, Bringing, to lime, 153
-, Cannou Pinion, Removing, 60
- Case, Engraving on, 140 - -, Erasing Initiale from, 140

Hard Soldering, 66, 103 ———, Soldered, Pickle for, 66 —, Cleaoing, 99
-Cylinder Pivote, Fixing, 152 - Plugs, Punch Lor removing, 152
, Demagnctising, 128

- Depth, Teating, *200
- Tool, 22
- Dials, Copper, 272
———,——Brazing, 272
- -, -, Enamelliug, 272

Seconda Dial of, 272

Watch Diala, Coppar, Whit Enamel for, 27

- Drawing Piver, Gleaning, 353
-, Drawing Pivot Eolaia, 134
, Englisli Fneee Lever, Correcting Earrel of, 346
, - Lever, Olcaning, 99

- Fuaee Chain, Mendiaz, 260 Gaining Time, Remedy for 23
-, Ganeva, Fixiag Loose Endatone in, 274
, ——, Putting in Beat, 89
,, , Repairing Jewel Hola
in, 59 , Setting Jewel Hole ia 251
, Geneva Lever, Taking Apart, 118
Glasses, 344
-, Cheves, 344
Flettage, 344
- Pointillage, 544

Hairsprings, 137
——, Fitting, 63, 185
Timing, 56
Keyless, Removing Cannon Pinion from, 60
Eever Escaroment. Depthing, 173
, Fitting Roller and Pin in, 334
Chain of, 260 Mending Fusee - Settin

Losing Tuing in Beat, 185
Losing Tine when Carried in
Pocket, 115
147
-, Winder for, 271

Making "Long Ares," 56
"Short Al'cs," 56 Oiling, 117
Perpetual Calendar, *44
Pio, Fitting, 334
Pinioos, Drilling, 237, 300
—— Pivot Holes, Repairing, 80
Pivote, Polishing, 332
Plates, Cleaning, 237, 289
-, Gilding, 289
, Regulating, 163
——, Regulating, 163
Rollar, Fitting; 334
Screw Threads, Taps for, 14, 87

- Seconds Dial, Solderiag in,

272

- Springa, Tempering, 310
- Staft, Drilling, *42
- Stolyping in One Position Only, 68
-, laking a nart, 90, 119
Watch-case G4ivanometer, *66
Watches, "Eggs of Nuremberg," $3: 4$
Watchmakers' Eye Glasses, 224 Turns, 42, 262
Water, 327
——, Aerrated, Machine for, *329
, Boiling Point of, 336
-, in Tank, \#200
Butt, Converting Paraffin
Barrel to, 54
- ——Disinfeeting, 201
- Discharge through Pipee, 31

69 - , kornalle for;
——, Distilling, * 108
, Drinking, 327
, - , 1mpurities in, 327
——Filter, 343
-. Flow of, over Weir, 82

- Flowiag throngi pipe, Hy-
draulic Mean Depth of, 68
- in Gas-mater, Keeping, from

Freezing, 111
—, Harduess of, 102

- in Hot-water Tank Boillng, 28
- Lerkage, instrument for Lucating, *271

Maing, Protectiag, from
Froat, 96 Irom

1

。
-, Drinking, 32
\square 2

$$
a
$$

Water Mains, Temporary Supply whilst Relaying, *230
-, Nessler'a Reagent for Testing, 256
--Pipe, Hydraulic Gradient of, *268

- Pipes, Lead, Casting, 202
- Preasure, 20
——, Pulsometer for Raising, *74
- Pump, *331
-, River, 327
-, Sevage-polluted, 32 ?
-, Spring, 327
- Supply, Mu
-Tank Contents (see Tanka)
of, 116 , Sheet lien, Streugth
, Underground, Water-
-Taps, Renewing Washers in, 283
——, Testing, for Impurities, 256
- Turbine, Girard, 99
- Up, Jonval, 48
-, Upland Surface, 327
-, Well, 327
Water-closet Basins, Cleaning, 50
Flushing Cisterns, Repairiog, 277°
Watcr-colours, 20
Watercourg, 262
Watercourse Gradient, Settivg out, 苏 324
Watertall, Power of, 141
Water-glass Cement for Glaas, 232
Water-motor, Reciprocating, *298 , Regulator for, *342
-, Small-power, *39
Water-motors, Efficiencies of, 132
Waterproef Black Ticket lok, 137 Wemiting luk, 212
- Cements, 24
\qquad
232
- Cover for Boat, 169
-. Glue, 241
- Harness Composition, 161, 307
- Paste for Labels, 235

Waterpronting Coal Bdgs, 199

- Fabrics, 80
——, Alnmina Soap for, 80
in Colenra, 80
- Hime and Node's Precess for, 80
- 80 Holfert's Process fer, 80
-- with Alnmina Soap, 80 112, 139, 199
- Fin- Rubber, 30
- Finhing Lines, 64, 217
Grey Millheards, 111
- Hatch Covers, 199
-, Materials for, 100
-Overalls, 69, 112
- Shed, Paint for, 322
- Silk Lines, 64, 217
- Undérgroudd Tank, 331 Vain Sheets, 189
Watertight Sliding Door, * $\uparrow 7$
Waulsort Marble, 293
Wax, Benzine, 296
- CandIes, 95
- Filling for Engraved Plates, 288
for Fish Hook Bindings, 183
--, Modelling, 317
- Moulde, Niokelling, 51

196

, Sealing (see Sealing Wax)
Waxed Thread, Putting Bristle on, *104
Waxea for Bottle Capping, 216
Waxing Bottle Corks 275 ,
Waxing Bottle Corks, 275
Wax-polishing Wued-carvings, 296
W.C. Basins, Cleaning, 50

Flusling Cisterns, Reyairing, ${ }^{277}$
Weather-stained Marble, Bleaching, 67, 335
Weighing Air, 348
Weighing-machine, Coal, Scoop for, *342

Weight of Air, 348
-——Anerjcan Red Pine, 150

- - Ash 150
- - Baltic Oak, 150
- - Beech, 150
- Copper Wire, 5
- —— Elim, 150
-—— Euglish Oak, 150
- Honduras Mahogany,

150

- - Iron Wire, 56

Kanri Pine, 150
-— Larch, 150

- - Lime, 89
- - Mahogany, 150
- - Northern Pine, 150
- - Oak, 150
-——Pitel Pine, 150
- - Sand, 89
- - Spanish Mahogany, 150
- - Spruce Fir, 150
———Teak, 150
- - White Deal, 315
-——— Yeliow Deal, 315
- Pine, 315

Weights, Ring, on Safety Valve, 285
Weir, Flew of Water over, 82
Weisbach's Formula for Water
Discharge of Pipe, 69
Welding Cast Steel, 87
WeI] Tortoiseshell, 250
Well, Ship's, Taking Soundings 0f, 59

- Staircase, Develepment of, *187
Tube, sunk through Chalk, 87
We Water, Impurities in, 327
Wells' System er Measuring Distances, *294
Welsbach Burners, 22
-, Gas Consumption by, 297
Wet-plate ${ }^{-}$Mantle, 51 (see Photography)
Whale lvory, 262
Wheel, Band - saw, Attaching Leather to, *262
for Bevelling Glass, *314
-, Cart, Lining Out, 91
,, , Measuriog Wheel for, *347
-, -, Tyring, $347{ }^{\circ}$
-, Emery, Polishing Brass
Tubes on, 58
- Felloes, Pattern for, 290
-. - Putting on *31 200
—— Hoops, Bevelled, *252
, Machine for withdrawing Axle Boxes from, *126
- Navea, Horse fer Mortising, ${ }^{*} 135$
- for Polishing Glass, *314
- Speke Tongues, Fitter for, - 290

Spokes, Cutting down Shoulders of, 290

- -, Dressing up, *103
--, Makiag Tongues an,
81
-, Waggon, Setting oirt, *178
-, Warner, 30
- of Water-100tor, *39

Wheelbarrow, *176, *216

- Frame, Setting out, *32

Wheel-flue Washing Copper, 253
Whip Stock, Making, frem
Lamb's Foot, 318
Whip-top, French, *236
Whisky, Amount of Alcohol in, 347
White Distilling, *204
White Acid for Glass Enbosaing, 107

- Brasa, 354

Backskin Boots, Cleaning, 224
Canvas Shees, Cleaning, 233 - Cement Floor, 131
--, Chinese, or Zinc White, 195
-Coating for Model Boats, 97

- Deal, 315
- Enamel, Ball Clay ior, 29

White Enamel, Preventing Knot showing threugh, 152 (or Stovilig, Whals, 272
-, Flake, 194

- French Polish, 13, 314

Glazes, 15, 29

- Grease Paint, 343
- Greund for Drawing Board, 91
- Ink, 229

Kid Shoes, Cleaning, 22

- Lead, 195
- on Oilstones, 246
- Leghorn Hats, Cleaning, 838
- Luminous Paint, 263
- Marble, Cement for, 322
- -, Cleaning, 160
--, Removing Ink Stains from, 233

Window, Shop, Glass Louvra Ventilator for, *34

-, Preventing

 cleasing ml , ${ }^{3} 34$- Sills in Concrete, ${ }^{*} 111$
, Tracary, in Decorated Style, *287
Wiadsor Chair converted to Barber's Chair, *98 *345
Wine, Amount of Alcohol in, 347
Wing Walk, Curved, Projection of, *254
Wiping Joints on Copper Pipes, *62
- Plumber's Underhand Joint, *S8
Wire Articles, Galvanising, 221
——Blind, Fiame for, *64
- - Gilding, 214
- -, Gcld Lettering on, 175

Brass, Painting, 214, 308
, Brass, Bending, 316
-, -, as Spelter, 311

- in Cable, Weiglit of, 56
—, Cleaninir, 214, 22,7
, Copper, Current-carrying Capacity of, 81
, - Weight of, p ह
- Gauge, Birminghann, 351 351 , Browue and Sharpe, , English Legal Standard, 251
—, London or Old English, 351
———, Roebling, 351
- Stubbs' 351
- Gauze Blind, Paintmg, 305
- Tepairing, 308
-, Iron, Tinning, 214. 227
-, We, Weight of, 56
- Name Brooclies, etc., 69 Rests used in Wet-plate
- Plotography, *100
——, Sectional Area of, 56
-, Rotted Brass, 283
Wires, Electric, Jointing, 9
Wood (aee also respective names of woods)
Ball, Cutting, Inside another Ball, *325
Balls, Hollow, *325
—— Bedstead, ${ }^{* 273}$
——, Child's or Doll'a, *70
, Bending, hy'Steam, *167
for Boat Making, 81
Box, Oval Top, 266
Carving Knife, ${ }^{2} 325$
Tools, Sharpening, 301
- Carvings, Snoething, 290
——, Staining, 206
- Ce, Varnishing, 296
-, Cementing Glass to, 232
Chuck made in Sections, *14 , Coral, 247
,' Darkeaing Colour of, 237
, Dry Rot in, 26
End-grain, French Polish ing, 11I
, Fireproofing, 35
-' for Fishing Roda, 303
, Fixing Transfers on, 39, 225, 301
, Grain Fillers fer, 18, 23, 40, 91, 324
Mill fur Polishing Stones, 337
——, Nails Rusting in, 76
Painting (see Paint and Painting)
- Panelling with Veneers, *128
- Pill-hoxes, Grease-proofing, 334
- Playing Bowls. C'eaning, 234 , Re-staining, 234
-———, Re-staing ${ }^{\text {Staining, } 234}$
Priniing, before Painting. 337
, Red Sandal, 247
, Renoving S, 247
165, 203
- Paint from, 237
- - Rust fiom, 7_{6}
———— Somsta-water Stains

Practical

Men.

Practical

Cycle

Parts.

Successful

Cycles.

ARE YOU THINKING OF BUILDING YOUR OWN CYCLE?

If so, too much attention cannot be given to the parts which you will be using. First of all-

Reliable material in the parts, then an up=to-date design ; don't waste your time and energy upon parts which when built up look anyhow; simplicity of as= sembling and absolute in= terchangeability of parts are also important.

parts your task will be easy and the result gratifying.

> A WARNING.-There is so much old stock on the market, and so many job lines to clear at any price, that buyers are cautioned to see that their cycle parts are stamped thus:

Cbe Cycle Components ITRanufacturing $\mathbf{C o}^{\text {o., }}$ Lad., COMPONENTSVILLE, BIRMINGHAM.

Lists may be had from and the parts seen at--

цONDON: $15 \& 16$, Giltspur St., Holborn - Viaduct.

MANCHESTER: 10, St. Mary's Street, Deansgate.

BIRMINGHAM ; 9, Dale End.
WOLVERHAMPTON : Lichfield Chambers, Princes Square.
NOTRINGHAM : Mount Street. And at the establishments of cycle makers generally throughout the United Kingdom.

The following opinions are but a small selection from the many hundreds sent in by "WORK" readers received by the publishers.
 Those who are unacquainted with "WORK" should order their Newsagent to supply the Journal regularly. It is published every Friday, price One Penny.

"WORK" ADDS IOS, WEEKLY TO A LABOURER'S EARNINGS.

Sir, - I have been earning about 10s. per week in spare time through reading Work, and bave distributed over 300 copies of the paper, and I think that this is a good way to advertise and increase the sale of golden Work, my best friend, to which I wish every success,-J. P. (Tilbury).
HOW CYCLES ARE BULIT FROM INSTRUCTIONS IN "WORE."
SIr,-Your paper is very valuable to anybody that reads it . The most noticeable to all my frlends, and a good many people in-Edinburgh, was a cycle that I made from the articles on "How to Build an Up-to-date Cycle." I made it right from the black tubes, and it cost me a Iittle over 89 . It was a beauty; at that time I could not have purchased one at f14 to equal it. I learnt a great deal about cycle construction whlle studying the articles in Work, and was puzzled a little about bullding the wheels and trueing the same, bnt I stuck in and managed; now I can build wheels quite easy, as I have got the right tangent and the system of easy, as ing the wheels. I built this machine in the middle of the season of 1897 , and rode it all that season, and what a pleasure it was to ride it after riding on a cheap machine. After nine months I sold it for $£ 11$, thns making about $£ 2$ profit and the pleasure I got from 1 . -S. B. (Leith, N.B.).

A FACTORI HAND EARNS POUNDS AFTER WORKING

 TWELVE HOURS A DAY.SIr,-I have been a reader of your valnable paper for abont two years only, but I must say i have both benefited and improved myself greatly by it. I am at work In a factory from six to six, and \bar{I} can honestly say that from the time I leave off to ten o'clock at nlght I can earn as much as I do all day in the factory. When I got Work at first I started carpentry, and made a good many things, some of which I sold and others I made for the good of my own house. There is one thing I am very proud of: it is a cabinet and glass case for which I was offered £2.-J. W. (Gilford, Ireland).
WHAT "WORK" HAS DONE FOR A FARM LABOURER
Sir,-I may say that before 1 took in Work I knew nothing about farm labouring, and belng in Scarborough one night I noticed a placard in front of a shop which said sometbing about Work, so I went inside and asked for a pennyworth, and when I looked inside I thought to myself this is a penny well spent, and from that day to this I have always had a penny to spend on Worn. I used to think it a misfortune that I had not been apprenticed to some trade, but after I read Work I fonnd it offered another chance, so I started in right ornest, and by the help of my best frlend Work I have gone forward ever since.-J. T. (Scarborough).
"WORK" INSTRUCTS A CLERK HOW TO EARN 5s. A DAY WHEN WORK IS SLACK.
Sir,-My oconpation is cierk in a coal merchant's office, but in the summer when work is slack I have often earned 5 s. a day writing signs. Our waggons are often out of repair, and one or two I have completely re-sheeted. Last summer, in particular, I entirely bullt a cart which weighs 14 cwt., and the summer before I made a wheelbarrow for the yard. In the shape of lighter work, I have made and sold for a good price, cores of fancy bells, and also photographic cameras, scores of fancy bells, and also photograpnic cameras, establishment are home-made, and also painted by myself. I think it would be easier to say what I have not made rather than to enumerate the things that I have made. Taking the year all round, I can easily earn about $£ 24$ from articles made in my spare time. All this must certainly be attributed to a careful study of your paper. -A. W. C. (Preston).

HOW TO MAKE AND MEND EOOTS AND SHOES LEARNED FROMI "WORK."

Sir,-As a constant reader of Work I receive great benefit from its information, the most definite being in shoe mending and making, which I bave learned by carefully watching the different notes and by studying your model handbook on that subject. I have learnt not only how to repair both riveted and sewn boots, but how to make them, and have sncceeded in making throughout two pairs of boots, even to cutting out and making the uppers. I made, for 7s., these two pairs of boots, which would have cost 18s. or 19s. to buy, while the wearing is proof of their being better made than factory shoes,-J. G. (Erdington).

WHAT A DRAPER'S ASSISTANT HAS LEARNED FROM WORK."

Sir,-I will give you a brief report of my work from Work, which I have done for pleasure and profit. In picture framing I have been most successful, having framed some hundreds of pletures for young people just conmencing housekeeping. I ought to tell yon I am a draper's assistant and find in Work my recreation. I have turned my hand to bookbinding, and have bound all my Work volumes from instructions given in Work. I have made the wardrobe for my own use from instructions in No. 341.-A. E. W. (Perry Barr).

EXTRA $£ 3$ A WEEK EARNED BY THE HELP DERIVED FROM "WORK."

Sir,-Since I first saw Work I have taken it every week. I am a miller by trade, and always liked a bit
of carpentry and palnting, and slnce taking Work, have studied wheelwrighting and cart making, and have done several jobs at night after leaving work. I got so mneh to do that I resolved to give up the milling. For any. thing I don't exactly know, I go to my friend Work, and we soon pull throngh, as it treats on everything. Ofttlmes I earn $£ 4$ per week where I used only to get £1, and I owe it all to Work.-T. D. (Long Sutton).

"WORK" SHOWS HOW TO SUCCEED IN EXAMINATIONS.

SIr,-Last May I sat for an examination held by the Cliy and Guilds of London Institute for wheelwrights' work, and passed first class. During the time I was pre paring for the examination Work was at my right hand I openly confess that I had nothing else that gave such useful information as questions answered in Work, and various other information contained in it that I most eagerly pernsed. I may say that thls year I am competing for a higher certificate, and assure you that WORk will again be by my side,-W. M. (London S.E.).

A MINER WINS PRIZES AND EARNS MONEY BY THE

Sir,-Through reading your courses of Wood-working In Work, I have been able to finish fretwork in such a style as to win prizes wherever 1 have gone to exhibit. Last September the judges disqualifled me at Birtley Show, giving as the reason that my work was too finely finished to have been done by me, as I am a miner; but I was able to prove to them that I was capable of doing better things than they had disqualified, after which all the judges and the committee apologised for their action and awarded me first and special prizes, the second time I have won thls honour at their show. -J. T. (Annfield Plain).
"It is a curious reflection, but soundly true, that there is not a person of ordinary average intelligence and strength, who could not learn from 'WORK'
how in a short time to make a living."-Saturday
Reviens.
WORK is issued every Friday, price 1d., in Monthly Parts, 6d., and in Volumes, 4s. 6d. each, and sold by all Booksellers, and at the Railway Bookstalls.
CASSELL \& COMPANY, Limited, London; Paris, New York d Melbourne.

Permanent Enlargement

Without Increase in Price of

BUILDING W0RLD

An Illustrated Weekly Trade Journal for Architects, Builders, Surveyors, Carpenters, Joiners, Bricklayers, Masons, Plasterers, Sanitary Engineers, Plumbers, Painters, Slaters, Glazlers, Brickmakers, Gasfitters, Locksmiths, Decorators, Hot-Water Fitters, Paperhangers, and for all engaged in Allied Trades,

By Eight Additional Pages Weekly.

BUILDING WORLD was established in October, 1895. From the very first number the journal has been brilliantly successful, and now enjoys a circulation far exceeding that of any other trade journal.
Many of the earlier Numbers and Parts, and some of the earlier Volumes, have run out of print, and are eagerly purchased at double and treble the original prices.

The unqualified success of Building World is due to its thorougbly practical character. The journal meets the requirements of all to whom it appeals, and is, as Correspondents have termed it, "An 'Inquire Within" upon everything connected with the Building Trade."

With the Second Volume of Building World the quantity of matter was largely increased; and from time to time temporary enlargements have been made and Supplements issued, in order to meet the ever-growing demand of advertisers for space in the journal.
But the pressure upon the advertising pages has now become so great that it would be necessary to reject furiher advertisements unless some means were adopted to keep pace with their increasing number.
To adopt such a course would, however, be to limit the usefulness of the journal and prevent further expansion of circulation. The proprietors have therefore determined to

ENLARGE THE JOURNAL BY

 EIGHT ADditional pages Weekly.This enlargement will afford scope not only for further development of the features already included in the paper, but also for the adoption of a variety of important and interesting subjects for which it has hitherto been found impossible to find room. The enlargement must, moreover, have the effect of still more largely extending the present widespread circulation of the paper, and will enable the proprietors to cope satisfactorily with the increase of advertisements, which must always be an important and valuable feature for readers of a trade journal.
Commencing with No. 261, which forms the first Number of a newVolume, Building World will consist of TWENTY=FOURPAGES WEEKLY. Although 50 per cent. more matter will be given, the price will remain ONE PENNY as before.
Building World has attained its present influential position in virtue of the thoroughgoing usefulness of its contents. The sterling character of its contributions will
be steadily maintained and increased. Thus Building World will be in the future not only the best but the biggest practical journal for the Building Trades. Its twenty-four pages will be closely packed with useful information. Readers who have come to regard the journal as being "absolutely indispensable," will find their favourite Building World unchanged as to quality, but there will he vastly more of it in quantity. The journal will, in fact, be HALF AS LARGE AGA1N as at present without increase of price.
Building World is characterised by a large number of valuable features which are exclusively its own. Every issue contains a summary of all Patents of interest to the building trades; A Concise Chronicle of Current Events; a digest of Lazu Cases affecting the interests of builders and their employees; a comprehensive list of New Contracts, showing where building work is in progress; a summary of Work and Wages, showing where work is most plentiful and wages are highest, and where work is scanty and wages are low ; full and authentic Replies to Knotty Questions submitted by readers (urgent questions are promptly answered by post); Correspondence upon topics of interest to the building trades; with many other features interesting and valuable alike to masters and men.
Illustrated Serial Articles, by acknowledged authorities, treating in full detail upon technical subjects in all departments of the building trade, constantly appear.
Every issue of Building World contains a number of short complete articles dealing in a plain and practical manner with various details of craftsmanship. These articles, which are illustrated when necessary, deal in turn with matters of interest to all interested in the building trade, and their helpfulness in the daily work of the various trades that Building World represents has been abundantly acknowleöged.
Alnost every issue of Building World contains Plans and Specifications of buildings that have ,been actually erected, with schedules of cost.
In furtherance of Technical Education, Building World constantly publishes Examination Questions, with Full Solutions, in such subjects as Building Construction, Gas Manufacture, Painters' and Decorators' Work, Carpentry and Joinery, Masonry, Brickwork, Plumbers' Work, etc. etc.
Readers who know the value of Building World will confer a benefit on such of their friends as are not yet subscribers by showing them this prospectus, and recommending them to get the First Number of the Enlarged Series.
bullding world is issued every Friday, ld.; is also published in mONTHLY Parts, 6d., each containing a Valuable COLOURED PLATE, and in VOLUMES, price 4/6 each.

CASSELL \& COMPANY, LIMITED, London; Paris, New York and Melbourne, Orders are received by all Newsagents, and at the Railway Bookstalls.

TEGHNIGAL INSTRUGTION.
Important New Series of Practical Volumes. Edited by PAUL N. HASLUCK.
With numerous Illustrations in the Text. Each Book contains about 160 pages, crown 800 . Cloth, 2s, each.

Practical Gas Fitting.

With 120 Illustrations.
Contents: How Coal Gas is Made-Coal Gas from the Retort to the Gas Holder-Gas Supply from Gas Holder to MeterLaying the Gas Pipe in the House-Gas Meters-Gas BurnersIncandescent Lights-Gas Fittings in Workshors and TheatresGas Fittings for Festival Illuminations-Gas Fires and Cooking Stoves.

Practical Draughtsmen's Work.

With 200 Illustrations.
This book deals \boldsymbol{w} ith the principles upon which mechanical and architectural drawings are made, a ad gives a course of practical instruction in technical drawing as applied to the constructive art.

Practical Staircase Joinery.

With 215 Illustrations.

Contents : Introduction: Explanation of Terms-Simple Form of Staircase-Honsed Stringed Stair-Measuring, Planning, and Settíng Out-Two-flight Staircase-Staircase with Winders at Top and Bottom-Staircase with Half-space of Winders-Staircase over an Oblique Plan Staircase with Open or Cut Strings-Cut String Staircase with Brackets-Open String Staircase with Bull-nose Step-Geometrical Staircases-Winding Staircases-Ships' Staircases.

Practical Metal Plate Work.

With 247 Illustrations.
Contents : Materials Used in Metal Plate Work-Geometrical Construction of Plane Figures-Geometrical Construction and Developmeat of Solid Figures-Tools and Appliances Used in Metal Plate Work-Soldering and Brazing-Tinning, Re-tinning, and Galvanising-Examples of Practical Metal Plate WorkExamples of Practical Pattern Drawing.

Cassell's Technical Manuals

Illustrated throughout with Drawings and Working Diagrams, bound in cloth.
Applied Mechanics. Cloth, 25 .
Bricklayers, Drawing for, 3^{3}.
Building Coostruction, 2 S
Cabinet-makers, Drawing for, 3 s.
Carpenters and Joiners, Drawiog for. 3s. 6d.
Gothic Stonework, ${ }^{\text {s }}$.
Handrailing and.Staircasing, 356 d .
Linear Drawing and Practical Geometry, 25 .
Lideat Drawing and Projection. The Two Vols. in One, 3 s . 6 d . Machinists and Engineers, Drawing for, 4s. 6 d . Model Drawing, ${ }^{3}$ s.
Orthographical and Isometrical Projection, 25.
Practical Perspective.
Stonemasons Drawing for. Cloth, 3 s.
Systematic Drawing and Shading ${ }^{2 s}$.

Manuals of Technology.

Edited by Professor Ayrton, F.R.S., and Richard Wormell, D.Sc., M.A. Illustrated throughout.
The Dyeing of Textile Fabrics. By Prof. Hummel. 5 s. Watch and Clock Making. By D. Glasgow. 45. 6d.
Steel and Iron. By Prof. W. H. Greenwood, F.C.S., M I.C.E., \&c. ${ }^{5 s}$.
Spinning Woollen and Worsted. By W. S. B. McLaren. 45. 6d.

Desigo in Textile Fabrics. By T. R. Ashenhurst. With Coloured Plates. 4s. 6d.
Practical Mechanics. By Prof. Perrv, M.E. $3^{\text {s. }}$ 6d.
Cutting Tools worked by Hand and Machine, Prof, R. H. Sмітн. 3s. 6d.
Practical Electricity. A Laboratory and Lecture Course for First Year Students of Electrical Engineering. By Prof. W. E. Ayrton. Completely rewritten, Current, Pressure, Resistance, Energy, Power, and Cells. With 247 Illustrations. 7 s . 6 d .
CASSELL \& COMPANY, Limited, London ; and all Booksellers.

"WORK" HANDBOOKS.

A Series of Practical Manuals.

Edited by PAUL N. HASLUCK, Editor of "Work."
lllustrated.' Cloth, rs. ; or Post Free, Is. 2d. each.

Great Praise from a Technical Authority.

The Scientific Americant, a publication recognised the wide world over as an authority on all technical matters, thus speaks of the series of "Work" Handbooks:-"For practical instruction in oumerous mechanical or art technical pursuits, these convenieot little handbooks cover a wide field. They are fully illustrated, the descriptions of methods and means and tools employed for doing the work considered in each volume are brought fully up to date, and all in language so plain and simple that any youth or the most uninformed workman may readily educate himself to do the work described. Everyone may learn from them hetter how to do the numerous smaill jobs which, sooner or later, come to most people to do."

Hoube Decoration. Comprising Whitewashing, PaperHanging, Painting, etc. With 79 Engravings and Diagranis. Contents. - Colour and Paints. Pigments, Dis. Driers, Varnshes, etc. Tools. used bytpainters. How to Mix Oil Paints. Distemper or Tempera Painting.
Whitewashing and Decorating a Ceiling. Painting a Room. Papering a Room. Embellishment of Walls and Ceilings.
Boot Maising and Mending. Including Repairing, La'sting, and Finishing. With 179 Engravings and Diagrams.
Conterts.-Repairing Heeis and Half-Soling Patcing Boots and Shoes Re-Wellig and Re-soling. Boot Making. Lasting the Upper. Sewing and Stitching.
How to Write Signs, Tickets, and Posters. With 170 Engravings and Diagrams.
Contents.-The Formation of Letters, Stops, and Numerals. The Sign riter's Outhit. Making Signboards and Laying Ground Colours. The Simpler Forms of Lettering. Shaded and Fancy Lettering. Painting a Signboard. Ticket-Writing. Poster-Painting, Lettering with Gold, etc.
Wood Finishing. Comprising Staining, Varnishing, and
Polishing. With Engravings and Diagrams. Frencin Polishing Fillers far Wood and Filling In. Bodying In and Spiriting Off. Glazing and Wax Finishing. Oil Polishing and Dry Shining. Re-polishing and Reviving. Hard Stopping or Beaumontage. Treadment of Fioors. Stains. Processes of Varnishing Wood. Varnishes. Re-polishing Shop Fronts.
Dynamos and Electric Motors. With 142 Engravings and Diagrams.
Contents.-1ntroduction. Siemens Dynamo. Gramme Dynamo. Manchester Dynamo. Simplex Dynamo. Calculating the Size and Amount of Wire for Small Dynamos. Ailments of Small Dynamo Electric Machines: their Causes and Cures. Sinall Electro-motors without Castings. How to Determine the Undertype 50-Watt Dywimo. Manchester Type 440 -Watt Dynamo.
Cyole Building and Repairing. With 142 Engravings and Diagrams
Contents-Introductory, and Tools Used. How to Build a Front Driver Building a Rear-driving Safety. Building Tandem Safeties. Building Froatdriver Tricycle. Building a Hand.Tricycle, Brazing. How to Make and
Gear Cases. Fittings and Accessories. Wheel-Making. Tyres and Method of Fixing them, Enamelling. Repairing.
Decorative Designg of All Ageg for All Purposes, With Contents.-Savage Ormament.
Coek Omament Roman Ornament Egptian Omament. Assyrian Omament Omament. Celtic and Scandinavian Ornaments Christian Ornament. Arabic scence and Modern Ornaments. Chinese Orna Mediæval Ornament. Renandian Ornament. Japanese Omament.
Mounting and Fxaming Pictures. With 240 Engravings, etc.
Contents.-Making Picture Frames. Notes on Art Frames. Picture Frame Cramps. Making Oxford Frames. Gilding Picture Frames. Methods of Mounting Pictures. Making Photograph Frames. Frames covered with Plush and Cork. Hanging and Packing Pictures.
Smithg' Work. With $21 r$ Engravings and Diagrams.
Contents.-Forges and Appliances. Hand Tools. Drawing Down and Upserting. Welding and Punching. Conditions of Work; Principles of Formpation. Bending and Ring Making. Miscellaneous Examples of Forged
Work. Cranks, Model Work, and Dle Forging. Home-made Forges, Work, Cranks, Model Work, and
Manipulation of Steel at the Forge.
Glasg Working by Heat and Abrasion. With 300 Engravings and Diagrams.
Contents.-Appliances used in Glass Blowing. Manipulating Glass Tubing. Blowing Bulbs and Fisks. Jointing Tubes to Bulbs forming Thistle Funnels, etc. Blowing and Etching Glass Fancy Articles; Embossing and Gilding Flat Surfaces. Utilising Broken Glass Apparatus; Boring Holes in, and Riveting Glass. Hand-working of Telescope Specula. . Turning, Chipping, and Grinding
Building Model Boats. With 168 Engravings and Diagrams. Contents.- Building Model Yachts. Rigging and Sailing Model Yachts. Making and Fitting Simple Model Boats. Building a Model Atlantic Liner. Vertical Engine for a Model Launch. Model Launch Engine with Reversing Gear, Making a Show Case for a Model Boat,
Blectrio Bells, How to Make and Fit Them, With r62 Engravings and Diagrams.
Contents,- The Electric Current and the Laws that Govern it. Current Conductorsiused in Electric-Bell Work. Wiring for Electric Bells Elaborated Systerus of Wiring; Burglar Alarns.s. Batteijes for Electric Bells. The Construction of Electic Bells, Fushes, and Switches. Indicato's for Electric-Bell Systems.

New Volumes in Preparation.
CASSELL \& COMPANY, Limited, London; and all Booksellers.

Price 6s. the Set, or 4d. each Plate. LATHE CONSTRUCTION. 24 COLOURED PLATES (18 in. by 13 in .),

DRAWN TO SCALE,

By PAUL N. HASLUCK,

Formerly Instructor in Lathework at the Regent Street Polytechnic ; Author of "Lathework,"
 "Milling Machines and Processes," etc.

THIS carefully prepared Set of Scale Drawings of typical Lathes represents machines now in actual use, and displays methods of construction that should be useful to all mechantcal engineers. Details are comprehensively shown in Elevations, Plans, and Sections.

CASSELL \& COMPANY, Limited, Ludgate Hill, London.

LIST OF VALUABLE COLOURED PLATES

Issued with the Monthly Parts of WORK and BUILDING WORLD.

Each plate measures 13 in. by 18 in., and is lithosraphed in three colours.

Anerican Roll Top Desk with Cabinet for Typewriter (Wior)
Bookcase and Overmantel Combined (WI24)
Bonding for Brick Flues (B57)
Brickwork Arches (Bry)
Brickwork Bonds (B 7)
Brickwork Openings (B43)
Brickwork Piers and Walls (br2)
Brickwork Retaining Walls (B4I)
Cabinet Bookcase (wi26)
Centering for Arches (B 5 r)
Chiffonier with Cellarette (wir8)
Chimney-piece and Overmantel in Wood (wiri)
Coal Vase with Carved Panel (wiri)
Colour Combination (B2r)
Conservatories and Greenhouses ($\mathrm{B}_{3} 7$)
Cupboard with shelves, Hanging (wi25)
Detached Residence, Double-fronted, Elevations and Roof Plans ($\mathrm{B}^{8}{ }^{8}$)
Detached Residence, Double-fronted, Plans and Sections (B39)
Detached Suburban Reside.ice, Plans, etc. (B27) .
Doors, Ledged, Panelled, etc. (Br_{3})
Drains, Traps, and Tanks (bi8)
Facework in Masonry (B29)
Fireplace, Design for (Wirz)
Floors and Flooring (B17)
Framed Partitions (B42)
Framed Partitions, Trussed (B23)
Games Compendium ($\mathrm{wr}_{3}{ }^{2}$)
Glove Box and Mirror (wri7).
Hat and Umbrella Stand (wiz9)
Heating by Low Pressure, Principles and Plans (B45)
Heating by Low Pressure, Further Plans (B 50)

Hot-water Apparatus, Domestic Supply (B36)
Hot-water Apparatus, Low Pressure (B40)
Houses, Semi-detached, Plans (B_{52})
Honses, Semi-detached, Elevations and Sections (B56)
Incubator, $50-\mathrm{eg}$ Hydro, with Drying Box (Wio5)
Iron Roofs (BI4)
Joints for Lengthening Beams and Posts (B 3 I)
Joints in Carpentry (B25)
Joints in Coach Body Making (wrig)
Joints in Joinery (B24)
Joints of Posts and Beams (B44)
Lantern Light, Plans and Elevations (в30)
Lantern Light, Details for Lower Lights (B 32)
Lantern Light, Details for Upper Lights (${ }^{\text {B33 }}$)
Lathe, Dividing Attachment for (wio6)
Lathe for Plain and Ornamental Turning (W107)
Liqueur Stand, Design for (wr ${ }^{24}$)
Memoranda for Builders (BrI)
Model Horizontal Engine (Wiz8)
Model Railway Wagòn (wit6)
Music Cabinet (Wri22 and wis 8)
Overdoor Fitment (Wi_{3})
Overdoors, Dados, Overmantels, Chim-ney-piece, etc. ($\mathrm{B}_{4} 8$)
Overmantel made from Picture-frame Moulding (Wr27)
Overmantel with Sbelves and Turned Pillars (wi20)
Oxy-Hydrogen Biunial Lantern ($\mathrm{W}_{1 \mathrm{I}_{4}}$)
Patterns and Core-boxes for Small Cistern Pump ($\mathrm{Wr}_{3} 6$)

Pedestal Writing Table ($\mathrm{W}_{1} \mathrm{I}_{5}$) Plate and Cutlery Cabinet (W_{1} 3o) Plumbers' Work, External (Bio)
Plumbers' Work, Internal (B8)
Repoussé Work Designs (wito)
Revolving Bookcase (Wi35)
Roofs, Open Timber ($\mathrm{B}_{5} 8$)
Roofs, Small, Framing for (B22)
Roof Trusses, Composite ($\mathrm{B}_{5} 3$)
Roof Trusses, King-post and Queenpost (B9)
Saloon Bar Counter (B49)
Saloon Doors (B46)
Secretaire Bookcase witb Cupboards (W102)
Sewer Manholes, Lamp Eye, etc. (B26)
Ship Saloon Finishes (wizr)
Shoring and Strutting (834)
Sideboard, Cottage (wi37)
Stencil Designs (B54)
Stencil Designs for Panels (B59)
Stone Stairs (B47)
Stone Walling (bi6)
Technical Drawing (wio8)
Trussed Beams (B35)
Ventilators and Water-tight Work in Ship Joinery (wro4)
Vertical 8-horse-power Boiler (wro3)
Wardrobe, Design for (Win3)
Water-closets, Urinals, and Fittings (B15)
Window Conservatory (B55)
Window Sashes (B20)
Window Sashes and Casements (B28)
Wood Carving Designs (wiog)
Writing Cabinet with Shelves (WI3I)

Any plate may be obtained separately for 3 d . through a newsagent, or for $3 \frac{1}{2} \mathrm{~d}$. post free from the publishers; or any six of the plates may be obtained through any newsagent for $\mathbf{I S}$., or post free from the publishers for Is. I $\frac{1}{2} d$.
The reference number of the plate required should be indicated on the order.
CASSELL \& COMPANY, Limited, Ludgate Hill, London; and all Booksellers.

Best Quality Tools.

Firm Joint Callipers.
No. 26 or 27.

4	6	8	10	I 2	14 4	16	18	20	$24 \mathrm{in}.$.
$1 / 10$	$2 / 6$	$3 /-$	$3 / 3$	$3 / 9$	$5 / 6$	$6 / 6$	$7 / 6$	$9 /-$	$11 /-$

The above sizes refer to the length of the Callipers. Their capacity is about one-third greater than the size given.

The improvement in these Callipers consists in the construction of the joint, which is so made as to be drawn together by means of a screw forcing a washer on to the squared end of the main rivets, which extends through the legs, thus clamping them together between bearings so shaped as to induce a smooth and uniform friction of more or less tension to suit the user. The quality of these Callipers is incomparably superior to that of any old-style rivetted-joint Calliper on the market.

Improved Parallel Vice with Steel Jaws.

No. 00	0	1	2	3	4
$2 \frac{1}{4} \mathrm{in}$.	$2 \frac{3}{8} \mathrm{in}$.	$2 \frac{7}{8} \mathrm{in}$.	$3 \frac{1}{4} \mathrm{in}$.	$3 \frac{5}{8} \mathrm{in}$.	$4 \frac{1}{2} \mathrm{in} . \mathrm{Jaws}$.
$5 / 6$	$6 / 6$	$8 / 6$	$12 / 6$	$17 / 6$	$29 / 6$ each.

Box Squares. Machine Planed Inside and Out. For Marking Keyways on Shafting, \&c. \&ec.

4	5	6	8	9 inch.
4'-	$5 /-$	$6 \cdot-$	$8 /-$	$9 /-$ each.

Our Illustrated Catalogue, containing 312 Pages and over 2,000 Illustrations, sent post free to any address for 6 stamps.

CHARLES NURSE \& CO., Invicta Tool Works, 182 \& 184, WAL WORTH RD., LONDON, S.E.
Also at 144, Bishonsgate St. Without, E.C.g 100; Fleet St.g

[^8] Ludgate Gircus, E.C. ${ }^{\text {g }}$ and 173, Walworth Rd., S.E.

LABOUR-SAVING TOOLS.

Bench Drilling Machine.

With Cut Gears, Adjustable Table, Steel Feed Screw, and 3-Jaw Chuck, taking drills to $\frac{8}{8} \mathrm{in}$. Set of 8 Fluted Drills included.

Without Vice, 25/-. With Vice, as shown, 31/6.

Hand Drill No. 5.
Ilas a wide-rimmed Gear Wheel, which can be run between thumb and finger when extra fine drills are used, or for delicate work. Weighs 20 ozs . $11 \frac{1}{2}$ ins. long. Price, including set of Fluted Drills, 6/6.

Instantaneous Bench Vices.

This Vice does away with 75 per cent. of the labour expended on an ordinary bench screw. No Joiner's bench should be without it.

Send Six Stamps for Illustrated Catalogue. Contains 312 Pages, and over 2,000 Illustrations. The completest and most convenient List published.

GHARLES NURSE \& Co., Tool Makers,

182, 184, 173, WALWORTH ROAD, LONDON, S.E.
144, BISHOPSGATE STREET WITHOUT, E.C.
100, FLEET STREET, LUDGATE CIRCUS, E.C.

[^0]: Converting Bacon Cuttings into Scap. - The fat is first rendered in a large cylinder with an inlet for steam, exits for water and melted fat, manholes for charging and withdrawing fat, a false bottom for the latter to rest on, and a safety valve weighted to a pressure of two or three atmospheres, that is, 30 lb , to 45 lb , per squars inch. The rendered fat is then run into cold water and removed for soap making, which is usually carried out in immense pans heated by fire and steam, either alons or together. The amount of materials put in the panshould not more than two-thirds

[^1]: r
 \qquad

[^2]: horizontal bars, all of uniform size. The jamb stones, aver'aged, are 12 in. hy 9 in., splayed and sunk as on plan, and the splayed mullion dividing the two lights is 9 in , by 4 in. The radiating arch stones are of the same section as the jamb stones, but, are rebated to receive the tracery head. A 3 -in. moulded hood with returned ends is turned over the arch as shown. Fig. 3 shows the method of ohtaining the centres and centre lines for the tracery head by means of an equilateral triangle; A A A A show the centres for the tracery, and $B C$ the centies for the window arch.

[^4]:

[^5]:

[^6]: -

[^7]:

[^8]: Face Cover 3.]

